
Conference

Building embedded
Debian / Ubuntu
systems with ELBE
Köry Maincent
kory.maincent@bootlin.com

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Köry Maincent

▶ Embedded Linux engineer at Bootlin
▶ Embedded Linux, Linux kernel, Yocto, Buildroot

expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Open-source contributor
▶ Contributed Ubuntu support to ELBE
▶ Used ELBE to build Ubuntu systems for an ARM32

i.MX6 platform and an ARM64 Rockchip RK3399
platform

▶ Living in Toulouse, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

Agenda

▶ System integration: available options
▶ Overview of ELBE
▶ Building simple Debian/Ubuntu images with ELBE
▶ Customizing the images contents

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

System integration: several possibilities

Pros Cons
Building everything manually Full flexibility

Learning experience
Dependency hell
Need to understand a lot of details
Version compatibility
Lack of reproducibility

Binary distribution
Debian, Ubuntu, Fedora, etc.

Easy to create and extend
Large set of existing packages
Well-known tools for non-embedded ex-
perts
Robust and regular security updates

Hard to customize
Hard to optimize (boot time, size)
Hard to rebuild the full system from source
Large system
Uses native compilation (slow)
No well-defined mechanism to generate an
image
Lots of mandatory dependencies
Not available for all architectures

Build systems
Buildroot, Yocto, PTXdist, etc.

Nearly full flexibility
Built from source: customization and op-
timization are easy
Fully reproducible
Uses cross-compilation
Have embedded specific packages not nec-
essarily in desktop distros
Make more features optional

Not as easy as a binary distribution
Build time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

Debian build systems

Several projects have been created to automate the process
of building and customizing a Debian image:
▶ Hand-made scripts
▶ ELBE
▶ Debos
▶ Isar

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

Debian build systems

Several projects have been created to automate the process
of building and customizing a Debian image:
▶ Hand-made scripts

▶ Hardly reproducible and maintable
▶ Everybody rolls his own

▶ ELBE
▶ Debos
▶ Isar

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

Debian build systems

Several projects have been created to automate the process
of building and customizing a Debian image:
▶ Hand-made scripts
▶ ELBE

▶ First release in 2015
▶ Python code to use generic Debian tools
▶ Only supported Debian, but we (Bootlin) contributed

Ubuntu support
▶ https://elbe-rfs.org/
▶ The focus of this talk

▶ Debos
▶ Isar

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

https://elbe-rfs.org/

Debian build systems

Several projects have been created to automate the process
of building and customizing a Debian image:
▶ Hand-made scripts
▶ ELBE
▶ Debos

▶ Image and partition customizable
▶ Possibility to tune the rootfs
▶ Can not build custom packages from source
▶ Written in Go
▶ https://github.com/go-debos/debos

▶ Isar

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

https://github.com/go-debos/debos

Debian build systems

Several projects have been created to automate the process
of building and customizing a Debian image:
▶ Hand-made scripts
▶ ELBE
▶ Debos
▶ Isar

▶ Uses bitbake, needs Yocto knowledge
▶ Not tested (less active than ELBE?)
▶ https://github.com/ilbers/isar

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

https://github.com/ilbers/isar

ELBE advantages

▶ Builds a Debian distribution
▶ Powerful package management
▶ Huge amount of packages
▶ Let the Debian/Ubuntu maintainers do all the work on packages
▶ Have reliable and regular security updates

▶ Build your own packages
▶ Manage licences
▶ Several architectures, several image generation options
▶ Tune your rootfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Overall ELBE process

Source: https://wiki.dh-electronics.com/index.php/ELBE_Overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

https://wiki.dh-electronics.com/index.php/ELBE_Overview

ELBE: getting started

1. Download ELBE from its Git repository
2. Create the initvm, a Debian virtual machine that includes the ELBE daemon.

$./elbe initvm create

3. Then, after each reboot, you need to make sure the initvm is started:

$./elbe initvm start

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

ELBE: build a basic Debian or Ubuntu image

▶ In ELBE, the system to generate is described by an XML file
▶ To build a Debian system for the BeagleBone Black, including bootloader and

Linux kernel:
$./elbe initvm submit examples/armhf-ti-beaglebone-black.xml

The build takes approximately 50 min on my laptop
▶ To build a basic Ubuntu system, with no bootloader or kernel:

$./elbe initvm submit examples/armhf-ubuntu.xml

The build takes approximately 30 minutes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

ELBE: result directory

Contents of the result directory, with the --build-sdk option enabled:

▶ bin-cdrom.iso
▶ image.tgz
▶ license-*
▶ setup-elbe...sh
▶ source.xml
▶ src-cdrom.iso
▶ sysroot.tar.xz

$ ls elbe-build-20200903-113635
bin-cdrom.iso
elbe-report.txt
image.tgz
licence-chroot.txt
licence-chroot.xml
licence-sysroot-host.txt
licence-sysroot-host.xml
licence-sysroot-target.txt
licence-sysroot-target.xml
licence-target.txt
licence-target.xml
log.txt
setup-elbe-sdk-arm-[...]-armhf-ubuntu-1.0.sh
source.xml
src-cdrom.iso
sysroot.tar.xz
validation.txt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

ELBE: contents of the XML file

▶ Global node:
▶ Project node:
▶ Target node:

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

ELBE: contents of the XML file

▶ Global node:
<ns0:RootFileSystem ... >
...
</ns0:RootFileSystem>

▶ Project node:
▶ Target node:

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

ELBE: contents of the XML file

▶ Global node:
▶ Project node:

<project>
<name>Image name</name>
<version>1.0</version>
<description>

Image description
</description>
<buildtype>armhf</buildtype>
<mirror>

<primary_host>ftp.de.debian.org</primary_host>
<primary_path>/debian</primary_path>
<primary_proto>http</primary_proto>

</mirror>
<suite>buster</suite>

</project>

▶ Target node:

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

ELBE: contents of the XML file

▶ Global node:
▶ Project node:
▶ Target node:

<target>
<hostname>myImage</hostname>
<domain>tec.linutronix.de</domain>
<passwd>foo</passwd>
<console>ttyS0,115200</console>
<images> ... </images>
<fstab> ... </fstab>
<package> ... </package>
<finetuning> ... </finetuning>
<pkg-list> ... </pkg-list>

</target>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

ELBE: day to day work

▶ The ELBE submit command allows to build an
image from scratch
▶ Builds all parts described in the XML file in

one command
▶ Good for releases/deliveries
▶ But rebuilds everything!

▶ The ELBE control command allows to work
in a more-fine grained way
▶ Doesn’t build all parts described in the XML

file
▶ Good for day-to-day work, image adjustement

and customization

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

ELBE: using the control command (1/2)

▶ Create a project

$./elbe control create_project
/var/cache/elbe/0a7b1788-b2ab-4b53-9319-0a810dab30d9
$ PRJ="/var/cache/elbe/0a7b1788-b2ab-4b53-9319-0a810dab30d9"

▶ Define the image/system to build based on its XML file

$./elbe control set_xml $PRJ armhf-ti-beaglebone-black.xml

▶ Start the build and wait until it completes

$./elbe control build $PRJ
$./elbe control wait_busy $PRJ

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

ELBE: using the control command (2/2)

▶ Now you can update/tweak your XML file, and restart the build

$./elbe control set_xml $PRJ armhf-ti-beaglebone-black.xml
$./elbe control build $PRJ
$./elbe control wait_busy $PRJ

▶ And retrieve the build results
$./elbe control get_files $PRJ
$./elbe control get_file $PRJ sdcard.img.tar.gz

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Image customization

ELBE allows to
▶ Do various tweaks on the resulting filesystem from the XML file
▶ Add more files/directories to your rootfs with an overlay
▶ Add Debian packages to the image
▶ Build your own packages
▶ Add your packages to the delivery XML image file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Customize: tune your rootfs/image

<finetuning>

▶ Copy or move files: bootloader and kernel images in /boot
▶ Use shell commands
▶ Remove useless files/directories to shrink the image size
▶ Extract file from chroot in the initvm to the output build directory

</finetuning>

▶ https://elbe-rfs.org/docs/sphinx/article-elbe-schema-
reference.html#type-finetuning

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

https://elbe-rfs.org/docs/sphinx/article-elbe-schema-reference.html#type-finetuning
https://elbe-rfs.org/docs/sphinx/article-elbe-schema-reference.html#type-finetuning

Customize: tune your rootfs/image

<finetuning>

▶ Copy or move files: bootloader and kernel images in /boot

<cp path="/usr/lib/u-boot/am335x_boneblack/MLO">/boot/MLO</cp>
<cp path="/usr/lib/u-boot/am335x_boneblack/u-boot.img">/boot/u-boot.img</cp>
<mv path="/usr/lib/linux-image-*-armmp/am335x-boneblack.dtb">/boot/am335x-boneblack.dtb</mv>
<mv path="/boot/initrd.img-*-armmp">/boot/initrd.img-armmp</mv>
<mv path="/boot/vmlinuz-*-armmp">/boot/vmlinuz-armmp</mv>

▶ Use shell commands
▶ Remove useless files/directories to shrink the image size
▶ Extract file from chroot in the initvm to the output build directory

</finetuning>

▶ https://elbe-rfs.org/docs/sphinx/article-elbe-schema-
reference.html#type-finetuning

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

https://elbe-rfs.org/docs/sphinx/article-elbe-schema-reference.html#type-finetuning
https://elbe-rfs.org/docs/sphinx/article-elbe-schema-reference.html#type-finetuning

Customize: tune your rootfs/image

<finetuning>

▶ Copy or move files: bootloader and kernel images in /boot
▶ Use shell commands
<command>echo "uenvcmd=setenv bootargs 'console=ttyO0,115200 root=/dev/mmcblk0p2';

load mmc 0:1 0x84000000 vmlinuz-armmp;load mmc 0:1 0x82000000 am335x-boneblack.dtb;
load mmc 0:1 0x88000000 initrd.img-armmp;bootz 0x84000000 0x88000000:\${filesize} 0x82000000" >
/boot/uEnv.txt</command>

▶ Remove useless files/directories to shrink the image size
▶ Extract file from chroot in the initvm to the output build directory

</finetuning>

▶ https://elbe-rfs.org/docs/sphinx/article-elbe-schema-
reference.html#type-finetuning

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

https://elbe-rfs.org/docs/sphinx/article-elbe-schema-reference.html#type-finetuning
https://elbe-rfs.org/docs/sphinx/article-elbe-schema-reference.html#type-finetuning

Customize: tune your rootfs/image

<finetuning>

▶ Copy or move files: bootloader and kernel images in /boot
▶ Use shell commands
▶ Remove useless files/directories to shrink the image size

<rm>/var/cache/apt/archives/*.deb</rm>
<rm>/var/cache/apt/*.bin</rm>
<rm>/var/lib/apt/lists/ftp*</rm>

▶ Extract file from chroot in the initvm to the output build directory

</finetuning>

▶ https://elbe-rfs.org/docs/sphinx/article-elbe-schema-
reference.html#type-finetuning

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

https://elbe-rfs.org/docs/sphinx/article-elbe-schema-reference.html#type-finetuning
https://elbe-rfs.org/docs/sphinx/article-elbe-schema-reference.html#type-finetuning

Customize: tune your rootfs/image

<finetuning>

▶ Copy or move files: bootloader and kernel images in /boot
▶ Use shell commands
▶ Remove useless files/directories to shrink the image size
▶ Extract file from chroot in the initvm to the output build directory

<artifact>/usr/lib/u-boot/am335x_boneblack/MLO</artifact>
<artifact>/boot/am335x-boneblack.dtb</artifact>

</finetuning>

▶ https://elbe-rfs.org/docs/sphinx/article-elbe-schema-
reference.html#type-finetuning

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

https://elbe-rfs.org/docs/sphinx/article-elbe-schema-reference.html#type-finetuning
https://elbe-rfs.org/docs/sphinx/article-elbe-schema-reference.html#type-finetuning

Customize: add an overlay to the image

▶ An overlay is a set of files/directories to copy over the root filesystem, at end of
the build process

▶ Create the contents of the overlay

$ mdkir -p overlay/etc/ssh/
$ cp ssh_config overlay/etc/ssh/

▶ Load the overlay contents in the project. They will be stored base64-encoded into
the XML file.

$./elbe chg_archive project.xml overlay
$ cat project.xml
...
<archive>QlpoOTFBWSZTWcCETrAAASl/hciQAEBKd//wf+9d0f/v/+EAAIAIAAhQA9vTnIjbbt3GnQSimBCe
o00elJ6T8pMQ/VPKPUND1DQZAD1GNQaaJo0jU2qNE2o2iAZAPRBgmmgMIaASIkJiJk2qb0hqPQg0
...
gQQryzKUutO3vhovrNrCuxRapzudUWmgdIumfO9YPKi0aOFJL/i7kinChIYEInWA
</archive></ns0:RootFileSystem>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

Customize: add a Debian package

▶ Adding a Debian package from official repository is as easy as listing it in the
<pkg-list> XML node.

project.xml
<pkg-list>

<pkg>openssh-server</pkg>
</pkg-list>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Customize: build your packages

▶ In addition to packages from the official Debian repository, one will often want to
build custom packages
▶ For a bootloader or kernel image configured specifically for the platform
▶ For a customized variant of packages available in the official repositories
▶ For in-house/custom applications and libraries

▶ The following steps must be followed
1. Follow the Debian packaging procedure by debianizing the source code.
2. Add your debianized package to the image.
3. Build your package with ELBE

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Build your packages: debianize the source

▶ For some well-known packages (U-Boot, Barebox, Linux), use the debianize
command to generates some sane default providing a complete and usable
debian/ folder

▶ This command will show an UI that allows to set the configuration.
▶ The basics items are the version, the name, the Release state, the architecture,

the configurations and some information relative to the owner.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Build your packages: debianize the source

$ export PATH=$PATH:`pwd`
$ cd ../linux
$ elbe debianize

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

Build your packages: debianize the source

$ export PATH=$PATH:`pwd`
$ cd ../linux
$ elbe debianize

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

Build your packages: debianize the source

$ export PATH=$PATH:`pwd`
$ cd ../linux
$ elbe debianize

$ ls debian
changelog
compat
control
copyright
linux-headers-4.14-kernel.install
linux-image-4.14-kernel.install
linux-libc-dev-4.14-kernel.install
postinst
postrm
preinst
prerm
rules
source

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

Build your packages: debianize the source

▶ For other packages, you have to do it manually by creating the required files for
debianizing your package.

▶ The information about these files are in the following link
▶ https://www.debian.org/doc/manuals/maint-guide/dreq.en.html
▶ Use or inspire yourself from already debianized packages if you can

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

https://www.debian.org/doc/manuals/maint-guide/dreq.en.html

Build your packages: build process
▶ Packages are built using the Debian pbuilder tool, which builds inside a chroot.

This chroot needs to be created once:
$ elbe pbuilder create --xmlfile=project.xml --writeproject=project.prj --cross
$ PRJ=$(cat project.prj)

▶ Go to the source directory of the package to build, create the output directory
$ cd ../linux
$ mkdir ../out

▶ Start the build. By default, uses native build with Qemu, --cross enables
cross-building.

$ elbe pbuilder build --cross --project $PRJ --out ../out

▶ Grab the results from the out folder
$ ls ../out
linux-headers-4.14-kernel_1.0_armhf.deb
linux-image-4.14-kernel_1.0_armhf.deb
linux-libc-dev-4.14-kernel_1.0_armhf.deb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

Build your packages: add your packages to the image

▶ When the elbe pbuilder command completes, the package is automatically
added to the local repository in the initvm project directory ($PRJ).

▶ You only need to add your package to the <pkg-list> node in the XML file to
bring it into the image.

project.xml
<pkg-list>

<pkg>linux-image-4.14-kernel</pkg>
<pkg>linux-headers-4.14-kernel</pkg>

</pkg-list>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

Build your package: automatically build the package

▶ The procedure describes so far, which uses elbe pbuilder manually is perfect
during development

▶ Allows to quickly rebuild just the package that needs to be rebuilt
▶ For a final release, one will want a procedure that rebuilds everything: all

packages, and the image.
▶ This can be done by adding a <pbuilder> node to the XML file:

project.xml
<pbuilder>

<git revision="xxx">git@github.com:kmaincent/linux.git</git>
</pbuilder>

▶ Currently, the build of packages described in the <pbuilder> node are built
natively. There are patches on the mailing list to enable cross-compilation, which
we have successfully used.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

Tip: avoid rebuilding packages

▶ When creating a new project, you may not want to build all your packages if you
already have them compiled.

▶ The prjrepo upload command allows to add existing .deb packages to the
local repository of the project, saving build time.

$./elbe control create_project
/var/cache/elbe/0a7b1788-b2ab-4b53-9319-0a810dab30d9
$ PRJ="/var/cache/elbe/0a7b1788-b2ab-4b53-9319-0a810dab30d9"
$./elbe control set_xml $PRJ project.xml
$ cd ../out
$ find . -name "*.changes" | xargs -I '{}' elbe prjrepo upload_pkg $PRJ {}
$ cd -
$./elbe control build $PRJ
$./elbe control wait_busy $PRJ

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

SDK

▶ ELBE can generate a SDK, which provides a cross-compiler and libraries to build
code for the target.

▶ Provided as a self-extractible shell script, much like the Yocto Project SDK.
▶ setup-elbe-sdk-arm-linux-gnueabihf-armhf-ubuntu-1.0.sh
▶ Sometimes, it is necessary to add more packages to the SDK, for example Qt

tools if the target system contains Qt:

project.xml
<hostsdk-pkg-list>

<pkg>qt5-qmake-bin</pkg>
<pkg>qtbase5-dev-tools</pkg>

</hostsdk-pkg-list>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

Conclusion and references

▶ ELBE is an interesting and friendly build System
▶ A small xml file describe all your distribution
▶ The Distribution is customizable with your own packages
▶ References

▶ https://elbe-rfs.org/
▶ https://elinux.org/images/e/e5/Using_ELBE_to_Build_Debian_Based_

Embedded_Systems.pdf
▶ https://wiki.dh-electronics.com/index.php/ELBE_Overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

https://elbe-rfs.org/
https://elinux.org/images/e/e5/Using_ELBE_to_Build_Debian_Based_Embedded_Systems.pdf
https://elinux.org/images/e/e5/Using_ELBE_to_Build_Debian_Based_Embedded_Systems.pdf
https://wiki.dh-electronics.com/index.php/ELBE_Overview

Questions? Suggestions? Comments?

Köry Maincent
kory.maincent@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2020/elce/maincent-building-embedded-debian-ubuntu-

systems-elbe/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

https://bootlin.com/pub/conferences/2020/elce/maincent-building-embedded-debian-ubuntu-systems-elbe/
https://bootlin.com/pub/conferences/2020/elce/maincent-building-embedded-debian-ubuntu-systems-elbe/

