Embedded Linux from
scratch in 40 minutes
(on RiscV)

Michael Opdenacker
michael.opdenacker@bootlin.com

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

E emEeddgd ﬁﬁuﬁm&el ‘engineering

- T L

» Founder and Embedded Linux engineer at Bootlin:
» Embedded Linux expertise
» Development, consulting and training
» Focusing only on Free and Open Source Software
» Has its biggest office in Colomiers, near Toulouse

» Free Software contributor:

» Current maintainer of the Elixir Cross Referencer,
making it easier to study the sources of big C projects
like the Linux kernel. See
https://elixir.bootlin.com

» Co-author of Bootlin's freely available embedded Linux
and kernel training materials
(https://bootlin.com/docs/)

» Former maintainer of GNU Typist

Project Bootlin

selection

r
search

Source
browsing

https://elixir.bootlin.com
https://bootlin.com/docs/
https://www.gnu.org/software/gtypist/

Introduction

>

>

Linux is perfect for operating devices with a fixed set of features. Unlike on the
desktop, Linux is almost in every existing system.

Embedded Linux makes Linux easy to learn: just a few programs and libraries are
sufficient. You can understand the usefulness of each file in your filesystem.

The Linux kernel is standalone: no complex dependencies against external
software. The code is in C!

Linux works with just a few MB of RAM and storage
There's a new version of Linux every 2-3 months.

Relatively small development community. You end up meeting lots of familiar
faces at technical conferences (like the Embedded Linux Conference).

Lots of opportunities (and funding available) for becoming a contributor (Linux
kernel, bootloader, build systems...).

%

» First shown in 2005 at the Libre
Software Meeting in Dijon, France.

» Showing a 2.6 Linux kernel booting on
a QEMU emulated ARM board.

» One of our most downloaded
presentations at that time.

Embedded Linux From Scratch

Embedded Linux From Scratch

in 40 minutes!
Michael Opdenacker
Free Electrons
http://free-electrons.com/

nada + 40 min = Q

Created with OpenOffice.org 2.x
®
Embedded Linux From Scratch ... in 40 minutes! >e
© Copyright 2005-2008, Free Electrons.)
(O\ Free lectrons SR IR 1
upi/oe-cl Sep 15,2000

In the Linux kernel:

In the embedded environment
» The Maker movement

» Cheap development boards (500+
EUR —50-100 EUR)

» The rise of Open Hardware (Arduino,
Beaglebone Black...)

» RiscV: a new open-source hardware
instruction set architecture

>
>
>

Linux 2.6.x —5.x

tar —git

Linux is now everywhere, no need to
convince customers to use it. It's even
easier and easier to convince then to
fund contributions to the official
version.

devtmpfs: automatically creates device
files

ARM and other architectures: devices

described by the Device Tree instead
of C code

And many more!

PLRISC-V
» Created by the University of California Berkeley, in a world dominated by
proprietary ISAs (ARM, x86)

» Exists in 32, 64 and 128 bit variants, from microcontrollers to powerful server
hardware.

v

Anyone can use and extend it to create their own SoCs and CPUs.
» This reduces costs and promotes reuse and collaboration

» Implementations can be proprietary. Many hardware vendors have plans to include
RiscV CPUs in their hardware (examples: Western Digital, Nvidia)

» Free implementations are being created
See https://en.wikipedia.org/wiki/RISC-V

https://en.wikipedia.org/wiki/RISC-V

» SiFive makes a low cost HiFivel Arduino Compatible board, but which cannot run
Linux.

> SiFive also makes the HiFive Unleashed board, based on the first Linux capable
multi-core RISC-V CPU, but it cost about 1,000 USD!

» Before affordable hardware is available (in the next years), you can get started
with the QEMU emulator, which simulates a virtual board with virtio hardware

Already try it with JSLinux: https://bellard.org/jslinux/

https://bellard.org/jslinux/

» Hardware emulator: QEMU (provided by the distro)
» Cross-compiling toolchain: Buildroot

» Bootloader: BBL Berkeley Boot Loader

> Kernel: Linux 5.4-rc7

» Root filesystem and application: BusyBox

That's easy to compile and assemble in less than 40 minutes!

Development PC Embedded system (target)
(host)
Application Application
Librar
Tools Y
compiler
debugger Library Library Library
C library
Linux kernel
Bootloader

Cross-compiling toolchain

Source code

\ 2 Y
Native toolchain Cross—comPlllng
toolchain
x86
\ 4 \ 4
x86 binary ARM binary

x86

ARM

Compilation
machine

Execution
machine

Compared to ready-made toolchains:
» You can choose your compiler version
» You can choose your C library (glibc, uClibc, musl)
> You can tweak other features

» You gain reproducibility: if a bug is found, just apply a fix.
Don't need to get another toolchain (different bugs)

» The C library is an essential component of a Linux
system

» Interface between the applications and the kernel
» Provides the well-known standard C API to ease
application development
» Several C libraries are available:
> glibc: full featured, but rather big (2 MB of ARM)
» uClibc: great for embedded use, the smallest
» musl: great for embedded use too, more recent

Source: Wikipedia

» The choice of the C library must be made at
cross-compiling toolchain generation time, as the GCC
compiler is compiled against a specific C library.

(http://bit.ly/2zrGve2)

http://bit.ly/2zrGve2

vVvyyvyy

vy

Download Buildroot from https://buildroot.org
Extract the sources (tar xf)
Run make menuconfig

In Target options —Target Architecture, choose
RISCV

In Toolchain —C library, choose musl.

Save your configuration and run:
make sdk

At the end, you have an toolchain archive in https://asciinema.org/a/281267
output/images/riscv64-buildroot-linux-

musl_sdk-buildroot.tar.gz

Extract the archive in a suitable directory, and in the
extracted directory, run: ./relocate-sdk.sh

https://buildroot.org
https://asciinema.org/a/281267

%

» Create a new riscv64-env.sh file you can source to set environment variables
for your project:

export PATH=$HOME/toolchain/riscv64-buildroot-linux-musl_sdk-buildroot/bin:$PATH J

» Run source riscv64-env.sh, take a hello.c file and test your new compiler:

$ riscv64-linux-gcc -static -o hello hello.c
$ file hello
hello: ELF 64-bit LSB executable, UCB RISC-V, version 1 (SYSV), statically linked, not strippe

We are compiling statically so far to avoid having to deal with shared libraries.

P Test your executable with QEMU in user mode:

$ gemu-riscv64 hello
Hello world!

Hardware emulator

$ gemu-system-riscv64 -M 7

Supported machines are:

none empty machine

sifive_e RISC-V Board compatible with SiFive E SDK

sifive_u RISC-V Board compatible with SiFive U SDK
spike_v1.10 RISC-V Spike Board (Privileged ISA v1.10) (default)
spike_v1.9.1 RISC-V Spike Board (Privileged ISA v1.9.1)

virt RISC-V VirtIO Board (Privileged ISA v1.10)

We are going to use the virt one, emulating VirtlO peripherals (more efficient than
emulating real hardware).

Linux kernel

Environment setup
and configuration

Specify target
architecture
(if different from host)

export ARCH=riscv

Kernel
configuration

make menuconfig

Kernel building
and deployment

Kernel
compiling

Specify
cross-compiler
(if cross-compiling)

export CROSS_COMPILE=riscv64-linux-

Y

make

Installing the kernel

Installing modules

make install
or manual copy

make modules_install

Let's add two environment variables for kernel cross-compiling to our
riscv64-env.sh file:

export CROSS_COMPILE=riscv64-linux-
export ARCH=riscv

» CROSS_COMPILE is the cross-compiler prefix, as our cross-compiler is
riscv64-linux-gcc.

» ARCH is the name of the subdirectory in arch/ corresponding to the target
architecture.

https://elixir.bootlin.com/linux/latest/source/arch/

> Lets take the default Linux kernel configuration for RISCV:

$ make help | grep defconfig
defconfig - New config with default from ARCH supplied defconfig
savedefconfig - Save current config as ./defconfig (minimal config)
alldefconfig - New config with all symbols set to default
olddefconfig - Same as oldconfig but sets new symbols to their
rv32_defconfig - Build for rv32

$ make defconfig

» Note: on ARM, you have one defconfig file per SoC family. RISC-V SoCs are
too few for the moment.

> \We can now further customize the configuration:

make menuconfig J

make)

To compile faster, run multiple jobs in parallel:

make -j 8 J

To recompile faster (7x according to some benchmarks), run multiple jobs in parallel:

make -j 8 CC="ccache riscv64-linux-gcc" J

At the end, you have two files:
vmlinux: raw kernel in ELF format
arch/riscv/boot/Image.gz: compressed kernel

Bootloader

» To boot the Linux kernel on the QEMU RISC-V virt machine, one solution is to
use BBL:

git clone https://github.com/riscv/riscv-pk.git

cd riscv-pk

mkdir build && cd build

../configure --enable-logo --host=riscv64-linux-gnu --with-payload=$HOME/git/linux/vmlinux

> Now, each time you recompile your kernel, run:

make J

This generates the bbl file which is a binary that QEMU can run
(this doesn’'t work with the raw vmlinux binary).

Booting the kernel

gemu-system-riscv64 \
-nographic \
-machine virt \
-m 32M \
-kernel riscv-pk/build/bbl \
-append "console=ttySO0" \

» -m: amount of RAM in the emulated machine
» —append: kernel command line

The kernel starts to boot but eventually panics. We need a root filesystem!

L 0.491433] ---[end Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0)]--- J

Building the root filesystem

()

[, [[, acpid, addgroup, adduser, adjtimex, ar, arp, arping, ash, awk, basename, beep, blkid, brctl, bunzip2, bzcat, bzip2,
cal, cat, catv, chat, chattr, chgrp, chmod, chown, chpasswd, chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, cp, cpio,
crond, crontab, cryptpw, cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devmem, df, dhcprelay, diff, dirname,
dmesg, dnsd, dnsdomainname, dos2unix, dpkg, du, dumpkmap, dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid,
expand, expr, fakeidentd, false, fbset, fbsplash, fdflush, fdformat, fdisk, fgrep, find, findfs, flash_lock, flash_unlock,
fold, free, freeramdisk, fsck, fsck.minix, fsync, ftpd, ftpget, ftpput, fuser, getopt, getty, grep, gunzip, gzip, hd,
hdparm, head, hexdump, hostid, hostname, httpd, hush, hwclock, id, ifconfig, ifdown, ifenslave, ifplugd, ifup, inetd,
init, inotifyd, insmod, install, ionice, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel, kbd_mode,
kill, killall, killall5, klogd, last, length, less, linux32, linux64, linuxrc, 1ln, loadfont, loadkmap, logger, login,
logname, logread, losetup, lpd, lpq, lpr, 1ls, lsattr, lsmod, lzmacat, lzop, lzopcat, makemime, man, md5sum, mdev, mesg,
microcom, mkdir, mkdosfs, mkfifo, mkfs.minix, mkfs.vfat, mknod, mkpasswd, mkswap, mktemp, modprobe, more, mount,
mountpoint, mt, mv, nameif, nc, netstat, nice, nmeter, nohup, nslookup, od, openvt, passwd, patch, pgrep, pidof, ping,
ping6, pipe_progress, pivot_root, pkill, popmaildir, printenv, printf, ps, pscan, pwd, raidautorun, rdate, rdev, readlink,
readprofile, realpath, reformime, renice, reset, resize, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-

parts, runlevel, runsv, runsvdir, rx, script, scriptreplay, sed, sendmail, seq, setarch, setconsole, setfont, setkeycodes,
setlogcons, setsid, setuidgid, sh, shalsum, sha256sum, sha512sum, showkey, slattach, sleep, softlimit, sort, split, start-
stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svlogd, swapoff, swapon, switch_root, sync, sysctl, syslogd, tac,
tail, tar, taskset, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time, timeout, top, touch, tr, traceroute, true, tty,
ttysize, udhcpc, udhcpd, udpsvd, umount, uname, uncompress, unexpand, uniq, unix2dos, unlzma, unlzop, unzip, uptime,
usleep, uudecode, uuencode, vconfig, vi, vlock, volname, watch, watchdog, wc, wget, which, who, whoami, xargs, yes, zcat,
zcip

Source: run /bin/busybox

()

[, [[, acpid, add-shell, addgroup, adduser, adjtimex, ar, arch, arp, arping, awk, base64, basename, bbconfig, bc, beep,
blkdiscard, blkid, blockdev, bootchartd, brctl, bunzip2, busybox, bzcat, bzip2, cal, cat, chat, chattr, chcon, chgrp,
chmod, chown, chpasswd, chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, conspy, cp, cpio, crond, crontab, cryptpw,
cttyhack, cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devmem, df, diff, dirname, dmesg, dnsd, dnsdomainname,
dos2unix, dpkg, dpkg-deb, du, dumpkmap, dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid, ether-

wake, expand, expr, factor, fakeidentd, fallocate, false, fatattr, fbset, fbsplash, fdflush, fdformat, fdisk, fgcomsole,
fgrep, find, findfs, flash_eraseall, flash_lock, flash_unlock, flashcp, flock, fold, free, freeramdisk, fsck, fsck.minix,
fsfreeze, fstrim, fsync, ftpd, ftpget, ftpput, fuser, getenforce, getopt, getsebool, getty, grep, groups, gunzip, gzip,
halt, hd, hdparm, head, hexdump, hexedit, hostid, hostname, httpd, hush, hwclock, id, ifconfig, ifdown, ifenslave,
ifplugd, ifup, inetd, init, insmod, install, ionice, iostat, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, ipneigh, iproute,
iprule, iptunnel, kbd_mode, kill, killall, killall5, klogd, last, less, link, linux32, linux64, linuxrc, 1ln, load_policy,
loadfont, loadkmap, logger, login, logname, logread, losetup, 1lpd, lpq, lpr, ls, lsattr, lsmod, lsof, lspci, lsscsi,
lsusb, lzcat, lzma, lzop, lzopcat, makedevs, makemime, man, matchpathcon, md5sum, mdev, mesg, microcom, minips, mkdir,
mkdosfs, mke2fs, mkfifo, mkfs.ext2, mkfs.minix, mkfs.reiser, mkfs.vfat, mknod, mkpasswd, mkswap, mktemp, modinfo,
modprobe, more, mount, mountpoint, mpstat, mt, mv, nameif, nanddump, nandwrite, nbd-client, nc, netcat, netstat, nice, nl,
nmeter, nohup, nologin, nproc, nsenter, nslookup, ntpd, nuke, od, openvt, partprobe, passwd, paste, patch, pgrep, pidof,
ping, ping6, pipe_progress, pivot_root, pkill, pmap, popmaildir, poweroff, printenv, printf, ps, pscan, pstree, pwd, pwdx,
raidautorun, rdate, rdev, readahead, readlink, readprofile, realpath, reboot, reformime, remove-shell, renice, reset,
resize, restorecon, resume, rev, rfkill, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-init, run-

parts, runcon, runlevel, runsv, runsvdir, rx, script, scriptreplay, sed, selinuxenabled, sendmail, seq, sestatus, setarch,
setconsole, setenforce, setfattr, setfiles, setfont, setkeycodes, setlogcons, setpriv, setsebool, setserial, setsid,
setuidgid, sh, shalsum, sha256sum, sha3sum, sha512sum, showkey, shred, shuf, slattach, sleep, smemcap, softlimit, sort,
split, ssl_client, start-stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svc, svlogd, svok, swapoff, swapon,
switch_root, sync, sysctl, syslogd, tac, tail, tar, taskset, tc, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time,
timeout, top, touch, tr, traceroute, traceroute6, true, truncate, ts, tty, ttysize, tunctl, tune2fs, ubiattach, ubidetach,
ubimkvol, ubirename, ubirmvol, ubirsvol, ubiupdatevol, udhcpc, udhcpd, udpsvd, uevent, umount, uname, uncompress,
unexpand, uniq, unit, unix2dos, unlink, unlzma, unlzop, unxz, unzip, uptime, users, usleep, uudecode, uuencode, vconfig,
vi, vlock, volname, w, wall, watch, watchdog, wc, wget, which, who, whoami, whois, xargs, xxd, xz, xzcat, yes, zcat, zcip

%

» Create a rootfs installation directory
» Download the sources from https://busybox.net

» Run make allnoconfig
Starts with no applet selected

» Run make menuconfig

» In Settings —Build Options, enable
Build static binary (no shared 1ibs)

» In Settings —Build Options, set
Cross compiler prefix to riscv64-linux-

» In Settings —Installation Options..., set
Destination path for 'make install' to the path
of your rootfs directory.

» Then enable support for the following commands:
ash, init, mount, cat, mkdir, echo, uptime, 1s, vi,
halt, ifconfig, httpd

usybox Configuration
Arrow keys navigate the menu. <Enter> selects submenus

Highlighted letters are hotkeys. Pressing <Y> includes, <> excludes,
o nadularizes festires. Prass Sics<Eics to et <D for talp, </>
m Search. Legend: [*] built-in [) excluded < nodule

e

Finding m\mu e

Init ULt -

B - P

L inux Ext2 FS Progs --
i Hod

Ligs)

https://asciinema.org/a/281501

https://busybox.net
https://asciinema.org/a/281501

%

» Compiling: make or make -j 8 (faster)
Resulting size: 251624 bytes only!

» Installing: make install

» See the created directory structure and the
symbolic links to /bin/busybox

— sbin

— usr
—

ash -> busybox
busybox

cat -> busybox
1s -> busybox
mount -> busybox
sh -> busybox

halt -> ../bin/busybox
ifconfig -> ../bin/busybox
init -> ../bin/busybox

sbin
L— httpd -> ../../bin/busybox

» Creating an empty file with a 1M size:

dd if=/dev/zero of=rootfs.img bs=1M count=1 |

» Formating this file for the ext2 filesystem:

mkfs.ext2 rootfs.img J

» Create a mount point:

sudo mkdir /mnt/rootfs J

» Mounting the root filesystem image:

sudo mount -o loop rootfs.img /mnt/rootfs)

» Filling the BusyBox file structure:

sudo rsync -a rootfs/ /mnt/rootfs/ J

» Flushing the changes into the mounted filesystem image:

sync }

» Add a disk to the emulated machine:

gemu-system-riscv64 -nographic -machine virt -m 32M \
-kernel riscv-pk/build/bbl \
-append "console=ttySO ro root=/dev/vda" \
—-drive file=root.img,format=raw,id=hd0 \
-device virtio-blk-device,drive=hd0 \

» You should see the root filesystem is mounted:

[0.630560] EXT4-fs (vda): mounting ext2 file system using the ext4 subsystem
[0.659433] EXT4-fs (vda): mounted filesystem without journal. Opts: (null)
[0.663114] VFS: Mounted root (ext2 filesystem) readonly on device 254:0.

» Create a dev directory.
The devtmpfs filesystem will automatically be mounted there (as

CONFIG_DEVTMPFS_MOUNT=y)
P Let's try to mount the proc and sysfs filesystems:

mount -t proc nodev /proc
mount -t sysfs nodev /sys

Let's automate the mounting of proc and sysfs...
> Let's create an /etc/inittab to configure Busybox Init:

This is run first script:
:sysinit:/etc/init.d/rcS

Start an "askfirst" shell on the console:
:askfirst:/bin/sh

P Let's create and fill /etc/init.d/rcS to automatically mount the virtual
filesystems:

#!/bin/sh
mount -t proc nodev /proc
mount -t sysfs nodev /sys

» Don't forget to make the rcS script executable. Linux won't allow to execute it
otherwise.

» Do not forget #!/bin/sh at the beginning of shell scripts! Without the leading
#! characters, the Linux kernel has no way to know it is a shell script and will try
to execute it as a binary file!

» Don't forget to specify the execution of a shell in /etc/inittab or at the end of
/etc/init.d/rcS. Otherwise, execution will just stop without letting you type
new commands!

» Add a network interface to the emulated machine:

sudo gemu-system-riscv64 -nographic -machine virt -m 32M \
-kernel riscv-pk/build/bbl \
—append "console=ttySO ro root=/dev/vda" \
—-drive file=root.img,format=raw,id=hd0 \
-device virtio-blk-device,drive=hd0 \
-netdev tap,id=tapnet,ifname=tap2,script=no,downscript=no \
-device virtio-net-device,netdev=tapnet \

» Need to be root to bring up the tap2 network interface

» On the target machine:

ifconfig -a
ifconfig ethO 192.168.2.100

» On the host machine:

ifconfig -a
ifconfig tap2 192.168.2.1
ping 192.168.2.100

#!/bin/sh
echo "Content-type: text/html"
echo

echo "<html>"

echo "<meta http-equiv=\"refresh\" content=\"1\">"

echo "<header></header><body>"

echo "<h1>Uptime information</hi>"

echo "Your embedded device has been running for:<pre>"
echo “uptime’

echo "</pre>"

echo "</body></html>"

Store it in /www/cgi-bin/uptime

» On the target machine:

/usr/sbin/httpd -h /www J

» On the host machine, open in your browser:
http://192.168.2.100/cgi-bin/uptime

http://192.168.2.100/cgi-bin/uptime

» Embedded Linux is easy. It makes it easier to get started with Linux.
» You just need a toolchain, a kernel and a few executables.
» RISC-V is a new, open Instruction Set Architecture, support it!

» In embedded Linux, things don't change that much over time. You just get more
features.

» Our "Embedded Linux system development” training materials (500+ pages,
CC-BY-SA licence):
https://bootlin.com/doc/training/embedded-1linux/

» All our training materials and conference presentations:
https://bootlin.com/docs/

» The Embedded Linux Wiki: presentations, howtos... contribute to it!
https://elinux.org

https://bootlin.com/doc/training/embedded-linux/
https://bootlin.com/docs/
https://elinux.org

Check out our jobs in Toulouse:
https://bootlin.com/company/careers/

ions?
Q UeStIOnS . Check out Bootlin internship topics:
S UggeSthnS? » Video encoding on Allwinner VPU in

the Linux kernel

Com ments7 » Linux kernel driver for the MIPI CSI-2

controller in Allwinner SoCs
» Improve TPM v2.0 support in U-Boot
» Support the SquashFS filesystem in

Michael Opdenacker Lo

)) Implementing new features in the
michael.opdenacker@bootlin.com Elixir Cross Referencer

https://bootlin.com/blog/2020-internships/
Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/1

https://bootlin.com/pub/conferences/
https://bootlin.com/company/careers/
https://bootlin.com/blog/2020-internships/

