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» Embedded Linux engineer and trainer at Bootlin

» Embedded Linux development: kernel and driver development, system integration,
boot time and power consumption optimization, consulting, etc.

» Embedded Linux training, Linux driver development training and Android system
development training, with materials freely available under a Creative Commons
license.

> http://bootlin.com

» Contributions

» Co-maintainer for the sunXi SoCs from Allwinner
» Contributor to a couple of other open-source projects, Buildroot, U-Boot, Barebox

» Living in Toulouse, south west of France


http://bootlin.com

Introduction



A long long time ago, in a galaxy (not so) far, far away



» Display hardware was dead simple...
> .. and so was the API to drive it.

» Introducing... fbdev!
> Allows for three things:
» Mode-Setting
> Accessing the (only) buffer
» Optional 2d acceleration: draw, copy, etc.
» And access to the device registers...






» Two different trends
» Embedded devices starting to show up, with their low power needs =- Display
engines need to accelerate more things
» Desktop displays getting more and more fancy in order to play Quake in 4k VR =
Bigger and bigger GPUs
» Led to two different outcomes:

> Interface to drive GPU devices through the kernel: DRM
» Hacks piling on in order to fit embedded use-cases: omapdss, pxafb
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» DRM was initially introduced to deal with the GPU’s need

P Initialize the card, load its firmware, etc.

» Share the GPU command queue between multiple applications
> Manage the memory (allocation, access)

» But not modesetting!

» All the modesetting was in the userspace, especially in X

> Race between rendering and modesetting

» Only one graphical application that needed to remain there all the time
» (Lack of) Abstraction!

» Introduction of the Kernel Mode-Setting (KMS) to move the modesetting back
into the kernel
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Now, fbdev could be implemented on top of KMS...
... Or removed entirely

Call for deprecation in 2012 (Hi Laurent!)

Last fbdev driver merged in 2014

First ARM DRM driver: exynos in 2011

Followed: arm, armada, atmel-hclcdc, fsl-dcu, hisilicon, imx, mediatek, meson,
msm, mxsfb, omapdrm, pll111, rcar-du, rockchip, shmobile, sti, stm, sun4i, tegra,
tve200, etc...



» Initially, DRM was created for devices that were both displaying and rendering
(your traditionnal PC graphics card).
> On embedded devices, it's never really been like that
» the GPU is discrete and comes from a third party
» the display engine is usually designed by the SoC vendor
» DRM and KMS APIs requiring the same level of privilege, with one master, and
were both exposed on the same device file

» Creation of render nodes

» Also useful for things like GPGPU, off-screen rendering, more flexible access
control



DRM/KMS
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» Planes
» Image source
» Associated with one (or more!) framebuffers
» Holds a resized / cropped version of that framebuffer
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» Planes
» Image source
» Associated with one (or more!) framebuffers
» Holds a resized / cropped version of that framebuffer

» CRTCs

» Take the planes, and does the composition
» Contains the display mode and parameters



» Planes

> Image source
» Associated with one (or more!) framebuffers
» Holds a resized / cropped version of that framebuffer

» CRTCs
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» Encoders
P Take the raw data from the CRTC and convert it to a particular format



» Planes

> Image source
» Associated with one (or more!) framebuffers
» Holds a resized / cropped version of that framebuffer

» CRTCs

» Take the planes, and does the composition

» Contains the display mode and parameters
» Encoders

P Take the raw data from the CRTC and convert it to a particular format
» Connectors

» Qutputs the encoded data to an external display
» Handles hotplug events
» Reads EDIDs
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Vendor solutions...



» The GPU found in most Allwinner SoCs is the Mali-400 from ARM (with a
variable number of cores)

» There are two options to support that GPU:
> Lima
> Reversed engineered proof-of-concept
> Triggered the reverse engineering effort of the GPUs (freedreno, etnaviv, etc.)
> Development (close to?) stopped three years ago, and then resumed a couple of
monthes ago
» ARM-Provided support

> Featureful
» Two parts: GPL kernel driver and proprietary OpenGL ES implementation
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» Everything is provided by ARM on their website (if you're lucky)

» On the userspace side, you just need to put the library they provided on your
system

» On the driver side, you need to create a platform glue that will deal with:

Memory mapping

Interrupts

Clocks

Reset lines

Power Domains

Basically everything needed for the GPU to operate properly on your SoC
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» We need a DDX (Device Dependent X) driver
> xf86-video-modesetting is working on top of KMS and GBM (MESA-defined
user-space API to allocate buffers)

» ARM developped xf86-video-armsoc for SoC using a 3rd party GPU (Mali,
PowerVR, Vivante, etc.)

» Relies on KMS for the display configuration, driver-specific ioctl for buffer
allocations and vendor-provided OpenGL ES implementation

» Just have to write a small glue to use your driver allocator, and give some hints to
X about what your hardware support (hw cursor, vblank, etc.)



Questions? Suggestions? Comments?

Maxime Ripard

maxime®@bootlin.com
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