SD/eMMC: new speed modes and their support in Linux

Gregory CLEMENT
Bootlin gregory@bootlin.com
Gregory CLEMENT

- Embedded Linux engineer and trainer at Bootlin
 - Embedded Linux **expertise**
 - **Development**, consulting and training
 - Strong open-source focus

- Open-source contributor
 - Contributing to **kernel support** for the Armada 370, 375, 38x, 39x and Armada XP ARM SoCs and Armada 3700, 7K/8K ARM64 SoCs from Marvell.
 - Co-maintainer of mvebu sub-architecture (SoCs from Marvell Engineering Business Unit)
 - Living near Lyon, France
SD card and eMMC have common point:

- Both come from MMC (*MultiMediaCards*).
- Increase their bandwidth as new versions of the standards were released
 - Now they can reach more than 400MB/s in theory
- Supported in Linux though the *mmc subsystem*
Overview of this talk

- Presentation of **SD Card** and **eMMC**
- Initial support in Linux
- The new speed modes
- State of the support for these new speed modes in Linux
SD card

- SD stands for *Secure Digital*
 - "Secure" for copyright content
- Introduced in 1999
- MMC extension
- Standardized by **SDA** (*SD Association* created in 2000)
- Flash chip + small micro-controller in a card
- 9 pins: CLK, CMD, DAT0–3, VDD, VSS1–2
- SPI mode compatibility
 - DAT3 -> CS, CMD -> DI, DAT0 -> DO
- In initial release 25MHz clock
SD Bus protocol

- Command and data bit stream
- Command and response on CMD line
- Data on the data lines
- Basic transaction command/response
- Some operations can have data token
- All communication initiated by the host
- Data transfer in block with CRC
- Multiple data block: always stop by a host command
Initial version: 1 data line for MMC vs 4 for SD card

Nowadays MMC can go up to 8 data lines

No DRM in MMC

Command set diverged

Both have SPI compatibility mode
- other MMC extension from MMCA and JDEC
- eMMC stands for embedded MultiMedia Card
- Mentioned in the MMC spec v4.1 in 2007
Flash chip + small micro-controller in BGA chip

Pinout:

- Since 4.1, 14 pins: CLK, CMD, DAT0-7, VccQ, VssQ, Vcc, Vss
- With 4.4 version, one more pin: RST_n (Reset)
- With 5.0 version, one more pin: DS (Data Strobe)

- No more SPI mode compatibility since 4.3
- In initial release: 52 MHz clock
Bus protocol same than the SD bus protocol (both came from MMC)

- Command, response on \texttt{CMD} line
- Data on the data lines
- Basic transaction command/response
- Some operation can have data token
- All communication initiate by the host
- Data transfer in block with CRC
- Multiple data blocks: always stop by a host command
Both defined by the same specification but there still differences:

- **eMMC** BGA chip soldered to a board
- **MMC card** removable part
- Dedicated feature for **eMMC** such as partitioning, device information
- **eMMC** widely used whereas the MMC card are hard to find
 MMC Framework added in 2004 with 2.6.9 by Russell King
 SD card Support added in 2005 with 2.6.14 by Pierre Ossman (who became MMC maintainer in 2006)
 SDHCI (Secure Digital Host Controller Interface) added with 2.6.17 in 2006
 High Speed mode (clock up to 52MHz) for MMC added with 2.6.20
 High Speed mode for SD Card added in the same release
 SDIO extension support with 2.6.24 in 2007
Support in Linux

- Code located in `drivers/mmc` and headers in `include/linux/mmc/`
- Currently maintained by **Ulf Hansson** since 2014
- Code separated in two parts:
 - **core**: protocol for MMC/eMMC and SD Card as well as common functions for the framework
 - **host**: support for the controllers
 - `host/sdhci*` for the controller based on SDHCI maintained by **Adrian Hunter**
 - **SPI mode** supported in `host/mmc_spi.c` but currently without maintainer
Speed mode improvement - High Speed

- Maximum clock from 26MHz to 52MHz for **MMC**
- Maximum clock from 25MHz to 50MHz for **SD Card**
- Introduce the speed mode selection sequence using **CMD6**
- Introduce since **SD v2** and **MMC v4**
Speed mode improvement - **UHS-I 1/2**

- Introduced with **SD 3.01** (2010)
- New speed modes (name are base on the bandwidth):
 - **SDR12** (max bandwidth: 12MB/s)
 - **SDR25** (max bandwidth: 25MB/s)
 - **SDR50** (max bandwidth: 50MB/s)
 - **SDR104** (max bandwidth: 104MB/s)
 - **DDR50** (max bandwidth: 50MB/s)
- All these new modes under 1.8V compared to the 3.3V for **DS** (Default Speed 25MHz) and **HS** (High Speed at 50MHz)
- New step in the switch sequence: modifying the voltage
Speed mode improvement - **UHS-I** 2/2

- **SDR12**: simple data rate with clock at 25MHz (with 4 lines)
- **SDR25**: simple data rate with clock at 50MHz (with 4 lines)
- **SDR50**: simple data rate with clock at 100MHz (with 4 lines)
- **SDR104**: simple data rate with clock at 208MHz (with 4 lines). For this speed mode tuning (**CMD19**) is required
- **DDR50**: double data rate with clock at 50MHz. Data sample on each front of the clock.
Speed mode improvement - DDR mode for eMMC

- Introduced with **MMC 4.4** (2009)
- Up to 52MHz (as high Speed mode)
- Configured with **CMD6** but with different arguments than **SD Card**
- Can be used at 3V
- At host controller level, same configuration used than for **DDR50**
Speed mode improvement - **HS-200**

- Introduced with **MMC 4.5** (2011)
- Up to 200MHz at single data rate
- Tuning command (**CMD21**) can be used to find optimal data sampling.
- Must be used at 1.8V or 1.2V
Speed mode improvement - **HS-400**

- Introduced with **MMC 5.0** (2013)
- Up to 200MHz at dual data rate
- New **DS (Data Strobe)** line: used during **DATA out** and **CRC response**
- Tuning command (**CMD21**) can be used to find optimal data sampling.
- Must be used at 1.8V or 1.2V
- With **MMC 5.1** (2014), **Enhanced Strobe** added: strobe also provided during **CMD Response**
Speed mode improvement - **UHS-II**

- Introduced with **SD 4.1** (2013)
- Completely new mode
- New set of signal: RCLK+, RCLK-, D0+,D0-,D1+,D1-, VSS3-5, VDD1-2
- 2 data lanes (D0, D1) using 2 differential signals
- **RCLK**: 26 to 52 MHZ
- Data x15 or x30 depending of the mode, up to 312MB/s
- Completely different protocol: exchange of packet messages on both way
- Each packet have header and payload data
- At transaction layer possibility to encapsulate SD packet
- At lower level still needed to be able to use the new protocol
- With **SD 6.0** (2017): **UHS-III** (624 MB/s)
New speed Support in Linux - History

- **DDR 50 mode** added with **2.6.37** in 2010
- **UHS-I** added with **3.0** in 2011
- **HS200** added with **3.10** in 2012
- **HS400** added with **3.16** in 2014
- **HS400 retuning** added with **4.2** in 2015
- **HS400es** (Enhanced Strobe) added with **4.8** in 2016
Current support in Linux

- Signal voltage switching needed for most of the new speed mode
 - Supported by the framework in `core.c`
 - Make use of the regulator framework
- Tuning used by eMMC and SD Card
 - Function present in the core
 - But implemented at controller driver level
- Switching sequence handled by the core but most of the steps can be customized for the host controller.
Missing part and future challenge in Linux

- **eMMC** speed mode support quite complete, most of the development now at driver level and specific to each controller.

- **SD Card**: no support at all for **UHS-II** (and **UHS III**), adding this new protocol would be a big task.
Future SD improvement: **SD Express**

- In June 2018, the **SDA** provided a white paper about the next version of the SD spec: *SD Express – A Revolutionary Innovation for SD Memory Cards*
- The next **SD 7.0** will be based on **PCIe** and **NVMe**
- **SD Express** will be compatible with **UHS-I** but not with **UHS-II** or **UHS III**
- Add also a new power supply support: **1.2V**
- There is hope that it should be supported straightforward in Linux thanks to the existing PCIe support
Questions? Suggestions? Comments?

Gregory CLEMENT
gregory@bootlin.com

Slides under CC-BY-SA 3.0