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> ARM is everywhere: in your phone, your TV, your router, your set-top box, your
loT devices, etc.
» Goal
» ARM is significantly different from x86

» More and more Linux developers coming from x86 doing ARM development
» Number of misunderstandings

> Agenda

» ARM: from the architecture to the board
» Software level: bootloader and Linux kernel support



» ARM Holdings plc writes the specification of
the ARM architecture
» Instruction-set, including multimedia/DSP
oriented instructions

> MMU ARM' Architecture Reference Manual
> Interrupt and exception handling ARMY7-A and ARMVT-R edition
» Caches

» Virtualization

> etc.

» Qver time, improvements of the architecture,
with numerous versions: ARMv4, ARMv5,
ARMv6, ARMv7, ARMv8

» Takes the form of voluminous documentation,
named ARM ARM, i.e ARM Architecture comenmin
Reference Manual




» ARM Holdings plc then creates IP cores that implement the specification
» |IP core = implementation in VHDL or Verilog of a block of hardware logic
> Examples:

> ARMO926 = implementation of ARMv5

» ARM1176 = implementation of ARMv6

» Cortex-Al5 = implementation of ARMv7-A
» Cortex-A53 = implementation of ARMv8-A
» Multiple possible implementations for the same architecture specification

» Example: all of Cortex-Ab,7,8,9,12,15 implement the same ARMv7-A architecture
(with some additions in some cases)

» Cortex-Ab is a low-power lower-performance implementation, Cortex-Alb is a very
high-performance and more power hungry implementation.

» Difference in internal implementation: depth of the pipeline, out-of-order execution,
size of caches, etc.

» This is NOT hardware: ARM does not sell silicon
e [ e e —————— eSSBS



» System-on-chip: integrated circuit that

integrates all components of a computer ary Cortex-A1
system
» CPU, but also peripherals: Ethernet, USB, il N il
UART, SPI, 12C, GPU, display, audio, etc. oislay controler [ 2
» Integrated in a single chip: easier to use, more
cost effective Audio | Ciypto | UsB
> SOC vendors System on chip

> Buy an ARM core from ARM
» Integrate other IP blocks, either designed
internally, or purchased from other vendors
> Create and sell silicon
» Large spectrum of SoCs available, addressing
very different markets: automotive, mobile,
industrial, low-power, set-top box, etc.
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» Even though an SoC is a full system on a chip,
it is generally not self-sufficient

RAM, NAND flash or eMMC, power circuitry

Display panel and touchscreen

WiFi and Bluetooth chip

Ethernet PHY

HDMI transceiver

CAN transceiver

Connectors
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» SoC connected to a wide variety of peripherals,
through various busses

» Laid out on a PCB, with components soldered
on it.
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»> RaspberryPi 1 > C.H.l.LP
» SoC: Broadcom 2835 » SoC: Allwinner R8
»> ARM core: ARM1176JZF (single) » ARM core: Cortex-A8 (single)
» ARM architecture: ARMv6 » ARM architecture: ARMv7-A
»> RaspberryPi 2 » ESPRESSOBin
» SoC: Broadcom 2836 » SoC: Marvell Armada 3700
> ARM core: Cortex-A7 (quad) » ARM core: Cortex-A53 (dual)

» ARM architecture: ARMv7-A » ARM architecture: ARMv8-A
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» Asking “does Linux support ARM?” doesn’t make a lot of sense
» Three “levels” of hardware, three “levels” of software support

1. The ARM core
2. The SoC
3. The board

» All three levels are needed to support a given hardware platform.

» Also supporting a platform with just the serial port and Ethernet is very different
from fully supporting a platform (graphics, audio, power management, etc.).



1. ARMv7-A, where A stands for Application

> Full-featured variant designed for complex operating systems such as Linux.

» Has a memory management unit (MMU), caches, supports ARM and Thumb?2
instruction sets, high performance, VFP and NEON instructions.

» Cores: Cortex-A8, Cortex-Alb.
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2. ARMv7-M, where M stands for microcontroller

» Much smaller variant: no MMU, no caches until recently, supports only Thumb2,
low performance but also low power.

» Cores: Cortex-M3, Cortex-M4, Cortex-M7.

» Generally runs bare metal code, or a small real-time operating system. Linux has
support for them, but requires external RAM and flash.

3. ARMvV7-R, where R stands for real-time

» Reduced version of the A profile, with focus on deterministic response
> Widely used in storage devices (hard drive and SSD controllers)
» Typically doesn't run Linux.



» Main feature: introduction of AArch64, a new instruction set, with 64 bits
support
» AArch64 support is optional: some ARMv8 cores do not support it.
» Also supports a mode called AArch32, which offers backward compatibility with
ARMv7-A
» ARMV8 cores: Cortex-A32 (32 bits only), Cortex-A53, Cortex-A57, Cortex-A72,
etc.
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» Most SoC vendors buy ARM cores from ARM, i.e Cortex-Al5 or Cortex-Ab7.

» A few SoC vendors however have an architecture license

» They pay a fee to be allowed to create a CPU core that implements the same
CPU architecture, but do not use the ARM cores

> Examples:

|
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Marvell Feroceon (ARMV5, used in Marvell Kirkwood), Marvell PJ4 (ARMv7, used
in Marvell Armada 370/XP)

Qualcomm Scorpion, Qualcomm Krait (ARMv7)

Apple Swift (ARMv7, used in the A6), Cyclone (ARMVS, used in the A7)

NVidia Denver (ARMv8)

Cavium, Broadcom, AppliedMicro, Qualcomm, Samsung (ARMv8)
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» ARM architecture specified: instruction set is compatible between all ARMv7
cores, between all ARMv8 cores

» Can run Linux userspace code built for ARMv7 on any ARMv7 platform (provided
it's not hardware related)

> A few optional features (e.g. NEON)

» Allows to run Ubuntu (built for ARMv7) on any ARMv7 platform

» However, Ubuntu (built for ARMv7) will not run on RaspberryPi 1 (ARMv6)



» ARM architecture specified: instruction set is compatible between all ARMv7
cores, between all ARMv8 cores

» Can run Linux userspace code built for ARMv7 on any ARMv7 platform (provided
it's not hardware related)

> A few optional features (e.g. NEON)

» Allows to run Ubuntu (built for ARMv7) on any ARMv7 platform

» However, Ubuntu (built for ARMv7) will not run on RaspberryPi 1 (ARMv6)

» However, almost no standardization for the other hardware components: inside
the SoC and on the board.
» Need specific handling at the bootloader and Linux kernel level for each SoC and
board.
» On most ARM SoCs, the hardware inside the chip is memory-mapped. No dynamic
discovery/enumeration capability.



» Compatibility of processor cores: they comply with ARM specifications
» For the other hardware blocks, SoC vendors very often
» Purchase IP blocks from third-party vendors: ARM, Cadence, Synopsys, Mentor
Graphics, Imagination Technologies, etc.
» Extensively re-use IP blocks between their different SoCs
> Examples:

> Mentor Graphics MUSB (USB gadget controller) is used in TI, Allwinner and ST
SoCs, but also on Blackfin and some MIPS processors

» The Marvell SPI controller is re-used in Marvell processors shipped over ~15 years,
from old ARMv5 Orions to modern ARMv8 processors.

» This allows to massively re-use drivers!

» Sometimes not that easy to figure out that two IP blocks in different SoCs are
actually the same.
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In terms of booting process, no standardized BIOS or firmware like on x86
machines.

Each ARM SoC comes with its own ROM code that implements a SoC-specific
boot mechanism.
The early stages of the boot process are therefore specific to each SoC.

In general: capable of loading a small amount of code from non-volatile storage
(NAND, MMC, USB) into a SRAM internal to the processor.

» External DRAM not initialized yet.

Often also provides a recovery method, to unbrick the platform. Over USB, serial
or sometimes Ethernet.

Used to load a first stage bootloader into SRAM, which will itself initialize the
DRAM and load/run a second stage into DRAM.



» Grub(2) typically not widely used on ARM platforms

» U-Boot, the de-facto standard, found on most development boards and
community platforms.

> Barebox, less widely used, but very interesting.

» Homemade bootloaders, especially when security/DRM are involved (phone,
set-top boxes, etc.)

> Grub starts to gain some traction, especially on ARM64, for the server market

» RaspberryPi is a very special case, with some firmware executed on the GPU, and
directly loading the Linux kernel.



> First stage bootloader provided either by:

» A separate project. Example: AT91Bootstrap for Atmel platforms.
»> U-Boot/Barebox itself. Concept of SPL: minimal version of the bootloader that
fits in the constraints of the first stage.

> Interaction with the bootloader typically over the serial port

» U-Boot and Barebox offer a shell, with bootloader specific commands.
» Sometimes screen/keyboard interaction possible, but not the norm.
» Embedded without a serial port is weird!



ROM code

stored inside
the SoC, in ROM

Y

1st stage

stored in NAND,
SPI flash, USB, SD
runs from internal SRAM
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2nd stage

stored in NAND,
SPI flash, USB, SD
runs from DRAM

Linux kernel




» On x86, most hardware can be dynamically discovered at run-time
» PCI and USB provide dynamic enumeration capabilities
» For the rest, ACPI provides tables describing hardware
» Thanks to this, the kernel doesn’'t need to know in advance the hardware it will run
on
» On ARM, no such mechanism exists at the hardware level
» In the old days (prior to ~2011), the kernel code itself contained a description of all
HW platforms it had to support
» In ~2011, the ARM kernel developers switched to a different solution for HW
description: Device Tree
» Done together with an effort called multiplatform ARM kernel



v

A tree of nodes describing non-discoverable hardware

Providing information such as register addresses, interrupt lines, DMA channels,
type of hardware, etc.
Provided by the firmware to the operating system
Operating system agnostic, not Linux specific
» Can be used by bootloaders, BSDs, etc.
Originates from the PowerPC world, where it has been in use for many more years

Source format written by developers (dts), compiled into a binary format
understood by operating systems (dtb)

» One .dts for each HW platform



sunbi.dtsi

/A
cpus {
cpu0: cpu@ {
device_type = "cpu";
compatible = "arm,cortex-a8";
reg = <0x0>;
3
}
50c@01c00000 {
compatible = "simple-bus";
ranges;
uartl: serial@01c28400 {
compatible = "snps,dw-apb-uart";
reg = <0x01c28400 0x400>;
interrupts = <2>;
clocks = <kapbl_gates 17>;
status = "disabled";
};
uart3: serial@01c28c00 {
compatible = "snps,dw-apb-uart";
reg = <0x01c28c00 0x400>;
interrupts = <4>;
clocks = <&apbl_gates 19>;
status "disabled";
3
ool
};
};

sunbi-r8-chip.dts

/L
model = "NextThing C.H.I.P.";
compatible = "nextthing,chip", "allwinner,sun5i-r8",
"allwinner,sunbi-al3";
leds {
compatible = "gpio-leds";
status {
label = "chip:white:status";
gpios = <&axp_gpio 2 GPIO_. ACTIVE HIGH>;
default-state = "on';
};
};
};
ool
Zuartl {
pinctrl-names = "default";
pinctrl-0 = <&uartl_pins_b>;
status = "okay";
};




» Used for almost all ARM platforms in Linux, and all ARM64 ones
» Used for a few platforms in bootloaders such as U-Boot or Barebox

» Device Tree source code stored in the Linux kernel tree

» Duplicated in U-Boot/Barebox source code as needed
» Plan for a central repository, but never occurred

» Supposed to be OS-agnostic and therefore backward compatible
» In practice, are changed quite often to accommodate Linux kernel changes

» Loaded in memory by the bootloader, together with the Linux kernel image

v

Parsed by the Linux kernel at boot time to know which hardware is available



» Support for the ARM core is generally done by ARM engineers themselves
> MMU, caches, virtualization, etc.
» In arch/arm and arch/arm64

» Generally in Linux upstream even before actual ARM SoCs with this core are
available

» Support for the ARM SoC and HW platform is a different story
» Requires drivers for each and every HW block, inside the SoC and on the board, in
drivers/
» Requires Device Tree descriptions, in arch/arm(64) /boot/dts

» Sometimes supported only in vendor forks, sometimes supported in the upstream
Linux kernel



» Core drivers

» Clock controllers (drivers/clk), reset controller (drivers/reset), pin-muxing
controllers (drivers/pinctrl), interrupt controller (drivers/irqchip), timers
(drivers/clocksource), GPIO controllers (drivers/gpio)

» Peripheral drivers

» Bus controllers: 12C (drivers/i2c), SPI (drivers/spi), USB (drivers/usb),
PCl (drivers/pci)

» Display controller (drivers/gpu/drm), camera interface (drivers/media),
touchscreen or other input devices (drivers/input), Ethernet controller
(drivers/net)

» Platform code

» On ARM, minimal amount of platform code in arch/arm/mach-<foo> for power

management and SMP support

» On ARM®64, no platform code at all, power management and SMP activities handled
using PSCI



» Most vendors fork the Linux kernel, and add support for their SoC to their own
fork
» Leads to kernel forks with sometimes millions of added lines for SoC support
> Users cannot easily change/upgrade their kernel version
» Generally of poor quality
» Situation got somewhat worse with Android
» Some vendors engage with the upstream Linux kernel community, and submit
patches
» More and more vendors taking this direction
» Mileage may vary depending on the vendor, and sometimes the SoC family
» The community also significantly contributes to upstream Linux kernel support
for ARM SoCs
» Example: Allwinner support is fully community-contributed, no involvement from the
vendor



» Originally, on ARM, a compiled kernel image could only boot on a reduced set of
platforms, all using the same SoC

» Lot of compile-time conditionals

> Wish to have a behavior more similar to x86, with one single binary kernel that
works for all platforms
> Effort started around making the ARM kernel multiplatform
» Handle more things at runtime rather than at compile time
» Part of a larger cleanup effort: switch to Device Tree, addition of numerous driver
subsystems
» One can now build a single kernel for ARMv4 /v5, a single kernel for ARMv6/v7,
and a single kernel for ARMv8.
» make ARCH=arm multi_v7_defconfig
» And it works!



» Regular desktop-style distributions: Debian, Ubuntu,
Raspbian, Fedora, etc.
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» Regular desktop-style distributions: Debian, Ubuntu,
Raspbian, Fedora, etc.

» Specialized systems: Android, Tizen, etc.

» Embedded Linux build systems )'OCtO ‘
» Widely used for embedded systems PROJECT
» Produce a Linux root filesystem through Bu@ot
cross-compilation e “
» Allows a much more customized and stripped down
system than a full-blown distribution
» Examples: OpenEmbedded/Yocto, Buildroot,

OpenWRT, etc.




Questions? Suggestions? Comments?

Thomas Petazzoni

thomas.petazzoni@bootlin.com
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