%

SPI Memory support in
Linux and U-Boot

Miquel Raynal Boris Brezillon
miquel@bootlin.com boris@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, i ibutions and fons are welcome!

bootlin

©

embedded Linux and kernel engineering




» Embedded Linux engineer at Bootlin

» Embedded Linux development: kernel and driver development, system integration,
boot time and power consumption optimization, consulting, etc.

» Embedded Linux, Linux driver development, Yocto Project / OpenEmbedded and
Buildroot training courses, with materials freely available under a Creative
Commons license.

> https://bootlin.com

» Contributions
» Maintainer of the NAND subsystem
» Kernel support for various ARM SoCs

» Living in Toulouse, south west of France


https://bootlin.com

Children’s drawing center, Michal Wimmer

Van Gogh's “Starry Night" painting (Wikimedia Commons CC-BY-SA 3.0)

MTD Other subsystems



» Understanding what SPl memories are and what protocol they use
» Looking at the Linux (and U-Boot) SPI memory stack (both past and present)
» Have a glimpse of future spi-mem framework evolutions

> Getting feedback from developers/users (if any in this room)



» The SPI protocol started as a simple 4-wires
protocol
» CS: Chip Select
» SCK: Serial Clock
» MISO: Master In Slave Out
» MOSI: Master Out Slave In

> Relatively high frequency (usually above
10MHz)

» Full-duplex by nature
» Master-Slave approach:

» Only one master in control
» Each slave has its own CS line

Jeremy Clarkson entering a Peel P50, Top Gear, BBC




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




» SPl is good, but not fast enough for
some use cases, like storage
» Solutions to address this limitation

> Increase SCK frequency: some
devices now support speed above
100MHz

> Increase the I/O bus width: Dual
SPI, Quad SPI and now Octo SPI

» DDR mode: data are sampled on
both SCK edges

» All these solutions come with extra
cost:

“If everything seems under control,
you're not going fast enough.”

» More complex to implement
> Quad and OCtO modes req Ull’e more Photography: Vladislav Maschl. Quote: Mario Andretti, 1978 F1 world champion
pins




» Half-duplex
» 1/0O lines are bi-directional
» Number of 1/0O lines is device-specific

» The slave and master must agree on that (can be negotiated or hardcoded)

CLK

SPI
IO lines memory

» Controllers might use the CS lines as |1/O lines = only 1 device on the bus




» Standardizes how to communicate with a device

» Most of the time a memory device but not necessarily

» Every access is done through a SPI memory operation formed of:

(OPCODE) : opcode

: address byte
SPI-mem possible
cycles on the bus

: dummy byte

or : data out or data in byte

opcoD -)(- D (eur> ) ([oama >orComm | ..)
_

T !

—

SPI-mem command



» The opcode determines

» The number of address and dummy bytes
» The direction of the data transfer (if any)
» The number of 1/0 lines used for each element

» Command set is device specific



» There are currently two distinct standard command sets
» SPI NAND
> SPI NOR
» Standardizes the following operations:
» Read/Write accesses
» Erase operations
» Device identification
P Accesses to internal registers
> Also standardizes some registers and their contents:
» STATUS
» CONFIGURATION

» Vendor specific operations/registers can be added on top



> Example: Read operation
NOR command set NAND command set

READ DATA BYTES PAGE READ to cache

GET FEATURES to read the status

o> B <o D

RANDOM DATA READ from cache




%

SPIl memories support in
Linux

Miquel Raynal Boris Brezillon
miquel@bootlin.com boris@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.

Corrections, and ions are welcome!

bootlin

embedded Linux and kernel engineering




» Initially supported as simple SPI device drivers

v

Most of the time placed in drivers/mtd/devices/

» Drivers were manually building SPI memory operations using spi_messages made
of several spi_transfers

» Apparition of SPI NORs and advanced SPI controllers forced us to reconsider this
approach
» Creation of a spi-nor subsystem to deal with the SPI NOR command set
» Creation of a spi_nor interface to be implemented by advanced SPI controller
drivers
» Generic SPI NOR controller driver used to interface with generic SPI controllers
(drivers/mtd/devices/m25p80.c)


https://elixir.bootlin.com/linux/latest/source/drivers/mtd/devices/
https://elixir.bootlin.com/linux/latest/ident/spi_message
https://elixir.bootlin.com/linux/latest/ident/spi_transfer
https://elixir.bootlin.com/linux/latest/source/drivers/mtd/devices/m25p80.c

()

‘

SPI framework

SPI controller
drivers




» The approach taken to support SPI NORs worked fine until people decided to
support SPI NANDs

» Most SPI controllers are memory agnostic and can thus be interfaced with any
kind of device (NOR, NAND, SRAM, and even regular SPI devices)

» Problems:
»> NOR and NAND command sets are totally different
» NOR and NAND devices have different constraints and can't be handled the same
way
» We want to have the same SPI controller driver, no matter the device it's interfaced
with
» We don't want to create a custom interface per-memory type
» Solution:

» Move the SPI memory protocol bits to the SPI subsystem
» Let the SPI NOR and SPI NAND layers interface with this SPI memory layer



SPI NAND
framework

SPI mem framework

SPI controller
drivers




%

/dev/mtd0
Userspace
nn nan mnn nan o nan
Kernel
ke m25p80 SPI NAND
--- (generic SPI NOR framework
N controller driver)
~ —__—
-
SPI mem framework
.
\ /
S
SPI controller
drivers >exec_op()

G

v




%

SPIl memories support in

U-Boot

Miquel Raynal Boris Brezillon
miquel@bootlin.com boris@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.

Corrections, and ions are welcome!

bootlin

embedded Linux and kernel engineering




» Port of the spi-mem/spi-nand framework

» Internal rework to use most of the MTD stack instead of the internal glue that
has been added over the releases

» Cleaner partition handling not even in Linux yet!
> Merged in v2018.11-rc2



» Existing MTD devices commands: sf, nand, onenand
» But also: mtdparts
» Shall we add a spinand one?

» MTD already abstracts the type of device for the user
» Creation of a generic command: mtd

» Similar operations than before

» U-Boot Driver-Model compliant

» help mtd

> The above commands should be deprecated (on the long run)
» mtdparts/mtdids variables still useful!

» Any mtd command will check for a change in these variables, in this case, MTD
partitions will be updated



%

SPIl memories: future
development

Miquel Raynal Boris Brezillon
miquel@bootlin.com boris@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.

Corrections, and ions are welcome!

bootlin

embedded Linux and kernel engineering




» Support direct mapping
» Supported by most advanced SPI controllers
» Optimizes |/Os
» An interface has been proposed here
http://lists.infradead.org/pipermail/linux-mtd/2018-
June/081460.html
» Convert all SPI NOR controller drivers to SPI controller drivers implementing the
SPI memory interface
» Try not to reproduce our previous mistakes
> Extend the SPI memory interface with extra care
» Try to stay memory-agnostic
» Extra features
> XIP?
» Other optimizations?


http://lists.infradead.org/pipermail/linux-mtd/2018-June/081460.html
http://lists.infradead.org/pipermail/linux-mtd/2018-June/081460.html

SoC physical
address space

iomem or

DMA read —»

access

SPI
controller
direct™ |
mapping
range

dirmap
read

SPI
memory

h

direct mapping
object

SPI NOR

address space

actual mem
l€—— region

accessed




» A direct mapping instance has 3 properties:
» The memory device offset it's pointing it
» The size of the mapping
> A spi_mem_op template to execute when the dirmap is accessed
» Implementation is controller specific
» Four methods to implement:
» ->create_dirmap(): create a direct mapping
> ->destroy_dirmap(): destroy a direct mapping
» ->dirmap_read(): do a read access on the dirmap object
> ->dirmap_write(): do a read access on the dirmap object
» All methods are optional, when unimplemented the framework falls back to
regular ->exec_op() operations

» SPIl mem users can create, destroy and do read/write accesses on dirmap using
the spi_mem_dirmap_{create,destroy,read,write} () functions



» Add support for non-uniform erase sizes
(Tudor Ambarus, merged in 4.20)

» Convert Atmel/Microchip and Freescale SPI

NOR controller drivers to the SPl mem
interface (Piotr Bugalski and Frieder Schrempf)

» Use the SPI mem direct mapping API to get
better performance

» Finally move the m25p80 driver in
drivers/mtd/spi-nor/ and rename it
mtd: spi-nor: Move m25p80 code in spi-nor.c




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}


https://elixir.bootlin.com/linux/latest/source/drivers/mtd/spi-nor/
http://patchwork.ozlabs.org/patch/982925/

v

v

Implement generic support for on-flash bad block table parsing/update
Parse the ONFI parameter table when available?

Define a generic ECC engine interface so that SPI NANDs without on-die ECC
can be used with SoCs providing such an ECC engine (or with the software ECC
implementation)

Use the SPI mem direct mapping API to get better performance

Add support for more chips
mtd: spinand: winbond: Add support for W25N01GV

The SPI NAND staging driver is going to be removed in the next release
staging: Remove the mt29f_spinand driver


http://patchwork.ozlabs.org/patch/979945/
http://patchwork.ozlabs.org/patch/987907/

Questions? Suggestions? Comments?

Miquel Raynal and Boris Brezillon
miquel@bootlin.com and boris@bootlin.com

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/2018/elce/raynal-spi-memories


https://bootlin.com/pub/conferences/2018/elce/raynal-spi-memories

	SPI Memory support in Linux and U-Boot
	SPI memories support in Linux
	SPI memories support in U-Boot
	SPI memories: future development

	fd@rm@1: 
	fd@rm@0: 


