%

An introduction to the
Linux DRM subsystem

Maxime Ripard
maxime®@bootlin.com

bootlin

©

embedded Linux and kernel engineering

%

» Embedded Linux engineer and trainer at Bootlin

» Embedded Linux development: kernel and driver development, system integration,
boot time and power consumption optimization, consulting, etc.

» Embedded Linux training, Linux driver development training and Android system
development training, with materials freely available under a Creative Commons
license.

> http://bootlin.com

» Contributions

» Co-maintainer for the sunXi SoCs from Allwinner
» Contributor to a couple of other open-source projects, Buildroot, U-Boot, Barebox

» Living in Toulouse, south west of France

http://bootlin.com

Introduction

A long long time ago, in a galaxy (not so) far, far away

» Display hardware was dead simple...
> .. and so was the API to drive it.

» Introducing... fbdev!
> Allows for three things:
» Mode-Setting
> Accessing the (only) buffer
» Optional 2d acceleration: draw, copy, etc.
» And access to the device registers...

» Two different trends
» Embedded devices starting to show up, with their low power needs =- Display
engines need to accelerate more things
» Desktop displays getting more and more fancy in order to play Quake in 4k VR =
Bigger and bigger GPUs
» Led to two different outcomes:

> Interface to drive GPU devices through the kernel: DRM
» Hacks piling on in order to fit embedded use-cases: omapdss, pxafb

Display
Engine

A-N7 DA

Dialog Box 6Dialog Box

Sean Paul and Zach Reizner - Google - XDC2016

» DRM was initially introduced to deal with the GPU’s need

P Initialize the card, load its firmware, etc.

» Share the GPU command queue between multiple applications
> Manage the memory (allocation, access)

» But not modesetting!

» All the modesetting was in the userspace, especially in X

> Race between rendering and modesetting

» Only one graphical application that needed to remain there all the time
» (Lack of) Abstraction!

» Introduction of the Kernel Mode-Setting (KMS) to move the modesetting back
into the kernel

vVvvyVvVvYyypy

Now, fbdev could be implemented on top of KMS...
... Or removed entirely

Call for deprecation in 2012 (Hi Laurent!)

Last fbdev driver merged in 2014

First ARM DRM driver: exynos in 2011

Followed: arm, armada, atmel-hclcdc, fsl-dcu, hisilicon, imx, mediatek, meson,
msm, mxsfb, omapdrm, pll111, rcar-du, rockchip, shmobile, sti, stm, sun4i, tegra,
tve200, etc...

» Initially, DRM was created for devices that were both displaying and rendering
(your traditionnal PC graphics card).
> On embedded devices, it's never really been like that
» the GPU is discrete and comes from a third party
» the display engine is usually designed by the SoC vendor
» DRM and KMS APIs requiring the same level of privilege, with one master, and
were both exposed on the same device file

» Creation of render nodes

» Also useful for things like GPGPU, off-screen rendering, more flexible access
control

DRM/KMS

CRTC

Encoder

Connector

Framebuffer > Plane
Framebuffer > Plane
Framebuffer L

Plane
Framebuffer

» Planes
» Image source
» Associated with one (or more!) framebuffers
» Holds a resized / cropped version of that framebuffer

G Update buffer

""" = (" N (. -
Pixel pointer i : : : ,
ixe ' '
". ' i : : ‘
' ' ' ' ' '
| —-——) ——— -) — -)
Tearing effect
[- [- [-
. . ! 1 ! 1 ! 1
Pixel pointer ! ' ! . !
i H ' | ' '
: ' : ' : '
,,,,,, b T)
Flip buffers
[y = (7 ™ T >N o
' ' ' ' !
' ' ' ' !
' ' ' | !
' | ' | !
' ' ' ' !
——) P ——) -)
Frame N Frame N Frame N + 1

Update
without
page

flipping

Update
with
page
flipping

» Planes
» Image source
» Associated with one (or more!) framebuffers
» Holds a resized / cropped version of that framebuffer

» CRTCs

» Take the planes, and does the composition
» Contains the display mode and parameters

» Planes

> Image source
» Associated with one (or more!) framebuffers
» Holds a resized / cropped version of that framebuffer

» CRTCs

» Take the planes, and does the composition
» Contains the display mode and parameters

» Encoders
P Take the raw data from the CRTC and convert it to a particular format

» Planes

> Image source
» Associated with one (or more!) framebuffers
» Holds a resized / cropped version of that framebuffer

» CRTCs

» Take the planes, and does the composition

» Contains the display mode and parameters
» Encoders

P Take the raw data from the CRTC and convert it to a particular format
» Connectors

» Qutputs the encoded data to an external display
» Handles hotplug events
» Reads EDIDs

Connectors

Encoder

CRTC

Planes

H

| libdrm |

DRM driver

‘ X11 plugin ‘

H

| libdrm |

DRM driver

‘ X11 plugin ‘

Y
T

KMS GEM |

DRM driver

‘ X11 plugin ‘

S

B

KMS GEM |

DRM driver

L
H ””” H"ﬁpR.ME\yDRM\

KMS GEM |

DRM driver

. CMA dmabuf

Vendor solutions...

» The GPU found in most Allwinner SoCs is the Mali-400 from ARM (with a
variable number of cores)

» There are two options to support that GPU:
> Lima
> Reversed engineered proof-of-concept
> Triggered the reverse engineering effort of the GPUs (freedreno, etnaviv, etc.)
> Development (close to?) stopped three years ago, and then resumed a couple of
monthes ago
» ARM-Provided support

> Featureful
» Two parts: GPL kernel driver and proprietary OpenGL ES implementation

‘ X11 plugin ‘

Y

OpenGL ES

’ /dev/mali ‘

H 777777 L‘”ﬁpmme\

KMS GEM |

DRM driver

GPU driver

» Everything is provided by ARM on their website (if you're lucky)

» On the userspace side, you just need to put the library they provided on your
system

» On the driver side, you need to create a platform glue that will deal with:

Memory mapping

Interrupts

Clocks

Reset lines

Power Domains

Basically everything needed for the GPU to operate properly on your SoC

VVYyVYVYYVYY

» We need a DDX (Device Dependent X) driver
> xf86-video-modesetting is working on top of KMS and GBM (MESA-defined
user-space API to allocate buffers)

» ARM developped xf86-video-armsoc for SoC using a 3rd party GPU (Mali,
PowerVR, Vivante, etc.)

» Relies on KMS for the display configuration, driver-specific ioctl for buffer
allocations and vendor-provided OpenGL ES implementation

» Just have to write a small glue to use your driver allocator, and give some hints to
X about what your hardware support (hw cursor, vblank, etc.)

Questions? Suggestions? Comments?

Maxime Ripard

maxime®@bootlin.com

Slides under CC-BY-SA 3.0

http://bootlin.com/pub/conferences/2017/kr/ripard-drm

http://bootlin.com/pub/conferences/2017/kr/ripard-drm

