
Embedded Linux Conference, September 27th 2021

OP-TEE: When Linux
Loses Control
Clément Léger
clement.leger@bootlin.com

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Clément Léger

▶ Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Low-level development for Linux kernel, Bootloader, etc
▶ Development, consulting and training
▶ Strong open-source focus

▶ Ported Linux to a custom VLIW architecture
▶ Living in Grenoble, near the Alps in France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

About this talk

▶ Explain what is OP-TEE
▶ Explain OP-TEE integration into an existing system which runs everything in

secure mode
▶ Describe interactions between various components

(SPL/OP-TEE/Bootloader/Linux)
▶ Present various protocols & methods to communicate between REE/TEE (SCMI,

PSCI, SMC)
▶ Provide experience feedback on Microchip SAMA5D2 OP-TEE port (ARMv7-A)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

What is OP-TEE ?

▶ Open Portable Trusted Execution Environment
▶ Provides secure services to a Rich Execution Environment (REE) (Typically

Linux).
▶ Based on hardware-enforced isolation technology (ARM TrustZone)
▶ Secure Monitor Calls (SMC instruction) allow to switch REE ↔ TEE via the

secure monitor
▶ Much like a SVC but jump to a higher privileged mode (Monitor).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

TrustZone

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

OP-TEE: When Linux Loses Control

Bootchain

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Bootchain on ARMv7-A

▶ TF-A on ARMv7-A is supported on some SoC but bootchain is often different
between them

▶ On SAMA5D2, there is no TF-A support, at91bootstrap is the ”SPL” and loads
the next software:
▶ Can be U-Boot, Linux or another binary

▶ At some point in the bootchain, a switch to the normal world happens
▶ Our goal is to minimize the amount of code running as secure

▶ Only ROMBoot, at91bootstrap and OP-TEE will run in secure mode

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

Bootchain on SAMA5D2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

Booting OP-TEE (1)

▶ OP-TEE outputs a binary with a simple header (tee.bin, V1 header):

struct optee_header {
uint32_t magic;
uint8_t version;
uint8_t arch;
uint16_t flags;
uint32_t init_size;
uint32_t init_load_addr_hi;
uint32_t init_load_addr_lo;
uint32_t init_mem_usage;
uint32_t paged_size;

};

▶ Binary should be copied at init_load_addr without header
▶ Another multi part header (V2) exists for loader that support separate binaries

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

Booting OP-TEE (2)

▶ Need to pass the following registers when jumping to OP-TEE:
▶ r0: Page store area pointer (When using CFG_WITH_PAGER)
▶ r1: Normal world first argument
▶ r2: Normal world second argument (External device tree for OP-TEE)
▶ lr: Normal world entry point (Can be hardcoded using CFG_NS_ENTRY_ADDR)

▶ After starting it, OP-TEE is persistent in memory an runs in secure world
▶ Vector table is set for monitor mode (MVBAR) which allow catching SMC

▶ When returning to normal world (address in lr), r0 will be set to 0
▶ at91bootstrap has been modified to support OP-TEE load

1. Loads both OP-TEE and U-Boot from non volatile memory into RAM
2. Set lr to U-Boot load address
3. (When booting linux) Set r1 to MACH type and r2 with device tree
4. Jump to OP-TEE entry point (init_load_addr)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

OP-TEE Device Trees (1)

▶ OP-TEE manipulates 2 devices trees:
▶ Embedded: Secure device tree for OP-TEE internal use (CFG_EMBED_DT selected by

CFG_EMBED_DTB_SOURCE_FILE)
▶ External: Non-Secure device tree meant for Normal World (Passed via r2 or

hardcoded using CFG_DT_ADDR)
▶ OP-TEE only works with flattened device tree
▶ External device tree can be modified or generated as a device tree overlay which

can be merged by Normal World
▶ CFG_EXTERNAL_DTB_OVERLAY will reuse an external device tree overlay or create it if

needed
▶ CFG_GENERATE_DTB_OVERLAY will always create a new device tree overlay

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

OP-TEE Device Trees (2)

▶ Device tree property secure-status allows to set the status of the node for
secure world

/* Device should be set as accessible by both Secure & Non-Secure */
secure-status = "okay";
status = "okay";

/* Device should be set as accessible by Secure only */
secure-status = "okay";
status = "disabled";

▶ Nodes status in a device tree can be modified using
dt_enable_secure_status()
▶ Will set status = "disabled" and secure-status = "okay" for the node
▶ Useful to change the state of a node after handling it in secure world

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

OP-TEE Device Trees (3)

▶ Some nodes can be generated by OP-TEE to pass information to Normal World
via external device tree
▶ optee node for Linux OP-TEE driver
▶ psci node for PSCI informations

▶ Other changes to change a system state from Secure to Non-Secure
▶ SCMI node is not generated and some modifications are needed for SCMI clocks
▶ assigned-clock-parent handling fails due to missing re-parenting support in

SCMI protocol

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

OP-TEE: When Linux Loses Control

Securing peripherals

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Why securing ?

▶ When running under a TEE, the system must remain secure
▶ The REE MUST not be able to alter the TEE or system state

▶ Memories containing the TEE data must also remain out of reach of REE
▶ Need to reduce Linux critical peripheral access
▶ Any peripheral that can compromise the system state or the TEE integrity should

be secure
▶ Reset/shutdown, watchdog controllers → For obvious reason !
▶ CPU Online/Offline control → Obvious reason
▶ Clock controllers → Can disable clock of critical devices
▶ Random number generator → Could leak random data used for secure purpose
▶ Cryptographic engines → Can access secret asset
▶ Bus controllers → Can change bus settings (QoS, etc)
▶ Timers → Can alter the perception of time for TEE
▶ OTP, Fuses → Can access sensitive data (secure assets, key, etc)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Hardware for security

▶ Depending on hardware, bus controllers often provide security settings if ARM
TrustZone is supported.
▶ An additional security bit is conveyed with accesses over the bus
▶ Set peripherals access for secure masters only
▶ Set memories secure layout by splitting them with more or less flexibility

▶ On SAMA5D2, bus controllers (Bus matrix) allow to secure devices and
memories:
▶ Memories can be split according to regions
▶ Peripherals state can set as Secure or Non-secure

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

Securing memories

▶ TEE memories MUST be set as secure (text, data, etc)
▶ Memories (SRAM/DRAM/etc) can be split in 2 areas for each port according to

predefined sizes
▶ Either the first part is secure and the second part is non-secure or the reverse

▶ When setting a secure memory layout and using DDR, consider all the available
boards !
▶ Some boards have less DDR than others, so try to put OP-TEE in the beginning of

the DDR rather than at the end
▶ SAMA5D2 initial memory map for OP-TEE was at 256MiB (0x30000000)

▶ Memory map modified to put OP-TEE at start of DDR (0x20000000)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

Secure DDR on SAMA5D2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Securing peripherals

▶ Security of peripherals is often a combination of peripheral and bus controller
settings
▶ Some registers have different secure behavior for read vs write

▶ SAMA5D2 Matrix buses can set peripheral security world.
▶ Peripherals are either ”Always Secure” or ”Peripheral Securable” (can be configured

as secure or non-secure)
▶ Peripherals might have additional write protection features for safety
▶ Interrupt are also affected by these settings and will target the secure interrupt

controller
▶ Some devices include functions that are used by both world (Special Function

Register for instance)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

OP-TEE peripheral security

▶ OP-TEE platform code is in charge of setting up hardware security
▶ There is no common framework to handle this, each platform implement it its

own way
▶ Can be done using secure-status/status property in device tree with

_fdt_get_status which returns a mask:
▶ DT_STATUS_OK_SEC: secure-status is set to "okay"
▶ DT_STATUS_OK_NSEC: status is set to "okay"
▶ DT_STATUS_DISABLED: node is completely disabled

▶ Based on this information, peripherals can be set as secure with bus controllers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

OP-TEE: When Linux Loses Control

Communication

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

Doorbell

▶ Doorbell mechanism needed to send notifications from REE to TEE
▶ Hardware mailboxes can be used if available
▶ SMC instruction allows to switch from Normal World to Secure World via the

Secure Monitor by generating a synchronous exception
▶ SMC Calling Convention define ranges for function IDs and argument passing
▶ Registers r0 contains the function ID to call and r1 - r7 are used for arguments
▶ Registers r0 - r7 are used to return values

▶ Allows to call specific OP-TEE services handled by sm_platform_handler
▶ SAMA5D2 does not have mailboxes → SMC are used for notifications

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

Protocols

▶ Some protocols allows to control the critical peripherals into Secure World
▶ System Control and Management Interface allows to manage clocks, power and

reset domain
▶ SMCs can be used as the doorbell mechanism for SCMI.

▶ Power State and Coordination Interface allows to control power states of system
and CPUs

▶ OP-TEE driver for specific communication via OP-TEE Message Protocol
▶ Communication with Trusted Application (TA/Pseudo TA) from Non-Secure client

applications
▶ Handles RPC from OP-TEE (Services offered by Non-Secure World, I2C, REE timer

for instance)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

SCMI

▶ Set of standard interfaces for power, performance and system management
▶ OP-TEE integrates a SCMI server which can handle clocks, power domains &

reset domains.
▶ Linux provides support for SCMI (with CONFIG_ARM_SCMI_PROTOCOL).
▶ Communication can be done using SMCs or mailboxes

▶ At the time of this talk, SCMI driver needs CONFIG_ARM_SCMI_PROTOCOL which
needs CONFIG_MAILBOX

▶ SCMI support via SMC needs CONFIG_HAVE_ARM_SMCCC_DISCOVERY to be enabled
which needs CONFIG_ARM_PSCI_FW to detect the SMC version supported.

▶ Basic PSCI support is needed in OP-TEE platform to use SCMI driver with SMC.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

SCMI Device tree (1)

▶ arm,smc-id defines the function ID to be used with SMCs to call OP-TEE
platform specific SCMI handling
▶ On OP-TEE side, this function ID must be handled in sm_platform_handler() to

call SCMI channel handling (scmi_smt_fastcall_smc_entry)
▶ A shared memory area (Secure/Non-Secure) must be defined in the device tree for

SCMI data exchange
▶ Supported protocols are defined as scmi0 subnodes where reg describes the

protocol identifier
▶ U-Boot also provides support for SCMI clocks and uses the same device tree

bindings than Linux
▶ If clock are needed early in U-Boot, u-boot,dm-pre-reloc property should be

added to SCMI nodes for pre relocation probing

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

SCMI Device tree (2)

reserved-memory {
scmi0_shmem: scmi0_shmem@21400000 {

no-map;
reg = <0x21400000 0x80>;

};
};

firmware {
scmi0 {

compatible = "arm,scmi-smc";
shmem = <&scmi0_shmem>;
arm,smc-id = <0x2000200>;

scmi0_clock: scmi0_clock@14 {
#clock-cells = <0x01>;
reg = <0x14>;

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

SCMI Clocks

▶ SCMI protocol for clocks allows to query clock count, enable/disable and set/get
the rate for clocks

▶ CONFIG_SCMI_CLK in Linux
▶ SCMI clocks are probed later that clocksources !
▶ This can be a problem if you have a core clocksource needing an SCMI clock to

work
▶ CONFIG_CLK_SCMI in U-Boot
▶ SCMI identifies clocks using a single integer
▶ Clocks identifier are expected to be contiguous and in the range of

[0 - clock_count[

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

SCMI Clocks

▶ Existing device tree should be modified to use SCMI clocks instead of physical
ones (This can be a tedious task when using a lot of clocks !)

▶ For instance, this clock description:

&tdes {
clocks = <&pmc PMC_TYPE_PERIPHERAL 11>;

};

▶ Will become:
&tdes {

clocks = <&scmi0_clock AT91_SCMI_CLK_PERIPH_TDES_CLK>;
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Clocks in OP-TEE

▶ Previously no framework to handle a clock tree (custom to each platform)
▶ Pull-Request ongoing to add a basic clock framework

▶ Adds device tree parsing to query clocks from drivers
▶ Use existing device tree bindings to assign clock parents and rates

▶ SCMI generic clock support will be added and use this generic clock framework
▶ Proposal is to use device tree bindings to match physical clocks to SCMI clocks

tdes_clk@19 {
reg = <AT91_SCMI_CLK_PERIPH_TDES_CLK>; /* SCMI identifier */
clocks = <&pmc PMC_TYPE_PERIPHERAL 11>; /* Physical clock */

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

PSCI

▶ Standard interface for power management
▶ System shutdown and reset
▶ Core idle management
▶ Dynamic addition and removal of cores, and secondary core boot

▶ PSCI support can be enabled in Linux with CONFIG_ARM_PSCI_FW
▶ In U-Boot, PSCI reset and shutdown are supported with CONFIG_SYSRESET_PSCI
▶ In OP-TEE platform specific code must be added (weak functions) to handle

PSCI request and report supported features

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

PSCI Device tree

▶ PSCI node can be generated by OP-TEE in the external device tree
▶ Allows to always have the correct PSCI SMC function ID

psci {
sys_reset = <0x84000009>;
sys_poweroff = <0x84000008>;
cpu_on = <0x84000003>;
cpu_off = <0x84000002>;
cpu_suspend = <0x84000001>;
method = "smc";
compatible = "arm,psci-1.0", "arm,psci-0.2", "arm,psci";

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

PSCI Suspend, Reset, Shutdown

▶ PSCI provides a suspend method to enter system in suspend mode
▶ Semantic for suspend is to enter the deepest suspend mode available
▶ On SAMA5D2, there are multiple suspend modes which are selectable by a

command line option (atmel.pm_modes)
▶ Solution is to use a custom Silicon Provider SMC (SIP SMC) to set suspend mode

at boot time
▶ SMC is done according to the existing boot parameter atmel.pm_modes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

PM Support in OP-TEE

▶ OP-TEE provides arch support for suspend support
▶ PM functions allows to register suspend/resume callback that will be called on

PM state changes
▶ register_pm_driver_cb() and register_pm_core_service_cb()

▶ platform code should call pm_change_state() to change PM state

pm_change_state(PM_OP_SUSPEND, 0);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

CPU Idle

▶ CPU Idle via PSCI is supported in Linux when enabling
CONFIG_ARM_PSCI_CPUIDLE

▶ PSCI idle states must be described in device tree
▶ entry-method property must be set to "psci"
▶ Multiple states can be describe and will be chosen according to their usage ”cost”
▶ arm,psci-suspend-param value will be passed with PSCI call to allow TEE to

identify the requested idle mode

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

Idle states

cpu@0 {
enable-method = "psci";
cpu-idle-states = <&psci_standby>;

};

idle-states {
entry-method = "psci";

psci_standby: psci-standby {
compatible = "arm,idle-state";
idle-state-name = "psci,standby";
arm,psci-suspend-param = <0x0>;
entry-latency-us = <1000>;
exit-latency-us = <700>;
min-residency-us = <2000>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

OP-TEE driver

▶ An OP-TEE driver is present in Linux
▶ This driver is probed based on device tree and OP-TEE can also generate this

node in the external device tree overlay

reserved-memory {
optee_core@20000000 {
reg = <0x20000000 0x1000000>;

};

optee_shm@21000000 {
reg = <0x21000000 0x400000>;

};
};

firmware {
optee {

compatible = "linaro,optee-tz";
method = "smc";

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

OP-TEE architecture

Figure: from Linaro

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1

OP-TEE: When Linux Loses Control

Other Peripherals

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

True Random Number Generator

▶ Linux driver for OP-TEE RNG must be enabled using CONFIG_HW_RANDOM_OPTEE
▶ On OP-TEE side, a Pseudo Trusted Application (PTA) provides access to the

secure RNG when CFG_HWRNG_PTA is enabled
▶ Linux driver will then communicate with this PTA to query random data

▶ If correctly detected by Linux driver, optee-rng hwrng will be available and
selected as current hwrng:

cat /sys/class/misc/hw_random/rng_available
optee-rng
cat /sys/class/misc/hw_random/rng_current
optee-rng

▶ Secure random data are then available using /dev/hwrng
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1

Timer

▶ OP-TEE provide a timer based on ARM Generic Timer extension and one using
REE time
▶ A secure timer should be added if SoC does not support ARM Generic Timer or to

have a more secure timer
▶ OP-TEE provides an interface to register a secure timer

static const struct time_source atmel_tcb_time_source = {
.name = "atmel_tcb",
.protection_level = 1000,
.get_sys_time = atmel_tcb_get_sys_time,

};

REGISTER_TIME_SOURCE(atmel_tcb_time_source)

▶ Counter should return relative time that has elapsed since a fixed point
▶ 64bits counter is recommended to avoid wrapping

▶ tee_time_get_sys_time() can then be used to query the time using this clock

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/1

PL310 L2 cache

▶ PL310 cache setup is supported by OP-TEE
▶ If configuration is expected to be modified by Linux, .write_sec function should

be set
▶ Function defined in platform code and should override outer_cache::write_sec()
▶ Often uses SMCs with custom function ID but no standard for that
▶ Secure/Non-Secure state must be discovered by platform custom code (Device Tree

parsing)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1

Interrupts

▶ Currently only GIC is supported by OP-TEE
▶ SAMA5D2 Support for Secure Advanced Interrupt Controller will be added

▶ Basic interrupt framework allows to enable/disable an interrupt
▶ Pull-Request ongoing for interrupt specifier (level, priority) support

▶ itr_core_handler() has to be redefined by platform code to handle irqs
▶ Interrupts used with the bus controller capabilities are really useful to find were

the security violations are happening.
▶ Can display the address of violation and the location where it happened:

Matrix 0 permission failure from master 0, address 0x200118b8, mon_lr = 0x3ffa4a5c

▶ mon_lr points to the address where the violation was generated (read/write)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/1

Contribution status

▶ OP-TEE:
▶ Generic clock framework to handle clock tree (In progress: 4705#)
▶ SCMI clock support based on device tree (TODO)
▶ SAMA5D2 enhanced secure support (Clocks, SCMI, suspend, reset, shutdown,

interrupts, TRNG, Timers) (TODO)
▶ at91bootstrap:

▶ Support for OP-TEE loading (In progress: 128#)
▶ Linux:

▶ SAMA5D2 PL310 L2 cache write_sec() support (TODO)
▶ SAMA5D2 Secure suspend support (SMC to select) (TODO)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/1

https://github.com/OP-TEE/optee_os/pull/4705
https://github.com/linux4sam/at91bootstrap/pull/128

Questions? Suggestions? Comments?

Clément Léger
clement.leger@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2021

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/1

https://bootlin.com/pub/conferences/2021

Going further and sources

▶ OP-TEE Documentation : https://optee.readthedocs.io/en/latest/
▶ SCMI specification: https://developer.arm.com/architectures/system-

architectures/software-standards/scmi
▶ PSCI specification: https://developer.arm.com/architectures/system-

architectures/software-standards/psci

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/1

https://optee.readthedocs.io/en/latest/
https://developer.arm.com/architectures/system-architectures/software-standards/scmi
https://developer.arm.com/architectures/system-architectures/software-standards/scmi
https://developer.arm.com/architectures/system-architectures/software-standards/psci
https://developer.arm.com/architectures/system-architectures/software-standards/psci

