
Linux Conf Australia 2017

A tour of the ARM architecture
and its Linux support

Thomas Petazzoni
Bootlin
thomas.petazzoni@bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Thomas Petazzoni

▶ Thomas Petazzoni
▶ CTO and Embedded Linux engineer at Bootlin

▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus
▶ Linux kernel contributors, ARM SoC support,

kernel maintainers

▶ Since 2012: Linux kernel contributor, adding
support for Marvell ARM processors

▶ Core contributor to the Buildroot project, an
embedded Linux build system

▶ From Toulouse, France

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 



Thomas Petazzoni

▶ Thomas Petazzoni
▶ CTO and Embedded Linux engineer at Bootlin

▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus
▶ Linux kernel contributors, ARM SoC support,

kernel maintainers
▶ Since 2012: Linux kernel contributor, adding

support for Marvell ARM processors

▶ Core contributor to the Buildroot project, an
embedded Linux build system

▶ From Toulouse, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 



Thomas Petazzoni

▶ Thomas Petazzoni
▶ CTO and Embedded Linux engineer at Bootlin

▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus
▶ Linux kernel contributors, ARM SoC support,

kernel maintainers
▶ Since 2012: Linux kernel contributor, adding

support for Marvell ARM processors
▶ Core contributor to the Buildroot project, an

embedded Linux build system

▶ From Toulouse, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 



Thomas Petazzoni

▶ Thomas Petazzoni
▶ CTO and Embedded Linux engineer at Bootlin

▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus
▶ Linux kernel contributors, ARM SoC support,

kernel maintainers
▶ Since 2012: Linux kernel contributor, adding

support for Marvell ARM processors
▶ Core contributor to the Buildroot project, an

embedded Linux build system
▶ From Toulouse, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 



Goal and agenda

▶ ARM is everywhere: in your phone, your TV, your router, your set-top box, your
IoT devices, etc.

▶ Goal
▶ ARM is significantly different from x86
▶ More and more Linux developers coming from x86 doing ARM development
▶ Number of misunderstandings

▶ Agenda
▶ ARM: from the architecture to the board
▶ Software level: bootloader and Linux kernel support

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



Goal and agenda

▶ ARM is everywhere: in your phone, your TV, your router, your set-top box, your
IoT devices, etc.

▶ Goal
▶ ARM is significantly different from x86
▶ More and more Linux developers coming from x86 doing ARM development
▶ Number of misunderstandings

▶ Agenda
▶ ARM: from the architecture to the board
▶ Software level: bootloader and Linux kernel support

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



Goal and agenda

▶ ARM is everywhere: in your phone, your TV, your router, your set-top box, your
IoT devices, etc.

▶ Goal
▶ ARM is significantly different from x86
▶ More and more Linux developers coming from x86 doing ARM development
▶ Number of misunderstandings

▶ Agenda
▶ ARM: from the architecture to the board
▶ Software level: bootloader and Linux kernel support

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



ARM: architecture specification

▶ ARM Holdings plc writes the specification of
the ARM architecture
▶ Instruction-set, including multimedia/DSP

oriented instructions
▶ MMU
▶ Interrupt and exception handling
▶ Caches
▶ Virtualization
▶ etc.

▶ Over time, improvements of the architecture,
with numerous versions: ARMv4, ARMv5,
ARMv6, ARMv7, ARMv8

▶ Takes the form of voluminous documentation,
named ARM ARM, i.e ARM Architecture
Reference Manual

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



ARM cores: an actual implementation

▶ ARM Holdings plc then creates IP cores that implement the specification
▶ IP core = implementation in VHDL or Verilog of a block of hardware logic
▶ Examples:

▶ ARM926 = implementation of ARMv5
▶ ARM1176 = implementation of ARMv6
▶ Cortex-A15 = implementation of ARMv7-A
▶ Cortex-A53 = implementation of ARMv8-A

▶ Multiple possible implementations for the same architecture specification
▶ Example: all of Cortex-A5,7,8,9,12,15 implement the same ARMv7-A architecture

(with some additions in some cases)
▶ Cortex-A5 is a low-power lower-performance implementation, Cortex-A15 is a very

high-performance and more power hungry implementation.
▶ Difference in internal implementation: depth of the pipeline, out-of-order execution,

size of caches, etc.
▶ This is NOT hardware: ARM does not sell silicon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



ARM System-on-Chip

▶ System-on-chip: integrated circuit that
integrates all components of a computer
system
▶ CPU, but also peripherals: Ethernet, USB,

UART, SPI, I2C, GPU, display, audio, etc.
▶ Integrated in a single chip: easier to use, more

cost effective
▶ SoC vendors

▶ Buy an ARM core from ARM
▶ Integrate other IP blocks, either designed

internally, or purchased from other vendors
▶ Create and sell silicon

▶ Large spectrum of SoCs available, addressing
very different markets: automotive, mobile,
industrial, low-power, set-top box, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



SoC example: Freescale i.MX6 block diagram

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



ARM hardware platform

▶ Even though an SoC is a full system on a chip,
it is generally not self-sufficient
▶ RAM, NAND flash or eMMC, power circuitry
▶ Display panel and touchscreen
▶ WiFi and Bluetooth chip
▶ Ethernet PHY
▶ HDMI transceiver
▶ CAN transceiver
▶ Connectors

▶ SoC connected to a wide variety of peripherals,
through various busses

▶ Laid out on a PCB, with components soldered
on it.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 



ARM: from the architecture to the board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



Examples of ARM boards

▶ RaspberryPi 1
▶ SoC: Broadcom 2835
▶ ARM core: ARM1176JZF (single)
▶ ARM architecture: ARMv6

▶ RaspberryPi 2
▶ SoC: Broadcom 2836
▶ ARM core: Cortex-A7 (quad)
▶ ARM architecture: ARMv7-A

▶ C.H.I.P
▶ SoC: Allwinner R8
▶ ARM core: Cortex-A8 (single)
▶ ARM architecture: ARMv7-A

▶ ESPRESSOBin
▶ SoC: Marvell Armada 3700
▶ ARM core: Cortex-A53 (dual)
▶ ARM architecture: ARMv8-A

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



Examples of ARM boards

▶ RaspberryPi 1
▶ SoC: Broadcom 2835
▶ ARM core: ARM1176JZF (single)
▶ ARM architecture: ARMv6

▶ RaspberryPi 2
▶ SoC: Broadcom 2836
▶ ARM core: Cortex-A7 (quad)
▶ ARM architecture: ARMv7-A

▶ C.H.I.P
▶ SoC: Allwinner R8
▶ ARM core: Cortex-A8 (single)
▶ ARM architecture: ARMv7-A

▶ ESPRESSOBin
▶ SoC: Marvell Armada 3700
▶ ARM core: Cortex-A53 (dual)
▶ ARM architecture: ARMv8-A

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



Examples of ARM boards

▶ RaspberryPi 1
▶ SoC: Broadcom 2835
▶ ARM core: ARM1176JZF (single)
▶ ARM architecture: ARMv6

▶ RaspberryPi 2
▶ SoC: Broadcom 2836
▶ ARM core: Cortex-A7 (quad)
▶ ARM architecture: ARMv7-A

▶ C.H.I.P
▶ SoC: Allwinner R8
▶ ARM core: Cortex-A8 (single)
▶ ARM architecture: ARMv7-A

▶ ESPRESSOBin
▶ SoC: Marvell Armada 3700
▶ ARM core: Cortex-A53 (dual)
▶ ARM architecture: ARMv8-A

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



Examples of ARM boards

▶ RaspberryPi 1
▶ SoC: Broadcom 2835
▶ ARM core: ARM1176JZF (single)
▶ ARM architecture: ARMv6

▶ RaspberryPi 2
▶ SoC: Broadcom 2836
▶ ARM core: Cortex-A7 (quad)
▶ ARM architecture: ARMv7-A

▶ C.H.I.P
▶ SoC: Allwinner R8
▶ ARM core: Cortex-A8 (single)
▶ ARM architecture: ARMv7-A

▶ ESPRESSOBin
▶ SoC: Marvell Armada 3700
▶ ARM core: Cortex-A53 (dual)
▶ ARM architecture: ARMv8-A

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



Software support for hardware layers

▶ Asking “does Linux support ARM?” doesn’t make a lot of sense

▶ Three “levels” of hardware, three “levels” of software support
1. The ARM core
2. The SoC
3. The board

▶ All three levels are needed to support a given hardware platform.
▶ Also supporting a platform with just the serial port and Ethernet is very different

from fully supporting a platform (graphics, audio, power management, etc.).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Software support for hardware layers

▶ Asking “does Linux support ARM?” doesn’t make a lot of sense
▶ Three “levels” of hardware, three “levels” of software support

1. The ARM core
2. The SoC
3. The board

▶ All three levels are needed to support a given hardware platform.
▶ Also supporting a platform with just the serial port and Ethernet is very different

from fully supporting a platform (graphics, audio, power management, etc.).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Software support for hardware layers

▶ Asking “does Linux support ARM?” doesn’t make a lot of sense
▶ Three “levels” of hardware, three “levels” of software support

1. The ARM core
2. The SoC
3. The board

▶ All three levels are needed to support a given hardware platform.
▶ Also supporting a platform with just the serial port and Ethernet is very different

from fully supporting a platform (graphics, audio, power management, etc.).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Three ARMv7 variants

1. ARMv7-A, where A stands for Application
▶ Full-featured variant designed for complex operating systems such as Linux.
▶ Has a memory management unit (MMU), caches, supports ARM and Thumb2

instruction sets, high performance, VFP and NEON instructions.
▶ Cores: Cortex-A8, Cortex-A15.

2. ARMv7-M, where M stands for microcontroller
▶ Much smaller variant: no MMU, no caches until recently, supports only Thumb2,

low performance but also low power.
▶ Cores: Cortex-M3, Cortex-M4, Cortex-M7.
▶ Generally runs bare metal code, or a small real-time operating system. Linux has

support for them, but requires external RAM and flash.
3. ARMv7-R, where R stands for real-time

▶ Reduced version of the A profile, with focus on deterministic response
▶ Widely used in storage devices (hard drive and SSD controllers)
▶ Typically doesn’t run Linux.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



Three ARMv7 variants

1. ARMv7-A, where A stands for Application
▶ Full-featured variant designed for complex operating systems such as Linux.
▶ Has a memory management unit (MMU), caches, supports ARM and Thumb2

instruction sets, high performance, VFP and NEON instructions.
▶ Cores: Cortex-A8, Cortex-A15.

2. ARMv7-M, where M stands for microcontroller
▶ Much smaller variant: no MMU, no caches until recently, supports only Thumb2,

low performance but also low power.
▶ Cores: Cortex-M3, Cortex-M4, Cortex-M7.
▶ Generally runs bare metal code, or a small real-time operating system. Linux has

support for them, but requires external RAM and flash.

3. ARMv7-R, where R stands for real-time
▶ Reduced version of the A profile, with focus on deterministic response
▶ Widely used in storage devices (hard drive and SSD controllers)
▶ Typically doesn’t run Linux.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



Three ARMv7 variants

1. ARMv7-A, where A stands for Application
▶ Full-featured variant designed for complex operating systems such as Linux.
▶ Has a memory management unit (MMU), caches, supports ARM and Thumb2

instruction sets, high performance, VFP and NEON instructions.
▶ Cores: Cortex-A8, Cortex-A15.

2. ARMv7-M, where M stands for microcontroller
▶ Much smaller variant: no MMU, no caches until recently, supports only Thumb2,

low performance but also low power.
▶ Cores: Cortex-M3, Cortex-M4, Cortex-M7.
▶ Generally runs bare metal code, or a small real-time operating system. Linux has

support for them, but requires external RAM and flash.
3. ARMv7-R, where R stands for real-time

▶ Reduced version of the A profile, with focus on deterministic response
▶ Widely used in storage devices (hard drive and SSD controllers)
▶ Typically doesn’t run Linux.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



ARMv8

▶ Main feature: introduction of AArch64, a new instruction set, with 64 bits
support
▶ AArch64 support is optional: some ARMv8 cores do not support it.

▶ Also supports a mode called AArch32, which offers backward compatibility with
ARMv7-A

▶ ARMv8 cores: Cortex-A32 (32 bits only), Cortex-A53, Cortex-A57, Cortex-A72,
etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



From ARMv5 to ARMv8

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



Architecture licensees

▶ Most SoC vendors buy ARM cores from ARM, i.e Cortex-A15 or Cortex-A57.
▶ A few SoC vendors however have an architecture license
▶ They pay a fee to be allowed to create a CPU core that implements the same

CPU architecture, but do not use the ARM cores
▶ Examples:

▶ Marvell Feroceon (ARMv5, used in Marvell Kirkwood), Marvell PJ4 (ARMv7, used
in Marvell Armada 370/XP)

▶ Qualcomm Scorpion, Qualcomm Krait (ARMv7)
▶ Apple Swift (ARMv7, used in the A6), Cyclone (ARMv8, used in the A7)
▶ NVidia Denver (ARMv8)
▶ Cavium, Broadcom, AppliedMicro, Qualcomm, Samsung (ARMv8)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



Architecture licensees: example

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 



Lack of standardization

▶ ARM architecture specified: instruction set is compatible between all ARMv7
cores, between all ARMv8 cores
▶ Can run Linux userspace code built for ARMv7 on any ARMv7 platform (provided

it’s not hardware related)
▶ A few optional features (e.g. NEON)
▶ Allows to run Ubuntu (built for ARMv7) on any ARMv7 platform
▶ However, Ubuntu (built for ARMv7) will not run on RaspberryPi 1 (ARMv6)

▶ However, almost no standardization for the other hardware components: inside
the SoC and on the board.
▶ Need specific handling at the bootloader and Linux kernel level for each SoC and

board.
▶ On most ARM SoCs, the hardware inside the chip is memory-mapped. No dynamic

discovery/enumeration capability.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



Lack of standardization

▶ ARM architecture specified: instruction set is compatible between all ARMv7
cores, between all ARMv8 cores
▶ Can run Linux userspace code built for ARMv7 on any ARMv7 platform (provided

it’s not hardware related)
▶ A few optional features (e.g. NEON)
▶ Allows to run Ubuntu (built for ARMv7) on any ARMv7 platform
▶ However, Ubuntu (built for ARMv7) will not run on RaspberryPi 1 (ARMv6)

▶ However, almost no standardization for the other hardware components: inside
the SoC and on the board.
▶ Need specific handling at the bootloader and Linux kernel level for each SoC and

board.
▶ On most ARM SoCs, the hardware inside the chip is memory-mapped. No dynamic

discovery/enumeration capability.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



No standardization, but lot of HW re-use

▶ Compatibility of processor cores: they comply with ARM specifications
▶ For the other hardware blocks, SoC vendors very often

▶ Purchase IP blocks from third-party vendors: ARM, Cadence, Synopsys, Mentor
Graphics, Imagination Technologies, etc.

▶ Extensively re-use IP blocks between their different SoCs
▶ Examples:

▶ Mentor Graphics MUSB (USB gadget controller) is used in TI, Allwinner and ST
SoCs, but also on Blackfin and some MIPS processors

▶ The Marvell SPI controller is re-used in Marvell processors shipped over ∼15 years,
from old ARMv5 Orions to modern ARMv8 processors.

▶ This allows to massively re-use drivers!
▶ Sometimes not that easy to figure out that two IP blocks in different SoCs are

actually the same.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



BIOS ?

▶ In terms of booting process, no standardized BIOS or firmware like on x86
machines.

▶ Each ARM SoC comes with its own ROM code that implements a SoC-specific
boot mechanism.

▶ The early stages of the boot process are therefore specific to each SoC.
▶ In general: capable of loading a small amount of code from non-volatile storage

(NAND, MMC, USB) into a SRAM internal to the processor.
▶ External DRAM not initialized yet.

▶ Often also provides a recovery method, to unbrick the platform. Over USB, serial
or sometimes Ethernet.

▶ Used to load a first stage bootloader into SRAM, which will itself initialize the
DRAM and load/run a second stage into DRAM.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



Bootloaders

▶ Grub(2) typically not widely used on ARM platforms
▶ U-Boot, the de-facto standard, found on most development boards and

community platforms.
▶ Barebox, less widely used, but very interesting.
▶ Homemade bootloaders, especially when security/DRM are involved (phone,

set-top boxes, etc.)
▶ Grub starts to gain some traction, especially on ARM64, for the server market
▶ RaspberryPi is a very special case, with some firmware executed on the GPU, and

directly loading the Linux kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



Bootloaders (2)

▶ First stage bootloader provided either by:
▶ A separate project. Example: AT91Bootstrap for Atmel platforms.
▶ U-Boot/Barebox itself. Concept of SPL: minimal version of the bootloader that

fits in the constraints of the first stage.
▶ Interaction with the bootloader typically over the serial port

▶ U-Boot and Barebox offer a shell, with bootloader specific commands.
▶ Sometimes screen/keyboard interaction possible, but not the norm.
▶ Embedded without a serial port is weird!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 



Booting process diagram

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 



Describing hardware

▶ On x86, most hardware can be dynamically discovered at run-time
▶ PCI and USB provide dynamic enumeration capabilities
▶ For the rest, ACPI provides tables describing hardware
▶ Thanks to this, the kernel doesn’t need to know in advance the hardware it will run

on
▶ On ARM, no such mechanism exists at the hardware level

▶ In the old days (prior to ∼2011), the kernel code itself contained a description of all
HW platforms it had to support

▶ In ∼2011, the ARM kernel developers switched to a different solution for HW
description: Device Tree

▶ Done together with an effort called multiplatform ARM kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



Device Tree

▶ A tree of nodes describing non-discoverable hardware
▶ Providing information such as register addresses, interrupt lines, DMA channels,

type of hardware, etc.
▶ Provided by the firmware to the operating system
▶ Operating system agnostic, not Linux specific

▶ Can be used by bootloaders, BSDs, etc.
▶ Originates from the PowerPC world, where it has been in use for many more years
▶ Source format written by developers (dts), compiled into a binary format

understood by operating systems (dtb)
▶ One .dts for each HW platform

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

 



Device Tree example

sun5i.dtsi
/ {

cpus {
cpu0: cpu@0 {

device_type = "cpu";
compatible = "arm,cortex-a8";
reg = <0x0>;

};
};

soc@01c00000 {
compatible = "simple-bus";
ranges;

uart1: serial@01c28400 {
compatible = "snps,dw-apb-uart";
reg = <0x01c28400 0x400>;
interrupts = <2>;
clocks = <&apb1_gates 17>;
status = "disabled";

};

uart3: serial@01c28c00 {
compatible = "snps,dw-apb-uart";
reg = <0x01c28c00 0x400>;
interrupts = <4>;
clocks = <&apb1_gates 19>;
status = "disabled";

};
[...]

};
};

sun5i-r8-chip.dts
/ {

model = "NextThing C.H.I.P.";
compatible = "nextthing,chip", "allwinner,sun5i-r8",

"allwinner,sun5i-a13";

leds {
compatible = "gpio-leds";

status {
label = "chip:white:status";
gpios = <&axp_gpio 2 GPIO_ACTIVE_HIGH>;
default-state = "on";

};
};

};

[...]

&uart1 {
pinctrl-names = "default";
pinctrl-0 = <&uart1_pins_b>;
status = "okay";

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

 



Device Tree: in practice

▶ Used for almost all ARM platforms in Linux, and all ARM64 ones
▶ Used for a few platforms in bootloaders such as U-Boot or Barebox
▶ Device Tree source code stored in the Linux kernel tree

▶ Duplicated in U-Boot/Barebox source code as needed
▶ Plan for a central repository, but never occurred

▶ Supposed to be OS-agnostic and therefore backward compatible
▶ In practice, are changed quite often to accommodate Linux kernel changes

▶ Loaded in memory by the bootloader, together with the Linux kernel image
▶ Parsed by the Linux kernel at boot time to know which hardware is available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

 



Linux kernel

▶ Support for the ARM core is generally done by ARM engineers themselves
▶ MMU, caches, virtualization, etc.
▶ In arch/arm and arch/arm64
▶ Generally in Linux upstream even before actual ARM SoCs with this core are

available
▶ Support for the ARM SoC and HW platform is a different story

▶ Requires drivers for each and every HW block, inside the SoC and on the board, in
drivers/

▶ Requires Device Tree descriptions, in arch/arm(64)/boot/dts
▶ Sometimes supported only in vendor forks, sometimes supported in the upstream

Linux kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

 



Linux kernel: typical support for an SoC

▶ Core drivers
▶ Clock controllers (drivers/clk), reset controller (drivers/reset), pin-muxing

controllers (drivers/pinctrl), interrupt controller (drivers/irqchip), timers
(drivers/clocksource), GPIO controllers (drivers/gpio)

▶ Peripheral drivers
▶ Bus controllers: I2C (drivers/i2c), SPI (drivers/spi), USB (drivers/usb),

PCI (drivers/pci)
▶ Display controller (drivers/gpu/drm), camera interface (drivers/media),

touchscreen or other input devices (drivers/input), Ethernet controller
(drivers/net)

▶ Platform code
▶ On ARM, minimal amount of platform code in arch/arm/mach-<foo> for power

management and SMP support
▶ On ARM64, no platform code at all, power management and SMP activities handled

using PSCI

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

 



Linux kernel: from vendor to upstream

▶ Most vendors fork the Linux kernel, and add support for their SoC to their own
fork

▶ Leads to kernel forks with sometimes millions of added lines for SoC support
▶ Users cannot easily change/upgrade their kernel version
▶ Generally of poor quality
▶ Situation got somewhat worse with Android

▶ Some vendors engage with the upstream Linux kernel community, and submit
patches
▶ More and more vendors taking this direction
▶ Mileage may vary depending on the vendor, and sometimes the SoC family

▶ The community also significantly contributes to upstream Linux kernel support
for ARM SoCs
▶ Example: Allwinner support is fully community-contributed, no involvement from the

vendor

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

 



Linux kernel: going multiplatform

▶ Originally, on ARM, a compiled kernel image could only boot on a reduced set of
platforms, all using the same SoC
▶ Lot of compile-time conditionals

▶ Wish to have a behavior more similar to x86, with one single binary kernel that
works for all platforms

▶ Effort started around making the ARM kernel multiplatform
▶ Handle more things at runtime rather than at compile time
▶ Part of a larger cleanup effort: switch to Device Tree, addition of numerous driver

subsystems
▶ One can now build a single kernel for ARMv4/v5, a single kernel for ARMv6/v7,

and a single kernel for ARMv8.
▶ make ARCH=arm multi_v7_defconfig
▶ And it works!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

 



Root filesystem

▶ Regular desktop-style distributions: Debian, Ubuntu,
Raspbian, Fedora, etc.

▶ Specialized systems: Android, Tizen, etc.
▶ Embedded Linux build systems

▶ Widely used for embedded systems
▶ Produce a Linux root filesystem through

cross-compilation
▶ Allows a much more customized and stripped down

system than a full-blown distribution
▶ Examples: OpenEmbedded/Yocto, Buildroot,

OpenWRT, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

 



Root filesystem

▶ Regular desktop-style distributions: Debian, Ubuntu,
Raspbian, Fedora, etc.

▶ Specialized systems: Android, Tizen, etc.

▶ Embedded Linux build systems
▶ Widely used for embedded systems
▶ Produce a Linux root filesystem through

cross-compilation
▶ Allows a much more customized and stripped down

system than a full-blown distribution
▶ Examples: OpenEmbedded/Yocto, Buildroot,

OpenWRT, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

 



Root filesystem

▶ Regular desktop-style distributions: Debian, Ubuntu,
Raspbian, Fedora, etc.

▶ Specialized systems: Android, Tizen, etc.
▶ Embedded Linux build systems

▶ Widely used for embedded systems
▶ Produce a Linux root filesystem through

cross-compilation
▶ Allows a much more customized and stripped down

system than a full-blown distribution
▶ Examples: OpenEmbedded/Yocto, Buildroot,

OpenWRT, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

 



Questions? Suggestions? Comments?

Thomas Petazzoni
thomas.petazzoni@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2017/lca/petazzoni-arm-introduction/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

http://bootlin.com/pub/conferences/2017/lca/petazzoni-arm-introduction/

