
Embedded Linux Conference Europe 2019

Timing Boot Time
Reduction Techniques
Michael Opdenacker
michael.opdenacker@bootlin.com

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Michael Opdenacker

▶ Founder and Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Long time interest in embedded Linux boot time, and one of its prerequisites:
small system size.

▶ Living in Orange, France.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

Timing Boot Time Reduction Techniques

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

The system to optimize - Hardware

▶ Beagle Bone Black board (ARM
Cortex A8 from TI)

▶ Beagle Bone LCD cape
https://elinux.org/
Beagleboard:BeagleBone_LCD4

▶ Standard USB webcam (supported
through the uvcvideo driver.

▶ Booting on standard SDHC uSD card
(cat 4) from Kingston

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

https://elinux.org/Beagleboard:BeagleBone_LCD4
https://elinux.org/Beagleboard:BeagleBone_LCD4

The system to optimize - Software

▶ Root filesystem built by Buildroot, just
starting the ffmpeg program to show
the video captured by the webcam.

▶ Initial boot time (boot to first
decoded frame): 9.45s

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

Main goals for this presentation

▶ Not to cover all technical details of optimization techniques (will share useful
resources at the end)

▶ But goal to benchmark the most useful techniques on a recent kernel.
▶ This should give you an idea about whether each technique is worth trying in your

system or not.
▶ Last but not least, information harder to find about U-Boot’s Falcon Mode.

Apparently, there are still few people taking advantage of it, otherwise there
would be more people talking about it.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Main optimization principles

▶ Start by optimizing things that won’t reduce your ability for further measurement
and optimizations

▶ This way, good to keep slower storage, and less efficient compression. This
amplifies the phenomena to observe.

▶ Start from the last parts of boot time, and finish by the kernel and at the end, by
the bootloader.

Premature optimization is the root of all evil.
Donald Knuth

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

Timing Boot Time Reduction Techniques

Toolchain optimizations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

ARM vs Thumb2

Compared the system compiled with ARM and with Thumb2
▶ Compiled with gcc 7.4, generating ARM code:

Total filesystem size: 3.79 MB
ffmpeg size: 227 KB

▶ Compiled with gcc 7.4, generating Thumb2 code:
Total filesystem size: 3.10 MB (-18 %)
ffmpeg size: 183 KB (-19 %)

▶ Performance aspect: performance apparently slightly improved with Thumb2
(approximately less than 5 %, but there are slight variations in measured
execution time, for one run to another).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

musl vs uClibc

Tried to replace uClibc by musl
▶ musl library size: 680 KB (size of the tar archive for lib/)
▶ uClibc library size: 570 KB (-16 %)
▶ uClibc saves 110 KB (useful), but otherwise no other significant change in

filesystem and code size. Not a surprise when the system is mostly filled with
binaries relying on shared libraries.

We stuck to uClibc!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Timing Boot Time Reduction Techniques

Application optimizations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

General ideas

▶ Reduce the size of applications by recompiling them with only the features needed
in your system. Run ./configure --help for applications packaged by the
autotools.

▶ Profile your application with strace or more advanced tools (perf) to optimize
its behavior, especially if you authored the code.

▶ Reducing total size: inspect the root filesystem to find files that don’t look
necessary.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

Results on ffmpeg

After rebuilding the system with the minimum configure options for ffmpeg:
▶ Total system size:

From 16.11 MB to 3.54 MB (-78 %)
▶ Saves 150 ms in application loading + execution time
▶ Saves 120 ms in application execution time (file cache populated)
▶ Total boot time reduction: approximately 350 ms (faster mount time?)

Note: the size gains are massive. The performance gains are smaller, because Linux
only loads the code actually used by the program. Some unnecessary code is
eliminated though.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Timing Boot Time Reduction Techniques

Init and root filesystem optimizations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Generic ideas

▶ Analyze system startup with bootchartd and eliminate unnecessary services
▶ Group required startup scripts into a single one (such as /etc/init.d/rcS),

critical things first.
▶ Do not mount /proc and /sys if you don’t need them (test your application), or

mount them from C code.
▶ Simplify the BusyBox configuration to the minimum
▶ You could even start your application as the init process (init parameter in the

kernel command line)
▶ Switching to static executables

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Usefulness of root filesystem size reduction

▶ A smaller filesystem may be faster to mount
▶ Really useful when you boot your root filesystem as an initramfs:

▶ Root filesystem archive embedded in the kernel binary
▶ A smaller initramfs will make the kernel smaller to load from storage
▶ Kernel decompression time will be faster too
▶ The kernel and filesystem are loaded in a single read operation from storage, instead

of multiple ones (more costly, more overhead)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

Detect unnecessary files

Taking advantage of the fact that Linux filesystems record the last access time.
▶ Boot your system with the root filesystem mounted in read-write mode
▶ If your system has a correct time, find all files last accessed more than 5 minutes

ago:
find / -atime +5 -type f

▶ If your system doesn’t have a correct time (and uses dates in 1970), back on your
PC (if your storage is removable), you can find files last accessed less than 1000
minutes ago, when extracting the root filesystem:
find / -atime -1000 -type f

▶ Remove such unwanted files with your build system (for example using
BR2_ROOTFS_POST_FAKEROOT_SCRIPT in Buildroot)

▶ Also remove unnecessary directories with the same script.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

Results: init and root filesystem optimizations

▶ Replaced all init scripts by a single script running the application
▶ Simplified BusyBox’ configuration, only kept support for echo, sh, sleep and

test, used in the single script. Size reduced from 682 KB to 86 KB.
▶ Eliminated unused files and directories
▶ Total filesystem size reduced from 3.54 MB to 2.33 MB (-34 %)
▶ Boot time difference: hardly noticeable, probably because init scripts didn’t take

much time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Results: switching to static executables

▶ Making sense here as we only have
two executables

▶ Removes all library code not used by
such executables

▶ This allowed to remove more empty
directories

▶ Total filesystem size reduced from
2.33 MB to 1.58 MB (-22 %)

▶ Boot time difference: about 20 ms,
probably due to the time saved
resolving and loading shared libraries.

.
��� [44] bin
� ��� [129K] busybox
� ��� [7] echo -> busybox
� ��� [7] hush -> busybox
� ��� [7] sh -> busybox
� ��� [7] sleep -> busybox
��� [0] dev
��� [305] playvideo
��� [6] usr

��� [22] bin
��� [17] [-> ../../bin/busybox
��� [1.4M] ffmpeg
��� [17] test -> ../../bin/busybox

5 directories, 9 files

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Timing Boot Time Reduction Techniques

Filesystem optimizations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Switching to an initramfs

Multiple advantages:
▶ Possible after strong root filesystem size reduction
▶ Root filesystem that can embedded in the kernel image. Only one access to

storage required (should be faster)
▶ No more need for block/storage and filesystem drivers. Smaller kernel, shorter

load time and less initialization work.
▶ Only constraint: mount devtmpfs from userspace (no longer automatic)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

Do not compress your initramfs

▶ If you ship your initramfs inside a compressed kernel image, don’t compress it
(enable CONFIG_INITRAMFS_COMPRESSION_NONE).

▶ Otherwise, by default, your initramfs data will be compressed twice, and the
kernel will be bigger and will take a little more time to load and uncompress.

▶ Example on Linux 5.1 with a 1.60 MB initramfs (tar archive size) on Beagle Bone
Black: this allowed to reduce the kernel size from 4.94 MB to 4.74 MB (-200 KB)
and save about 170 ms of boot time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

Switching to initramfs - Results

▶ Initial impact on total boot time: about +300 ms, because of the bigger kernel
and increased uncompression time.

▶ After disabling CONFIG_BLOCK and CONFIG_MMC, the compressed kernel size is
reduced by 610 KB.

▶ Total boot time is even slighly lower than the initial value (-20 ms)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

Timing Boot Time Reduction Techniques

Kernel optimizations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

Measure - Kernel initialization functions

To find out which kernel initialization functions are the longest to execute, add
initcall_debug to the kernel command line. Here’s what you get on the kernel log:
...
[3.750000] calling ov2640_i2c_driver_init+0x0/0x10 @ 1
[3.760000] initcall ov2640_i2c_driver_init+0x0/0x10 returned 0 after 544 usecs
[3.760000] calling at91sam9x5_video_init+0x0/0x14 @ 1
[3.760000] at91sam9x5-video f0030340.lcdheo1: video device registered @ 0xe0d3e340, irq = 24
[3.770000] initcall at91sam9x5_video_init+0x0/0x14 returned 0 after 10388 usecs
[3.770000] calling gspca_init+0x0/0x18 @ 1
[3.770000] gspca_main: v2.14.0 registered
[3.770000] initcall gspca_init+0x0/0x18 returned 0 after 3966 usecs
...

You might need to increase the log buffer size with CONFIG_LOG_BUF_SHIFT in your
kernel configuration. You will also need CONFIG_PRINTK_TIME and CONFIG_KALLSYMS.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

Kernel boot graph

With initcall_debug, you can generate a boot graph making it easy to see which
kernel initialization functions take most time to execute.
▶ Copy and paste the output of the dmesg command to a file (let’s call it boot.log)
▶ On your workstation, run the scripts/bootgraph.pl script in the kernel sources:

scripts/bootgraph.pl boot.log > boot.svg
▶ You can now open the boot graph with a vector graphics editor such as inkscape:

tra
ce
r_in

it_tra
ce
fs

ch
r_d

e
v
_in

it

p
o
p
u
la
te
_ro

o
tfs

cry
p
to
_n
u
ll_m

o
d
_in

it

sy
sc_in

it

se
ria

l8
2
5
0
_in

it

o
m
a
p
8
2
5
0
_p
la
tfo

rm
_d
riv

e
r_in

it

tilcd
c_d

rm
_in

it

m
td
o
o
p
s_in

it

fi
xe
d
_m

d
io
_b
u
s_in

it

cp
sw

_d
riv

e
r_in

it

a
m
3
3
5
x
_ch

ild
_in

it

i2
c_d

e
v
_in

it
u
v
c_in

it

le
d
trig

_cp
u
_in

it

o
p
ro
fi
le
_in

it
x
frm

_u
se
r_in

it
in
e
t6
_in

it

sit_in
it

p
a
cke

t_in
it

ip
se
c_p

fke
y
_in

it
in
it_d

n
s_re

so
lv
e
r

th
u
m
b
e
e
_in

it
sw

p
_e
m
u
la
tio

n
_in

it
__o

m
a
p
2
_co

m
m
o
n
_p
m
_la

te
_in

it

__sr_cla
ss3

_in
it

lo
a
d
_sy

ste
m
_ce

rtifi
ca
te
_list

clk_d
e
b
u
g
_in

it

d
e
fe
rre

d
_p
ro
b
e
_in

itca
ll

rtc_h
cto

sy
s

re
g
u
la
to
r_in

it_co
m
p
le
te

0
.2
3

0
.3
4

0
.4
6

0
.5
7

0
.6
8

0
.8

0
.9
1

1
.0
2

1
.1
4

1
.2
5

1
.3
6

1
.4
8

1
.5
9

1
.7
1

1
.8
2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Using the kernel boot graph (1)

Start working on the functions consuming most time first. For each function:
▶ Look for its definition in the kernel source code. You can use Elixir (for example

https://elixir.bootlin.com).
▶ For unnecessary functionality, find which kernel configuration parameter compiles

the code, by looking at the Makefile in the corresponding source directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

https://elixir.bootlin.com

Using the kernel boot graph (2)

▶ Postpone:
▶ Find which module (if any) the function belongs to. Load this module later if

possible.
▶ Be careful: some function names don’t exist, the names correspond to

modulename_init. Then, look for initialization code in the corresponding module.
▶ Optimize necessary functionality:

▶ Look for parameters which could be used to reduce probe time, looking for the
module_param macro.

▶ Look for delay loops and calls to functions containing delay in their name, which
could take more time than needed. You could reduce such delays, and see whether
the code still works or not.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Removing tracing infrastructure

▶ Corresponding to the tracer_init_tracefs() function call
▶ Unselected Tracers in Kernel hacking (enabled in our default configuration)
▶ Boot time savings: approximately 550 ms
▶ Kernel size savings: 217 KB

tra
ce
r_in

it_tra
ce
fs

ch
r_d

e
v
_in

it

p
o
p
u
la
te
_ro

o
tfs

cry
p
to
_n
u
ll_m

o
d
_in

it

sy
sc_in

it

se
ria

l8
2
5
0
_in

it

o
m
a
p
8
2
5
0
_p
la
tfo

rm
_d
riv

e
r_in

it

tilcd
c_d

rm
_in

it

m
td
o
o
p
s_in

it

fi
xe
d
_m

d
io
_b
u
s_in

it

cp
sw

_d
riv

e
r_in

it

a
m
3
3
5
x
_ch

ild
_in

it

i2
c_d

e
v
_in

it
u
v
c_in

it

le
d
trig

_cp
u
_in

it

o
p
ro
fi
le
_in

it
x
frm

_u
se
r_in

it
in
e
t6
_in

it

sit_in
it

p
a
cke

t_in
it

ip
se
c_p

fke
y
_in

it
in
it_d

n
s_re

so
lv
e
r

th
u
m
b
e
e
_in

it
sw

p
_e
m
u
la
tio

n
_in

it
__o

m
a
p
2
_co

m
m
o
n
_p
m
_la

te
_in

it

__sr_cla
ss3

_in
it

lo
a
d
_sy

ste
m
_ce

rtifi
ca
te
_list

clk_d
e
b
u
g
_in

it

d
e
fe
rre

d
_p
ro
b
e
_in

itca
ll

rtc_h
cto

sy
s

re
g
u
la
to
r_in

it_co
m
p
le
te

0
.2
3

0
.3
4

0
.4
6

0
.5
7

0
.6
8

0
.8

0
.9
1

1
.0
2

1
.1
4

1
.2
5

1
.3
6

1
.4
8

1
.5
9

1
.7
1

1
.8
2

ch
r_d

e
v
_in

it

in
e
t_in

it
p
o
p
u
la
te
_ro

o
tfs

cry
p
to
_n
u
ll_m

o
d
_in

it
d
e
fl
a
te
_m

o
d
_in

it

sy
sc_in

it

se
ria

l8
2
5
0
_in

it

o
m
a
p
8
2
5
0
_p
la
tfo

rm
_d
riv

e
r_in

it

tilcd
c_d

rm
_in

it

m
td
o
o
p
s_in

it

fi
xe
d
_m

d
io
_b
u
s_in

it

cp
sw

_d
riv

e
r_in

it

a
m
3
3
5
x
_ch

ild
_in

it

i2
c_d

e
v
_in

it
u
v
c_in

it

le
d
trig

_cp
u
_in

it

o
m
a
p
_d
m
_tim

e
r_d

riv
e
r_in

it
o
p
ro
fi
le
_in

it

x
frm

_u
se
r_in

it

in
e
t6
_in

it

sit_in
it

p
a
cke

t_in
it

ip
se
c_p

fke
y
_in

it

in
it_d

n
s_re

so
lv
e
r

th
u
m
b
e
e
_in

it

sw
p
_e
m
u
la
tio

n
_in

it

__o
m
a
p
2
_co

m
m
o
n
_p
m
_la

te
_in

it
__sr_cla

ss3
_in

it

lo
a
d
_sy

ste
m
_ce

rtifi
ca
te
_list

clk_d
e
b
u
g
_in

it
d
e
fe
rre

d
_p
ro
b
e
_in

itca
ll

rtc_h
cto

sy
s

re
g
u
la
to
r_in

it_co
m
p
le
te

0
.2
3

0
.3
1

0
.4

0
.4
9

0
.5
8

0
.6
6

0
.7
5

0
.8
4

0
.9
3

1
.0
2

1
.1

1
.1
9

1
.2
8

1
.3
7

1
.4
5

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

https://elixir.bootlin.com/linux/latest/ident/tracer_init_tracefs

Other features to remove

▶ omap8250_platform_driver_init (660 ms!)
Corresponds to the serial interface. No obvious reason found in the code. To be
disabled later.

▶ cpsw_driver_init (112 ms)
Corresponds to the network driver. Will be disabled.

▶ am335x_child_init (82 ms)
Corresponds to the USB interface the camera is connected to. Cannot be skipped.

▶ All other items are too small. Some will be disabled by removing as many features
as possible.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

Preset loops per jiffy

▶ At each boot, the Linux kernel calibrates a delay loop (for the udelay()
function). This measures a number of loops per jiffy (lpj) value. You just need to
measure this once! Find the lpj value in the kernel boot messages:

Calibrating delay loop... 996.14 BogoMIPS (lpj=4980736)

▶ Now, you can add lpj=<value> to the kernel command line:

Calibrating delay loop (skipped) preset value.. 996.14 BogoMIPS (lpj=4980736)

▶ Tests on BeagleBone Bloack (ARM), Linux 5.1: -82 ms
Time measured at the first kernel messages... the calibration loop is run before
the message is issued.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

https://elixir.bootlin.com/linux/latest/ident/udelay

Multiprocessing support (CONFIG_SMP)

▶ SMP is quite slow to initialize
▶ It is usually enabled in default configurations, even if you have a single core CPU

(default configurations should support multiple systems).
▶ So make sure you disable it if you only have one CPU core.
▶ Results on BeagleBone Black:

Compressed kernel size: -188 KB (-4.6 %)
Total boot time: -126ms

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

Removing kernel module support

If possible!
▶ Before turning off CONFIG_MODULES, first manually turn off all features selected

as modules. Otherwise, modules will be turned into build-ins while they were not
necessary.

▶ Note that menuconfig and xconfig show you which modules can be removed or
not because of dependencies.

▶ Before this, it is easier to remove all subsystems that you don’t need for sure.
▶ Unselect features progressively and make copies for your configuration files. If the

system no longer boots, you may have to start again from the beginning otherwise.
▶ Results: -82 KB in compressed kernel size, -20 ms of boot time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

Silencing the console, turning off kernel messages

▶ First, booting with the quiet command line parameter:
Total boot time: -577 ms

▶ After removing CONFIG_PRINTK and CONFIG_BUG:
Compressed kernel size: 1939152 (-118 KB, -5.8 %)

▶ After removing CONFIG_KALLSYMS too:
Compressed kernel size: 1829168 (-107 KB, -5.7 %)

▶ Total savings:
Compressed kernel size: -225 KB (-11 %)
Total boot time: -767 ms

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

Using CONFIG_EMBEDDED and CONFIG_EXPERT

▶ Useful for keeping only the system calls that you’re using in your system. This
makes your kernel less generic, but that’s fine when all applications are known in
advance

▶ Compressed kernel size: -51 KB
▶ Total boot time: -34 ms

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

Compiling the kernel in Thumb2 mode

Can be selected by CONFIG_THUMB2_KERNEL
Results on BeagleBone Black:
▶ Compressed kernel size: +40 KB
▶ Total boot time: +5 ms

We keep compiling the kernel in ARM mode, unlike what we did for the root filesystem.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

Choosing SLAB memory allocators

▶ SLAB: legacy, well proven allocator. Default choice on our board.
▶ SLOB: much simpler. More space efficient but doesn’t scale well. Saves a few hundreds

of KB in small systems (depends on CONFIG_EXPERT).
Results on BeagleBone Black: -5 KB compressed kernel, +1,43 s total boot time!

▶ SLUB: more recent and simpler than SLAB, scaling much better (in particular for huge
systems) and creating less fragmentation.
Results on BeagleBone Black: +4 KB compressed kernel, + 2ms total boot time.

We’re keeping SLAB!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1

Kernel Compression

Depending on the balance between your storage reading speed and your CPU power to
decompress the kernel, you will need to benchmark different compression algorithms.
Also recommended to experiment with compression options at the end of the kernel
optimization process, as the results may vary according to the kernel size.

Default mode Good balance between compression and speed

Very good compression rate but slow

Best compression rate but slow

Poor compression rate but fast decompression

Poorest compression rate but fastest decompression

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

Kernel compression options

Results on TI AM335x (ARM), 1 GHz, Linux 5.1
Timestamp gzip lzma xz lzo lz4
Size 2350336 1777000 1720120 2533872 2716752
Copy 0.208 s 0.158 s 0.154 s 0.224 s 0.241 s
Time to userspace 1.451 s 2.167 s 1.999s 1.416 s 1.462 s

Gzip is close. It’s time to try with faster storage (SanDisk Extreme Class A1)
Timestamp gzip lzma xz lzo lz4
Size 2350336 1777000 1720120 2533872 2716752
Copy 0.150 s 0.114 s 0.111 s 0.161 s 0.173 s
Time to userspace 1.403 s 2.132 s 1.965 s 1.363 s 1.404 s

Lzo and Gzip seem the best solutions. Always benchmark as the results depend on
storage and CPU performance.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1

Optimize kernel for size (1)

▶ CONFIG_CC_OPTIMIZE_FOR_SIZE: possibility to compile the kernel with gcc -Os
instead of gcc -O2.

▶ Such optimizations give priority to code size at the expense of code speed.
▶ Results: the initial boot time is better (smaller size), but the slower kernel code

can offset the benefits. Your system will run a bit slower!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/1

Optimize kernel for size (2)

Results on BeagleBone Black, Linux 5.1, lzo compression
O2 Os Diff

Size 2533872 2390608 -5.7 %
Copy time 0.161 s 0.153 s -8 ms
Starting kernel 0.912 s 0.904 s -8 ms
Starting userspace 1.363 s 1.359 s -4 ms
Total boot time 2.961 s 2.957s -4 ms

Results on Microchip SAMA5D3 Xplained, Linux 3.10, gzip compression:
Timestamp O2 Os Diff
Starting kernel 4.307 s 4.213 s -94 ms
Starting init 5.593 s 5.549 s -44 ms
Login prompt 21.085 s 22.900 s + 1.815 s

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1

Removing pseudo filesystems

▶ Remove the proc filesystem:
Lzo compressed kernel size: -48 KB
But ffmpeg doesn’t work without proc

▶ Removing only proc options (CONFIG_PROC_SYSCTL and
CONFIG_PROC_PAGE_MONITOR): -9 KB, no noticeable boot time change.

▶ Removing CONFIG_CONFIGFS_FS: -7 KB
▶ Removing the sysfs filesystem:

Lzo compressed kernel size: -22 KB
Time to userspace: -35 ms

Do it if compatible with your applications!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/1

Other kernel optimizations

▶ Disable all Compile-time checks and compiler options in Kernel hackingr), in
particular CONFIG_DEBUG_INFO:
Compressed kernel size: -38 KB (-1.7 %)
Time to userspace: -6 ms

▶ Replacing ARM EABI stack unwinder (CONFIG_UNWINDER_ARM) by the default
mechanism:
Compressed kernel size: -24 KB (-1.1 %)
Time to user space: +0.8 ms, keeping it this option for its size savings.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/1

Appending DTB to kernel

▶ Goal: group two copies from SD card:

0.862184 0.144682] 2205936 bytes read in 141 ms (14.9 MiB/s)
[0.873126 0.010942] 61284 bytes read in 7 ms (8.3 MiB/s)

▶ Using CONFIG_ARM_APPENDED_DTB, already enabled:
cat arch/arm/boot/zImage arch/arm/boot/dts/am335x-boneblack-lcd4.dtb > zImage
setenv bootcmd 'fatload mmc 0:1 81000000 zImage; bootz 81000000'

▶ Result: all bytes loaded at top speed

[0.863885 0.149569] 2266952 bytes read in 145 ms (14.9 MiB/s)

Starting kernel: 26 ms earlier
Userspace: 26 ms earlier

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/1

Timing Boot Time Reduction Techniques

Bootloader optimizations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/1

Bootloader optimizations: strategy

▶ It is definitely possible to improve performance in U-Boot. See our training slides:
https://bootlin.com/doc/training/boot-time/

▶ However, the best solution is to skip U-Boot, using its Falcon mode:
▶ We’ll only execute the first stage of U-Boot, the SPL (Secondary Program Loader)
▶ And will directly load the Linux kernel, instead of the U-Boot image. See

doc/README.falcon in U-Boot sources for details.
▶ This is supported in the same way on all the boards with U-Boot support for SPL.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/1

https://bootlin.com/doc/training/boot-time/

U-Boot Falcon mode - Preparation steps

Quite easy indeed!
▶ The Falcon mode needs a legacy kernel image:

make uImage LOADADDR=80008000
Copy it to the SD card.

▶ In U-Boot’s menuconfig interface, go to the SPL / TPL menu and unselect
Support an environment. Recompile U-Boot and update it on the SD card. In
our tests, this saved 250 ms in Falcon mode!

See our training labs for details: https://bootlin.com/doc/training/boot-time/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/1

https://bootlin.com/doc/training/boot-time/

U-Boot Falcon mode - without DTB (embedded in uImage)

▶ In the U-Boot command line, load the kernel image in RAM:
load mmc 0:1 81000000 uImage

▶ Set the bootargs if needed:
setenv bootargs console=ttyO0,115200n8 rdinit=/playvideo lpj=
4980736

▶ Simulate booting the Linux kernel:
spl export atags 81000000

▶ Using the address output by this command, store the atags information to MMC
(args file):
fatwrite mmc 0:1 0x80000100 args 4000

▶ Reset and the system should boot through only the U-Boot SPL

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/1

U-Boot Falcon mode - with DTB

▶ In the U-Boot command line, load the kernel image and DTB in RAM:
load mmc 0:1 81000000 uImage
load mmc 0:1 82000000 dtb

▶ Set the bootargs if needed:
setenv bootargs console=ttyO0,115200n8 rdinit=/playvideo lpj=
4980736

▶ Simulate booting the Linux kernel:
spl export ftd 81000000 - 82000000

▶ Using the addresses output by this command, store the Flattened Device Tree
(fdt) information to MMC (args file):
fatwrite mmc 0:1 0x8ffd9000 args 1de57

▶ Reset and the system should boot through only the U-Boot SPL

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/1

U-Boot Falcon mode results

[0.000000 0.000000]
[0.000785 0.000785] U-Boot SPL 2019.01 (Oct 27 2019 - 08:04:06 +0100)
[0.057822 0.057822] Trying to boot from MMC1
[0.378878 0.321056] fdt_root: FDT_ERR_BADMAGIC
[0.775306 0.396428] Waiting for /dev/video0 to be ready...
[1.966367 1.191061] Starting ffmpeg
...
[2.412284 0.004277] First frame decoded

▶ Time to userspace: -479 ms
▶ Time to ffmpeg: -478 ms
▶ Total boot time: 2.412284

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/1

Challenges and issues

▶ Didn’t manage to boot yet without the tty layer. At least the application doesn’t
start. According to the boot graph, expecting to save hundreds of ms.

▶ Waiting for 1.2 s for the USB camera to be enumerated.
Any way around this USB asynchronousness issue?

▶ Solving these issues should allow to start displaying a video in less than 1 s.

[0.000000 0.000000]
[0.000785 0.000785] U-Boot SPL 2019.01 (Oct 27 2019 - 08:04:06 +0100)
[0.057822 0.057822] Trying to boot from MMC1
[0.378878 0.321056] fdt_root: FDT_ERR_BADMAGIC
[0.775306 0.396428] Waiting for /dev/video0 to be ready...
[1.966367 1.191061] Starting ffmpeg
...
[2.412284 0.004277] First frame decoded

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/1

Don’t miss

▶ Tuesday, October 29 - 11:30 - 12:05
We Need to Talk About Systemd:
Boot Time Optimization for the New init daemon
Chris Simmonds, 2net

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/1

Conference presentations and training materials

▶ Andrew Murray - The Right Approach to Minimal Boot Time (2010)
Video: https://frama.link/nrf696Hy - Slides:
https://frama.link/uCBH9jQM
Great talk about the methodology.

▶ Chris Simmonds - A Pragmatic Guide to Boot-Time Optimization (2017)
Video: https://frama.link/Vnmj5t1m - Slides:
https://frama.link/TC0YKM9N

▶ Jan Altenberg - How to Boot Linux in One Second (2015)
Video: https://frama.link/BztbLy9T - Slides:
https://frama.link/bFkvgLFR

▶ Bootlin’s Linux boot time training materials and labs:
See our training slides: https://bootlin.com/doc/training/boot-time/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/1

https://frama.link/nrf696Hy
https://frama.link/uCBH9jQM
https://frama.link/Vnmj5t1m
https://frama.link/TC0YKM9N
https://frama.link/BztbLy9T
https://frama.link/bFkvgLFR
https://bootlin.com/doc/training/boot-time/

Most successful techniques in our project

Thumb2 toochain
-18 % code size

uClibc instead of musl
-16 % library size

Apps with less options
- 350 ms

- 78 % system size

Rootfs simplification
-34 % system size

Static executables
- 20 ms

- 22 % system size

Uncompressed initramfs
- 170 ms

- 200 KB system size

Initramfs
- 20 ms

Disable tracing
- 550 ms

- 217 KB kernel size

Delay loop calibration
-82 ms

Disable SMP
- 126 ms

-4.6 % kernel size

Disable modules
- 20 ms

- 82 KB kernel size

Silent kernel
-767 ms

- 11% kernel size

Non standard kernel (EXPERT/EMBEDDED)
- 34 ms

- 51 KB kernel size

Kernel compression
-35 ms with LZO

Disable sysfs

- 35 ms
- 22 KB kernel size

Disable proc
- 48 KB kernel size Concat kernel and DTB

- 22 ms

U-Boot Falcon Mode
-478 ms

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/1

Questions? Suggestions? Comments?

Michael Opdenacker
michael.opdenacker@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2019/elce/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/1

https://bootlin.com/pub/conferences/2019/elce/

