
Embedded Linux Conference Europe, October 2020

Precision time protocol
(PTP) and packet
timestamping in Linux
Antoine Ténart
atenart+elce2020@kernel.org

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Embedded Linux Conference Europe, October 2020

Introduction
Antoine Ténart
atenart+elce2020@kernel.org

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

Preamble - goals

I Understand what is the precision time protocol (PTP) and its modes of operation.
I Have a first glance at what is a packet timestamping and how the kernel supports

it.
I Disclaimer: packet timestamping can be used in various applications, we’ll only

cover it in regard to PTP.
I Understand why hardware timestamping of packets is beneficial.
I See how PTP offloading support (hardware timestamping and PTP hardware

clock) can be provided by device drivers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Agenda

1. Background
2. Overview of the precision time protocol (PTP)
3. Packet timestamping
4. PTP offloading support in Linux
5. User-space PTP implementation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

Embedded Linux Conference Europe, October 2020

Background
Antoine Ténart
atenart+elce2020@kernel.org

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

Event ordering

I Event ordering is essential to some applications:
I Transactions
I Logs
I Debugging and performance analysis

I Ordering is based on timestamps. . .
I . . . collected from large ranges of machines.
I Need for clocks synchronization on (local) networks (frequency, phase and time).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

NTP

I Network time protocol (NTP) is a network protocol for clock synchronization.
I Provides accuracy within a few milliseconds (best case scenario).
I Not precise enough for some applications: events can occur within the same

millisecond.
I Need for a higher accuracy.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

Embedded Linux Conference Europe, October 2020

Overview of the
precision time protocol
(PTP)
Antoine Ténart
atenart+elce2020@kernel.org

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

Overview

I Precision time protocol (PTP) is a network protocol for clock synchronization.
I Down to sub-microsecond accuracy on local networks.
I Standardized by IEEE 1588-2002, IEEE 1588-2008 and IEEE 1588-2019.
I Hierarchical leader/follower architecture for clock distribution.

I Leader (”grandmaster”), boundary and follower (”slave”) clocks.
I PTP packets may be transmitted over Ethernet or UDP over IPv4/IPv6, using

multicast or unicast addresses.
I Depending on the publication used as reference, not all modes are available.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

PTP hierarchy 1/3

I Leader clock:
I Time source for the PTP network.
I Usually synchronize its clock to an external

source (GNSS, etc. . .).
I Is an ”ordinary clock” (has a single PTP

network connection).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

PTP hierarchy 2/3

I Boundary clock:
I Has multiple PTP network connections and

relay accurate time:
I Synchronizes its clock against the leader.
I Acts as a clock source for the followers.

I May become the leader if the current leader
disappear.

I Having a boundary clock is optional.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

PTP hierarchy 3/3

I Follower clock:
I Synchronize its clock to a leader (here, the

boundary clock).
I May become the leader if the leader disappear.
I Is an ”ordinary clock” (has a single PTP

network connection).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

PTP synchronization mechanism 1/2

I Time offset is computed based on
timestamps of packet sent and
received.

I Done by the follower.
I Timestamps made on the leader side

are sent to the follower by follow up
packets (follow_up, delay_resp).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

PTP synchronization mechanism 2/2

The trip time include the transmit time
and the delta between the two clocks:

dlf = t1 − t0 + δt

dfl = t3 − t2 + δt

We assume the two trip times are equal,
hence we have:

δt = 1
2(t1 − t0 + t2 − t3)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

One-step vs two-step

I PTP can work in two operating modes: 1-step and 2-step.
I 1-step includes t0 in the sync packet. There is no follow_up packet.

I The difference lies in the leader side. It needs a hardware enabled device to include
t0 in the sync packets.

I All followers (should) support both modes: there is no hardware requirement for
receiving 1-step sync packets.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Embedded Linux Conference Europe, October 2020

Packet timestamping
Antoine Ténart
atenart+elce2020@kernel.org

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

Timestamp accuracy

I Packet timestamps, when used for PTP, must be accurate: they play a critical
role in the time offset computation.

I Ideally we would like a timestamp issued at the exact time of transmission, when
the packet leave the device.

I Not possible in the real world, the timestamp has to occur before.
I Two possibilities: in software and in hardware.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

Software timestamping

I Timestamp is done in the application,
or in the kernel.

I Uses the system clock.
I Error and deltas are big:

I Timestamp is done far away from
the actual transmission.

I A lot can interfere: scheduling,
queuing, interrupts. . .

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Hardware timestamping

I Timestamp is done in the hardware.
I Can be done in the MAC,
I in a PHY,
I or using a dedicated controller.

I Uses a PTP hardware clock (PHC).
I Error and deltas are small.

I Timestamp occurs close to the
actual transmission.

I The packet is already in the
hardware.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Embedded Linux Conference Europe, October 2020

PTP offloading support
in Linux
Antoine Ténart
atenart+elce2020@kernel.org

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Overview

I Two mechanisms are combined to provide support for offloading PTP packets
timestamping:
I The SO_TIMESTAMPING socket option.
I The PTP hardware clock (PHC) infrastructure.

I Read the full documentation at
Documentation/networking/timestamping.rst.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

https://elixir.bootlin.com/linux/latest/ident/SO_TIMESTAMPING
https://elixir.bootlin.com/linux/latest/source/Documentation/networking/timestamping.rst

SO_TIMESTAMPING (1/3)

I Configured using setsockopt.
I Generates timestamps on reception, transmission or both.
I Works for streams and datagrams.
I Supports multiple timestamp sources:

I SOF_TIMESTAMPING_RX_SOFTWARE: timestamp is generated just after the network
device driver hands the packet to the Rx stack.

I SOF_TIMESTAMPING_TX_SOFTWARE: timestamp is generated in the network device
driver, as close as possible to passing the packet to the hardware. Requires driver
support and may not be available for all devices.

I SOF_TIMESTAMPING_RX_HARDWARE: requires driver support.
I SOF_TIMESTAMPING_TX_HARDWARE: requires driver support.
I and two other options not used for PTP applications:

SOF_TIMESTAMPING_TX_SCHED and SOF_TIMESTAMPING_TX_ACK.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

https://elixir.bootlin.com/linux/latest/ident/SO_TIMESTAMPING
https://elixir.bootlin.com/linux/latest/ident/SOF_TIMESTAMPING_RX_SOFTWARE
https://elixir.bootlin.com/linux/latest/ident/SOF_TIMESTAMPING_TX_SOFTWARE
https://elixir.bootlin.com/linux/latest/ident/SOF_TIMESTAMPING_RX_HARDWARE
https://elixir.bootlin.com/linux/latest/ident/SOF_TIMESTAMPING_TX_HARDWARE
https://elixir.bootlin.com/linux/latest/ident/SOF_TIMESTAMPING_TX_SCHED
https://elixir.bootlin.com/linux/latest/ident/SOF_TIMESTAMPING_TX_ACK

SO_TIMESTAMPING (2/3)

I Hardware timestamping must be initialized for each device driver expected to be
used.

I Configuration passed using the SIOCSHWTSTAMP ioctl. Must choose a tx_type
and an rx_filter.

I Possible values for tx_type:
I HWTSTAMP_TX_OFF
I HWTSTAMP_TX_ON: report timestamps through the socket error queue.
I HWTSTAMP_TX_ONESTEP_SYNC: insert timestamps directly into sync packets.
I HWTSTAMP_TX_ONESTEP_P2P: same as before but also insert timestamps into

delay_resp packets.
I Possible values for rx_filter:

I HWTSTAMP_FILTER_NONE
I HWTSTAMP_FILTER_ALL
I HWTSTAMP_FILTER_PTP_V2_L2_EVENT: PTP v2, Ethernet, all event packets.
I HWTSTAMP_FILTER_PTP_V2_L4_SYNC: PTP v2, UDP sync packets.
I For the full list, see include/uapi/linux/net_tstamp.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

https://elixir.bootlin.com/linux/latest/ident/SO_TIMESTAMPING
https://elixir.bootlin.com/linux/latest/ident/SIOCSHWTSTAMP
https://elixir.bootlin.com/linux/latest/ident/HWTSTAMP_TX_OFF
https://elixir.bootlin.com/linux/latest/ident/HWTSTAMP_TX_ON
https://elixir.bootlin.com/linux/latest/ident/HWTSTAMP_TX_ONESTEP_SYNC
https://elixir.bootlin.com/linux/latest/ident/HWTSTAMP_TX_ONESTEP_P2P
https://elixir.bootlin.com/linux/latest/ident/HWTSTAMP_FILTER_NONE
https://elixir.bootlin.com/linux/latest/ident/HWTSTAMP_FILTER_ALL
https://elixir.bootlin.com/linux/latest/ident/HWTSTAMP_FILTER_PTP_V2_L2_EVENT
https://elixir.bootlin.com/linux/latest/ident/HWTSTAMP_FILTER_PTP_V2_L4_SYNC
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/net_tstamp.h

SO_TIMESTAMPING (3/3)

ethtool -T eth0
Time stamping parameters for eth0:
Capabilities:

hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)

PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:

off (HWTSTAMP_TX_OFF)
on (HWTSTAMP_TX_ON)
one-step-sync (HWTSTAMP_TX_ONESTEP_SYNC)

Hardware Receive Filter Modes:
none (HWTSTAMP_FILTER_NONE)
all (HWTSTAMP_FILTER_ALL)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

https://elixir.bootlin.com/linux/latest/ident/SO_TIMESTAMPING

Supporting SO_TIMESTAMPING in a device driver (1/2)

I In a networking Ethernet driver (MAC), implementing:
I get_ts_info in struct ethtool_ops
I ndo_do_ioctl in struct net_device_ops, for SIOCSHWTSTAMP and

SIOCGHWTSTAMP.
I Filling hwtstamps in struct skbuff with Rx timestamps.
I Calling skb_tstamp_tx() when a Tx timestamp is reported by the hardware.

I In a networking PHY or other dedicated engines driver: implementing the struct
mii_timestamper callbacks, in struct phy_device:
I ts_info
I hwtstamp
I rxtstamp
I txtstamp and calling skb_complete_tx_timestamp()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

https://elixir.bootlin.com/linux/latest/ident/SO_TIMESTAMPING
https://elixir.bootlin.com/linux/latest/ident/get_ts_info
https://elixir.bootlin.com/linux/latest/ident/ethtool_ops
https://elixir.bootlin.com/linux/latest/ident/ndo_do_ioctl
https://elixir.bootlin.com/linux/latest/ident/net_device_ops
https://elixir.bootlin.com/linux/latest/ident/SIOCSHWTSTAMP
https://elixir.bootlin.com/linux/latest/ident/SIOCGHWTSTAMP
https://elixir.bootlin.com/linux/latest/ident/hwtstamps
https://elixir.bootlin.com/linux/latest/ident/skbuff
https://elixir.bootlin.com/linux/latest/ident/skb_tstamp_tx
https://elixir.bootlin.com/linux/latest/ident/mii_timestamper
https://elixir.bootlin.com/linux/latest/ident/phy_device
https://elixir.bootlin.com/linux/latest/ident/ts_info
https://elixir.bootlin.com/linux/latest/ident/hwtstamp
https://elixir.bootlin.com/linux/latest/ident/rxtstamp
https://elixir.bootlin.com/linux/latest/ident/txtstamp
https://elixir.bootlin.com/linux/latest/ident/skb_complete_tx_timestamp

Supporting SO_TIMESTAMPING in a device driver (2/2)

I Both interfaces allow us to:
1. Report the timestamping capabilities (ts_info and get_ts_info).
2. Configure the mode to use (hwtstamp and ndo_do_ioctl).
3. Report Rx timestamps (rxtstamp and hwtstamps).
4. Report Tx timestamps (txtstamp/skb_complete_tx_timestamp() and

skb_tstamp_tx).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

https://elixir.bootlin.com/linux/latest/ident/SO_TIMESTAMPING
https://elixir.bootlin.com/linux/latest/ident/ts_info
https://elixir.bootlin.com/linux/latest/ident/get_ts_info
https://elixir.bootlin.com/linux/latest/ident/hwtstamp
https://elixir.bootlin.com/linux/latest/ident/ndo_do_ioctl
https://elixir.bootlin.com/linux/latest/ident/rxtstamp
https://elixir.bootlin.com/linux/latest/ident/hwtstamps
https://elixir.bootlin.com/linux/latest/ident/txtstamp
https://elixir.bootlin.com/linux/latest/ident/skb_complete_tx_timestamp
https://elixir.bootlin.com/linux/latest/ident/skb_tstamp_tx

PTP hardware clock

I PHC are used by hardware engines to timestamp packets.
I The PHC must be synchronized.
I Described by struct ptp_clock_info, which embeds operation callbacks:

I gettimex64: reports the current time from the hardware clock by filling a
timespec64 structure.

I settime64: sets the time on the hardware clock.
I adjfine: adjusts the frequency of the hardware clock, using an ”offset from

nominal frequency in parts per million, but with a 16 bit binary fractional field”.
I adjtime: shifts the time of the hardware clock by an s64 delta.
I adjphase: adjusts the phase of the hardware clock by an s32 phase.

I The structure also contains a few parameters, including max_adj which defines
the maximum frequency adjustment in parts per billion.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

https://elixir.bootlin.com/linux/latest/ident/ptp_clock_info
https://elixir.bootlin.com/linux/latest/ident/gettimex64
https://elixir.bootlin.com/linux/latest/ident/settime64
https://elixir.bootlin.com/linux/latest/ident/adjfine
https://elixir.bootlin.com/linux/latest/ident/adjtime
https://elixir.bootlin.com/linux/latest/ident/adjphase
https://elixir.bootlin.com/linux/latest/ident/max_adj

Driver examples

I At Bootlin, we had the opportunity to introduce PTP offloading support for some
hardware engines.

I For the Microsemi Ocelot network switch:
I drivers/net/ethernet/mscc/

I For the Microsemi VSC85xx PHYs:
I drivers/net/phy/mscc/mscc_ptp.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/mscc/
https://elixir.bootlin.com/linux/latest/source/drivers/net/phy/mscc/mscc_ptp.c

Embedded Linux Conference Europe, October 2020

User-space PTP
implementation
Antoine Ténart
atenart+elce2020@kernel.org

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

Linux PTP

I The Linux PTP project is an implementation of the Precision Time Protocol
according to IEEE-1588, for Linux.

I Maintained by Richard Cochran, who also maintains PTP support in Linux.
I Provides a reliable implementation of PTP for Linux, and correctly uses the kernel

interfaces for PHC and timestamping.
I Provides a few utilities including ptp4l and phc2sys.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

The ptp4l command

I Implementation of PTP, for ordinary and boundary clocks.
I Can use software or hardware timestamping.
I Can perform PTP operations on top of UDP (IPv4/IPv6) and Ethernet.
I Can optionally use a configuration file.

ptp4l -i eth0 -H -2 -m
selected /dev/ptp4 as PTP clock
port 1: INITIALIZING to LISTENING on INIT_COMPLETE
port 0: INITIALIZING to LISTENING on INIT_COMPLETE
port 1: new foreign master 7e7618.fffe.b52b26-1
selected best master clock 7e7618.fffe.b52b26
port 1: LISTENING to UNCALIBRATED on RS_SLAVE
master offset 1949 s0 freq -552 path delay 2807
master offset 1953 s2 freq -548 path delay 2807
port 1: UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED
master offset 1974 s2 freq +1426 path delay 2807
master offset 629 s2 freq +673 path delay 2807

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

The phc2sys command

I Synchronizes two (or more) clocks.
I Typically used to keep the system clock in sync with the PHC.
I When using hardware timestamping, ptp4l adjusts the PHC and then phc2sys

adjusts the system clock.
I When using software timestamping, phc2sys isn’t used; the system clock is

directly adjusted by ptp4l.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

Thank you!
Questions? Comments?

info@bootlin.com

Slides under CC-BY-SA 3.0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

