A tour of the ARM architecture
and its Linux support

Thomas Petazzoni
Bootlin
thomas.petazzoni@bootlin.com




» Thomas Petazzoni
» CTO and Embedded Linux engineer at Bootlin

» Embedded Linux expertise y
> Development, consulting and training b tl

» Strong open-source focus OO I n
» Linux kernel contributors, ARM SoC support,

kernel maintainers
embedded Linux and kernel engineering




» Thomas Petazzoni
» CTO and Embedded Linux engineer at Bootlin

» Embedded Linux expertise

> Development, consulting and training

» Strong open-source focus

» Linux kernel contributors, ARM SoC support,
kernel maintainers

» Since 2012: Linux kernel contributor, adding
support for Marvell ARM processors




» Thomas Petazzoni
» CTO and Embedded Linux engineer at Bootlin

» Embedded Linux expertise

» Development, consulting and training

» Strong open-source focus

» Linux kernel contributors, ARM SoC support,
kernel maintainers

» Since 2012: Linux kernel contributor, adding
support for Marvell ARM processors

» Core contributor to the Buildroot project, an
embedded Linux build system



» Thomas Petazzoni
» CTO and Embedded Linux engineer at Bootlin
» Embedded Linux expertise
» Development, consulting and training
» Strong open-source focus
» Linux kernel contributors, ARM SoC support,
kernel maintainers
» Since 2012: Linux kernel contributor, adding
support for Marvell ARM processors

» Core contributor to the Buildroot project, an
embedded Linux build system

» From Toulouse, France




» ARM is everywhere: in your phone, your TV, your router, your set-top box, your
loT devices, etc.



> ARM is everywhere: in your phone, your TV, your router, your set-top box, your
loT devices, etc.
» Goal
» ARM is significantly different from x86

» More and more Linux developers coming from x86 doing ARM development
» Number of misunderstandings



> ARM is everywhere: in your phone, your TV, your router, your set-top box, your
loT devices, etc.
» Goal
» ARM is significantly different from x86

» More and more Linux developers coming from x86 doing ARM development
» Number of misunderstandings

> Agenda

» ARM: from the architecture to the board
» Software level: bootloader and Linux kernel support



» ARM Holdings plc writes the specification of
the ARM architecture
» Instruction-set, including multimedia/DSP
oriented instructions

> MMU ARM' Architecture Reference Manual
> Interrupt and exception handling ARMY7-A and ARMVT-R edition
» Caches

» Virtualization

> etc.

» Qver time, improvements of the architecture,
with numerous versions: ARMv4, ARMv5,
ARMv6, ARMv7, ARMv8

» Takes the form of voluminous documentation,
named ARM ARM, i.e ARM Architecture comenmin
Reference Manual




» ARM Holdings plc then creates IP cores that implement the specification
» |IP core = implementation in VHDL or Verilog of a block of hardware logic
> Examples:

> ARMO926 = implementation of ARMv5

» ARM1176 = implementation of ARMv6

» Cortex-Al5 = implementation of ARMv7-A
» Cortex-A53 = implementation of ARMv8-A
» Multiple possible implementations for the same architecture specification

» Example: all of Cortex-Ab,7,8,9,12,15 implement the same ARMv7-A architecture
(with some additions in some cases)

» Cortex-Ab is a low-power lower-performance implementation, Cortex-Alb is a very
high-performance and more power hungry implementation.

» Difference in internal implementation: depth of the pipeline, out-of-order execution,
size of caches, etc.

» This is NOT hardware: ARM does not sell silicon
e [ e e —————— eSSBS



» System-on-chip: integrated circuit that

integrates all components of a computer ary Cortex-A1
system
» CPU, but also peripherals: Ethernet, USB, il N il
UART, SPI, 12C, GPU, display, audio, etc. oislay controler [ 2
» Integrated in a single chip: easier to use, more
cost effective Audio | Ciypto | UsB
> SOC vendors System on chip

> Buy an ARM core from ARM
» Integrate other IP blocks, either designed
internally, or purchased from other vendors
> Create and sell silicon
» Large spectrum of SoCs available, addressing
very different markets: automotive, mobile,
industrial, low-power, set-top box, etc.




Raw /ONF 22 LP-DDR2/DDR3 || NOR Flash | |Battery Cirl| [ 4x Camera | | 1/2LVDS 1/2LCD HDMI 1.4 MPL
Nand-Flash | | 532MHz(DDR1066)|| PSRAM Device | |Paral/MiPi | |(WUXGA4) | | Dispiays || Display Display
i 1 — —
Application Processo
— Domain (AP)
N
T
(96KB)
remnites .
|
= |
[poe B« i
Shared Peripherals g
_ Security Le—»|
] | | | —ouw H
(LILT)) ugl
||| [ o el
A, o0 ]
= [
== .
(PMU) LDOs B
Timers/Control
[(WBoG 2] |
Comar




» Even though an SoC is a full system on a chip,
it is generally not self-sufficient

RAM, NAND flash or eMMC, power circuitry

Display panel and touchscreen

WiFi and Bluetooth chip

Ethernet PHY

HDMI transceiver

CAN transceiver

Connectors

VVVVYVYYVYY

» SoC connected to a wide variety of peripherals,
through various busses

» Laid out on a PCB, with components soldered
on it.




ARM
architecture
specification

ARMv5, ARMv7-A

Y

ARM core
implementation

ARM926
ARM Cortex-A8

\ 4

System on Chip

Atmel AT91SAM9G20
Allwinner R8

\ 4

Hardware
platform

Raspberry Pi
C.H.l.P
Your {phone,TV,car}




»> RaspberryPi 1
> SoC: Broadcom 2835
> ARM core: ARM1176JZF (single)
> ARM architecture: ARMv6




»> RaspberryPi 1
» SoC: Broadcom 2835
> ARM core: ARM1176JZF (single)
> ARM architecture: ARMv6

»> RaspberryPi 2
» SoC: Broadcom 2836
> ARM core: Cortex-A7 (quad)
» ARM architecture: ARMv7-A




»> RaspberryPi 1 > C.H.l.LP
» SoC: Broadcom 2835 » SoC: Allwinner R8
»> ARM core: ARM1176JZF (single) » ARM core: Cortex-A8 (single)
» ARM architecture: ARMv6 » ARM architecture: ARMv7-A

»> RaspberryPi 2
» SoC: Broadcom 2836
> ARM core: Cortex-A7 (quad)
» ARM architecture: ARMv7-A




»> RaspberryPi 1 > C.H.l.LP
» SoC: Broadcom 2835 » SoC: Allwinner R8
»> ARM core: ARM1176JZF (single) » ARM core: Cortex-A8 (single)
» ARM architecture: ARMv6 » ARM architecture: ARMv7-A
»> RaspberryPi 2 » ESPRESSOBin
» SoC: Broadcom 2836 » SoC: Marvell Armada 3700
> ARM core: Cortex-A7 (quad) » ARM core: Cortex-A53 (dual)

» ARM architecture: ARMv7-A » ARM architecture: ARMv8-A




» Asking “does Linux support ARM?” doesn’t make a lot of sense



» Asking “does Linux support ARM?” doesn’t make a lot of sense
» Three “levels” of hardware, three “levels” of software support
1. The ARM core

2. The SoC
3. The board



» Asking “does Linux support ARM?” doesn’t make a lot of sense
» Three “levels” of hardware, three “levels” of software support

1. The ARM core
2. The SoC
3. The board

» All three levels are needed to support a given hardware platform.

» Also supporting a platform with just the serial port and Ethernet is very different
from fully supporting a platform (graphics, audio, power management, etc.).



1. ARMv7-A, where A stands for Application

> Full-featured variant designed for complex operating systems such as Linux.

» Has a memory management unit (MMU), caches, supports ARM and Thumb?2
instruction sets, high performance, VFP and NEON instructions.

» Cores: Cortex-A8, Cortex-Alb.



1. ARMv7-A, where A stands for Application
> Full-featured variant designed for complex operating systems such as Linux.
» Has a memory management unit (MMU), caches, supports ARM and Thumb?2
instruction sets, high performance, VFP and NEON instructions.
» Cores: Cortex-A8, Cortex-Alb.

2. ARMv7-M, where M stands for microcontroller
» Much smaller variant: no MMU, no caches until recently, supports only Thumb2,

low performance but also low power.

» Cores: Cortex-M3, Cortex-M4, Cortex-M7.

» Generally runs bare metal code, or a small real-time operating system. Linux has
support for them, but requires external RAM and flash.



1. ARMv7-A, where A stands for Application

> Full-featured variant designed for complex operating systems such as Linux.

» Has a memory management unit (MMU), caches, supports ARM and Thumb?2
instruction sets, high performance, VFP and NEON instructions.

» Cores: Cortex-A8, Cortex-Alb.

2. ARMv7-M, where M stands for microcontroller

» Much smaller variant: no MMU, no caches until recently, supports only Thumb2,
low performance but also low power.

» Cores: Cortex-M3, Cortex-M4, Cortex-M7.

» Generally runs bare metal code, or a small real-time operating system. Linux has
support for them, but requires external RAM and flash.

3. ARMvV7-R, where R stands for real-time

» Reduced version of the A profile, with focus on deterministic response
> Widely used in storage devices (hard drive and SSD controllers)
» Typically doesn't run Linux.



» Main feature: introduction of AArch64, a new instruction set, with 64 bits
support
» AArch64 support is optional: some ARMv8 cores do not support it.
» Also supports a mode called AArch32, which offers backward compatibility with
ARMv7-A
» ARMV8 cores: Cortex-A32 (32 bits only), Cortex-A53, Cortex-A57, Cortex-A72,
etc.



T —

NEON™
Ady SIMD v

AG4ISA

Ahrched




» Most SoC vendors buy ARM cores from ARM, i.e Cortex-Al5 or Cortex-Ab7.

» A few SoC vendors however have an architecture license

» They pay a fee to be allowed to create a CPU core that implements the same
CPU architecture, but do not use the ARM cores

> Examples:

|

vVvyyvyy

Marvell Feroceon (ARMV5, used in Marvell Kirkwood), Marvell PJ4 (ARMv7, used
in Marvell Armada 370/XP)

Qualcomm Scorpion, Qualcomm Krait (ARMv7)

Apple Swift (ARMv7, used in the A6), Cyclone (ARMVS, used in the A7)

NVidia Denver (ARMv8)

Cavium, Broadcom, AppliedMicro, Qualcomm, Samsung (ARMv8)



ARM

ARM core

Hardware

architecture n n System on Chip platform
N " implementation
specification
A A A
» » »
Raspberry Pi
ARM926 Atmel AT91SAM9G20 C.H.L.P
ARMv5, ARMv7-A ARM Cortex-A8 Allwinner R8 Your {phone,TV,car}
Apple core
implementation System on Chip Hardware platform
A N A
» » »

Apple Swift

Apple A6

iPhone 5




» ARM architecture specified: instruction set is compatible between all ARMv7
cores, between all ARMv8 cores

» Can run Linux userspace code built for ARMv7 on any ARMv7 platform (provided
it's not hardware related)

> A few optional features (e.g. NEON)

» Allows to run Ubuntu (built for ARMv7) on any ARMv7 platform

» However, Ubuntu (built for ARMv7) will not run on RaspberryPi 1 (ARMv6)



» ARM architecture specified: instruction set is compatible between all ARMv7
cores, between all ARMv8 cores

» Can run Linux userspace code built for ARMv7 on any ARMv7 platform (provided
it's not hardware related)

> A few optional features (e.g. NEON)

» Allows to run Ubuntu (built for ARMv7) on any ARMv7 platform

» However, Ubuntu (built for ARMv7) will not run on RaspberryPi 1 (ARMv6)

» However, almost no standardization for the other hardware components: inside
the SoC and on the board.
» Need specific handling at the bootloader and Linux kernel level for each SoC and
board.
» On most ARM SoCs, the hardware inside the chip is memory-mapped. No dynamic
discovery/enumeration capability.



» Compatibility of processor cores: they comply with ARM specifications
» For the other hardware blocks, SoC vendors very often
» Purchase IP blocks from third-party vendors: ARM, Cadence, Synopsys, Mentor
Graphics, Imagination Technologies, etc.
» Extensively re-use IP blocks between their different SoCs
> Examples:

> Mentor Graphics MUSB (USB gadget controller) is used in TI, Allwinner and ST
SoCs, but also on Blackfin and some MIPS processors

» The Marvell SPI controller is re-used in Marvell processors shipped over ~15 years,
from old ARMv5 Orions to modern ARMv8 processors.

» This allows to massively re-use drivers!

» Sometimes not that easy to figure out that two IP blocks in different SoCs are
actually the same.



>

>

>

In terms of booting process, no standardized BIOS or firmware like on x86
machines.

Each ARM SoC comes with its own ROM code that implements a SoC-specific
boot mechanism.
The early stages of the boot process are therefore specific to each SoC.

In general: capable of loading a small amount of code from non-volatile storage
(NAND, MMC, USB) into a SRAM internal to the processor.

» External DRAM not initialized yet.

Often also provides a recovery method, to unbrick the platform. Over USB, serial
or sometimes Ethernet.

Used to load a first stage bootloader into SRAM, which will itself initialize the
DRAM and load/run a second stage into DRAM.



» Grub(2) typically not widely used on ARM platforms

» U-Boot, the de-facto standard, found on most development boards and
community platforms.

> Barebox, less widely used, but very interesting.

» Homemade bootloaders, especially when security/DRM are involved (phone,
set-top boxes, etc.)

> Grub starts to gain some traction, especially on ARM64, for the server market

» RaspberryPi is a very special case, with some firmware executed on the GPU, and
directly loading the Linux kernel.



> First stage bootloader provided either by:

» A separate project. Example: AT91Bootstrap for Atmel platforms.
»> U-Boot/Barebox itself. Concept of SPL: minimal version of the bootloader that
fits in the constraints of the first stage.

> Interaction with the bootloader typically over the serial port

» U-Boot and Barebox offer a shell, with bootloader specific commands.
» Sometimes screen/keyboard interaction possible, but not the norm.
» Embedded without a serial port is weird!



ROM code

stored inside
the SoC, in ROM

Y

1st stage

stored in NAND,
SPI flash, USB, SD
runs from internal SRAM

\ 4

2nd stage

stored in NAND,
SPI flash, USB, SD
runs from DRAM

Linux kernel




» On x86, most hardware can be dynamically discovered at run-time
» PCI and USB provide dynamic enumeration capabilities
» For the rest, ACPI provides tables describing hardware
» Thanks to this, the kernel doesn’'t need to know in advance the hardware it will run
on
» On ARM, no such mechanism exists at the hardware level
» In the old days (prior to ~2011), the kernel code itself contained a description of all
HW platforms it had to support
» In ~2011, the ARM kernel developers switched to a different solution for HW
description: Device Tree
» Done together with an effort called multiplatform ARM kernel



v

A tree of nodes describing non-discoverable hardware

Providing information such as register addresses, interrupt lines, DMA channels,
type of hardware, etc.
Provided by the firmware to the operating system
Operating system agnostic, not Linux specific
» Can be used by bootloaders, BSDs, etc.
Originates from the PowerPC world, where it has been in use for many more years

Source format written by developers (dts), compiled into a binary format
understood by operating systems (dtb)

» One .dts for each HW platform



sunbi.dtsi

/A
cpus {
cpu0: cpu@ {
device_type = "cpu";
compatible = "arm,cortex-a8";
reg = <0x0>;
3
}
50c@01c00000 {
compatible = "simple-bus";
ranges;
uartl: serial@01c28400 {
compatible = "snps,dw-apb-uart";
reg = <0x01c28400 0x400>;
interrupts = <2>;
clocks = <kapbl_gates 17>;
status = "disabled";
};
uart3: serial@01c28c00 {
compatible = "snps,dw-apb-uart";
reg = <0x01c28c00 0x400>;
interrupts = <4>;
clocks = <&apbl_gates 19>;
status "disabled";
3
ool
};
};

sunbi-r8-chip.dts

/L
model = "NextThing C.H.I.P.";
compatible = "nextthing,chip", "allwinner,sun5i-r8",
"allwinner,sunbi-al3";
leds {
compatible = "gpio-leds";
status {
label = "chip:white:status";
gpios = <&axp_gpio 2 GPIO_. ACTIVE HIGH>;
default-state = "on';
};
};
};
ool
Zuartl {
pinctrl-names = "default";
pinctrl-0 = <&uartl_pins_b>;
status = "okay";
};




» Used for almost all ARM platforms in Linux, and all ARM64 ones
» Used for a few platforms in bootloaders such as U-Boot or Barebox

» Device Tree source code stored in the Linux kernel tree

» Duplicated in U-Boot/Barebox source code as needed
» Plan for a central repository, but never occurred

» Supposed to be OS-agnostic and therefore backward compatible
» In practice, are changed quite often to accommodate Linux kernel changes

» Loaded in memory by the bootloader, together with the Linux kernel image

v

Parsed by the Linux kernel at boot time to know which hardware is available



» Support for the ARM core is generally done by ARM engineers themselves
> MMU, caches, virtualization, etc.
» In arch/arm and arch/arm64

» Generally in Linux upstream even before actual ARM SoCs with this core are
available

» Support for the ARM SoC and HW platform is a different story
» Requires drivers for each and every HW block, inside the SoC and on the board, in
drivers/
» Requires Device Tree descriptions, in arch/arm(64) /boot/dts

» Sometimes supported only in vendor forks, sometimes supported in the upstream
Linux kernel



» Core drivers

» Clock controllers (drivers/clk), reset controller (drivers/reset), pin-muxing
controllers (drivers/pinctrl), interrupt controller (drivers/irqchip), timers
(drivers/clocksource), GPIO controllers (drivers/gpio)

» Peripheral drivers

» Bus controllers: 12C (drivers/i2c), SPI (drivers/spi), USB (drivers/usb),
PCl (drivers/pci)

» Display controller (drivers/gpu/drm), camera interface (drivers/media),
touchscreen or other input devices (drivers/input), Ethernet controller
(drivers/net)

» Platform code

» On ARM, minimal amount of platform code in arch/arm/mach-<foo> for power

management and SMP support

» On ARM®64, no platform code at all, power management and SMP activities handled
using PSCI



» Most vendors fork the Linux kernel, and add support for their SoC to their own
fork
» Leads to kernel forks with sometimes millions of added lines for SoC support
> Users cannot easily change/upgrade their kernel version
» Generally of poor quality
» Situation got somewhat worse with Android
» Some vendors engage with the upstream Linux kernel community, and submit
patches
» More and more vendors taking this direction
» Mileage may vary depending on the vendor, and sometimes the SoC family
» The community also significantly contributes to upstream Linux kernel support
for ARM SoCs
» Example: Allwinner support is fully community-contributed, no involvement from the
vendor



» Originally, on ARM, a compiled kernel image could only boot on a reduced set of
platforms, all using the same SoC

» Lot of compile-time conditionals

> Wish to have a behavior more similar to x86, with one single binary kernel that
works for all platforms
> Effort started around making the ARM kernel multiplatform
» Handle more things at runtime rather than at compile time
» Part of a larger cleanup effort: switch to Device Tree, addition of numerous driver
subsystems
» One can now build a single kernel for ARMv4 /v5, a single kernel for ARMv6/v7,
and a single kernel for ARMv8.
» make ARCH=arm multi_v7_defconfig
» And it works!



» Regular desktop-style distributions: Debian, Ubuntu,
Raspbian, Fedora, etc.

ubuntu®
&+ © =Rraspbian



» Regular desktop-style distributions: Debian, Ubuntu,
Raspbian, Fedora, etc.

» Specialized systems: Android, Tizen, etc.




» Regular desktop-style distributions: Debian, Ubuntu,
Raspbian, Fedora, etc.

» Specialized systems: Android, Tizen, etc.

» Embedded Linux build systems )'OCtO ‘
» Widely used for embedded systems PROJECT
» Produce a Linux root filesystem through Bu@ot
cross-compilation e “
» Allows a much more customized and stripped down
system than a full-blown distribution
» Examples: OpenEmbedded/Yocto, Buildroot,

OpenWRT, etc.




Questions? Suggestions? Comments?

Thomas Petazzoni

thomas.petazzoni@bootlin.com

Slides under CC-BY-SA 3.0

http://bootlin.com/pub/conferences/2017/1lca/petazzoni-arm-introduction/


http://bootlin.com/pub/conferences/2017/lca/petazzoni-arm-introduction/

