
Live Embedded Event, June 3rd 2021

Getting started with
RAUC
Kamel Bouhara
kamel.bouhara@bootlin.com

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/27

Kamel Bouhara

▶ Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Bootloader, Linux kernel, Yocto Project, Buildroot
▶ Complete Linux BSP development
▶ Strong open-source focus: upstreaming and contributions

▶ Significant experience in board bring up with NXP SoCs
▶ Small contributions to Yocto Project, Buildroot and Linux
▶ Living in Lyon, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/27

About this talk

▶ Brief introduction to RAUC
▶ Explore RAUC integration with Yocto/Buildroot, U-Boot/Barebox
▶ Share some insights and field experience
▶ Give some important keys to be ready to start with RAUC

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/27

What is RAUC ?

▶ RAUC is an update system mechanism
▶ Developed by Pengutronix (Barebox, PTXDist)
▶ Licensed under LGPL-2.1
▶ https://rauc.io/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/27

https://rauc.io/

Non exhaustive list of RAUC features

▶ Fail-safe and atomic
▶ Using symmetric or asymmetric update (redundant A/B scheme, rescue system)
▶ Update result is either valid or invalid (interrupt, corrupted bundle, device not

compatible)
▶ Security

▶ Using OpenSSL x.509 certificates
▶ Using an Hardware Secure Module with PKCS11 keys

▶ Flexible and customizable update with bundle handlers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/27

What’s a RAUC bundle artifact ?

rootfs.squashfs
.verity bootfs.ext4

[update]
compatible=demoboard
version=1.0
description=RAUC for demoboard
build=20210518074109

[image.appfs]
sha256=cbee8766bd5da2de75148853887743b9f362ba92af2a6f48ae4b76708e7b1631
size=758486
filename=appfs.tar

[image.bootfs]
sha256=ebad11ac609348423974a0badfd8b7364e5a7f1af6785026295c994a1c6780df
size=67108864
filename=bootfs.ext4

[image.rootfs]
sha256=b36ae6112c2a9102f26a0d7aa8c138204274371be5694c82f52d9a3a6daac2d0
size=240459776
filename=rootfs.squashfs.verity

...

appfs.tar ...

signed
squashfs
image (.raucb)

 manifest file (.raucm)

(checksum can be
used to decide if

update is required with
install-same=false)

image updates deployed
on each slot partitions

5 type of
sections:

update, bundle,
hooks, handler

and image

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/27

Getting started with RAUC

RAUC and Build systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/27

Yocto integration

▶ meta-rauc layer
▶ Mainly provide a generic class for bundle generation
▶ A fragment file rauc.cfg for the kernel squashfs support
▶ A basic example of bundle recipe core-bundle-minimal.bb
▶ The rauc package provide support for both sysVinit and systemd
▶ A script to generate development certificate with openssl
▶ Some useful packages: dt-utils, casync, rauc-hawkbit ...
▶ https://github.com/rauc/meta-rauc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/27

https://github.com/rauc/meta-rauc

Yocto integration

▶ Add the meta-rauc layer to your bblayers.conf:

$ git clone https://github.com/rauc/meta-rauc.git
$ bitbake-layers add-layer meta-rauc

▶ Create a recipe rauc_\%.bbappend to install your own rauc configuration:

FILESEXTRAPATHS_prepend := "\${THISDIR}/files:"
SRC_URI_append := " file://system.conf"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/27

Yocto integration

▶ Setup a minimal rauc configuration through packageconfig:

PACKAGECONFIG_remove_pn-rauc = "service"
PACKAGECONFIG_remove_pn-rauc = "network"
PACKAGECONFIG_remove_pn-rauc = "gpt"

▶ See rauc.inc for the exhaustive list of packageconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/27

A bundle recipe

▶ Create your bundle recipe demoboard-bundle.bb

inherit bundle

RAUC_BUNDLE_COMPATIBLE ?= "Demo Board"
RAUC_BUNDLE_SLOTS ?= "rootfs"
RAUC_SLOT_rootfs ?= "core-image-minimal"
RAUC_IMAGE_FSTYPE = "ubifs"

RAUC_KEY_FILE = "\${YOCTOROOT}/meta-demoboard/keys/dev.key.pem"
RAUC_CERT_FILE = "\${YOCTOROOT}/meta-demoboard/keys/dev.cert.pem"

RAUC_BUNDLE_COMPATIBLE the target compatible
RAUC_BUNDLE_SLOTS list of partitions to update
RAUC_IMAGE_FSTYPE root filesystem (ubifs, squashfs, ext4, vfat, raw)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/27

Building and Using

▶ Add the rauc package to your image

IMAGE_INSTALL_append = "rauc"

▶ Generate your bundle image

$ bitbake demoboard-bundle

▶ On the target, install the generated *.raucb using rauc install command
▶ Run rauc status mark-good to validate the boot on the new slot (shall be

done by an initscript or systemd service)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/27

Using RAUC with Buildroot
▶ Select BR2_PACKAGE_RAUC=y
▶ Options enabled as dependencies:

select BR2_PACKAGE_SQUASHFS # run-time dependency
select BR2_PACKAGE_UBOOT_TOOLS if BR2_TARGET_UBOOT
select BR2_PACKAGE_UBOOT_TOOLS_FWPRINTENV if BR2_TARGET_UBOOT

▶ To deploy rauc files on target use BR2_ROOTFS_OVERLAY

board/.../demoboard/rootfs-overlay/
��� etc

��� rauc
� ��� dev.cert.pem
� ��� dev.key.pem
� ��� system.conf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/27

Using RAUC with Buildroot

▶ Generate the bundle with a post image script using
BR2_ROOTFS_POST_IMAGE_SCRIPT

#!/bin/bash
...
cat >> ${BINARIES_DIR}/temp-dir/manifest.raucm << EOF
[update]
compatible=demo-board
version=${VERSION}
[image.rootfs]
filename=rootfs.ext4
EOF

${HOST_DIR}/bin/rauc --cert ${BOARD_DIR}/dev.cert.pem \
--key ${BOARD_DIR}/dev.key.pem \
bundle ${BINARIES_DIR}/temp-dir/ \
${BINARIES_DIR}/bundle.raucb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/27

Getting started with RAUC

RAUC and Bootloaders

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/27

Barebox and RAUC: Pre-requisites

Hardware pre-requisite:
▶ A non-volatile memory with ~200 KBytes of dedicate space (not updated with

Barebox)
Software pre-requisite:
▶ Install dt-utils on your filesystem from:

https://git.pengutronix.de/cgit/tools/dt-utils
▶ If using EEPROM backend make sure you have the following kernel patch (nvem

core) : https://lkml.org/lkml/2020/4/6/445

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/27

https://git.pengutronix.de/cgit/tools/dt-utils
https://lkml.org/lkml/2020/4/6/445

Barebox and RAUC: In brief

▶ Enable bootchooser and barebox state support:

CONFIG_STATE_DRV=y
CONFIG_STATE=y
CONFIG_BOOTCHOOSER=y
CONFIG_CMD_STATE=y
CONFIG_CMD_BOOTCHOOSER=y

▶ The Bootchooser is the algorithm implemented in Barebox to provide a mean to
work with abstract boot targets.

▶ The State allows storing the set of variables required by RAUC

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/27

Updating with Barebox

Example of A/B update scenario setup:

$ tree arch/arm/boards/demoboard/env/nv/ |grep boot
��� bootchooser.disable_on_zero_attempts
��� bootchooser.reset_attempts
��� bootchooser.reset_priorities
��� bootchooser.retry
��� bootchooser.state_prefix
��� bootchooser.system0.boot
��� bootchooser.system0.default_attempts
��� bootchooser.system0.default_priority
��� bootchooser.system1.boot
��� bootchooser.system1.default_attempts
��� bootchooser.system1.default_priority
��� bootchooser.targets
��� boot.default
...

▶ Double check barebox dts and state.prefix above !

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/27

U-Boot and RAUC: Pre-requisites

Hardware pre-requisites:
▶ A non-volatile memory with ~200 KBytes of dedicate space (not updated with

u-boot)
Software pre-requisites:
▶ Install U-boot fw-utils on your filesystem, define u-boot environment offset in

/etc/fw_env.config
▶ Use CONFIG_ENV_IS_IN_* and/or CONFIG_SYS_REDUNDAND_ENVIRONMENT=y

when updating u-boot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/27

Updating with U-Boot

▶ Example of boot script:
https://github.com/rauc/rauc/blob/master/contrib/uboot.sh

▶ Mainly based on three variables:
BOOT_ORDER Which slot to boot first
BOOT_*_LEFT Counters for boot attempts on A/B slots

▶ On target, load and run the boot script:

setenv loadscript "fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${script};"
run loadscript;
source ${loadaddr}:${script};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/27

https://github.com/rauc/rauc/blob/master/contrib/uboot.sh

Getting started with RAUC

Basic update scenarios

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/27

Update with a rescue system or asymmetric update

[system]
compatible=demo-board
bootloader=barebox

[keyring]
path=/etc/rauc/dev.cert.pem

[slot.rescue.0]
device=/dev/ubi0_0
type=raw
bootname=system0
readonly=true

[slot.rootfs.1]
device=/dev/ubi0_2
type=ubifs
bootname=system1

▶ Good solution for devices with minimal storage resource
▶ No fallback possible, require to define a backup plan when update failed
▶ Several reboots required to achieve the update

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/27

Example of rauc usage from initramfs

#!/bin/sh

PATH=/sbin:/bin:/usr/sbin:/usr/bin
USB=/mnt

Sync clock on RTC
hwclock -s
Attach ubi rootfs volume
ubiattach /dev/ubi_ctrl -m 2

...

Install the new system image
rauc install "\${USB}/demoboard-bundle-demo-board.raucb"

Change the active boot slot and reboot on the main system
rauc status mark-active rootfs.1

reboot -f

exit 0

▶ Make sure the system clock is correctly setup (use RTC/hwclock -s or NTP)
LastError: signature verification failed: Verify error:self signed
certificate
Installing `/media/demoboard-bundle-demo-board.raucb` failed

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/27

Redundant A/B system update
...
[slot.rootfs.0]
device=/dev/mmcblk1p1
type=ext4
bootname=A

[slot.rootfs.1]
device=/dev/mmcblk1p2
type=ext4
bootname=B

[slot.bootfs.0]
device=/dev/mmcblk1p3
type=ext4
parent=rootfs.0

[slot.bootfs.1]
device=/dev/mmcblk1p4
type=ext4
parent=rootfs.1

▶ Good solution for devices with large size storage
▶ Use the parent entry to bind all slots together in a single bundle update
▶ Depending on the application it can be a complex scenario, use post-install script

handlers wisely
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/27

Getting started with RAUC

Conclusion

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/27

What you need to know

▶ Both Yocto or Buildroot fully support RAUC
▶ Well integrated in Barebox (developed by the same Pengutronix folks)
▶ With Barebox you don’t need to directly deal with environment variables
▶ U-Boot is good enough for a simple redundant A/B scenario
▶ More complex scenario need modification in rauc bootchooser code

(uboot_get_state/uboot_set_state)
▶ Make sure your device is well sized for your update strategy and application

requirements
▶ New RAUC version 1.5 supporting the verity format for verified boot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/27

Questions? Suggestions? Comments?

Kamel Bouhara
kamel.bouhara@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2021/lee/bouhara-rauc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/27

https://bootlin.com/pub/conferences/2021/lee/bouhara-rauc

	Getting started with RAUC
	RAUC and Build systems
	RAUC and Bootloaders
	Basic update scenarios
	Conclusion

