Introduction to the Yocto Project /
OpenEmbedded-core

4
pbootlin
Mylene Josserand

Bootlin
mylene@bootlin.com °

embedded Linux and kernel engineering

» Embedded Linux engineer at Bootlin since
2016
» Embedded Linux expertise
» Development, consulting and training around
the Yocto Project
» One of the authors of Bootlin’ Yocto Project
/ OpenEmbedded training materials.

» Kernel contributor: audio driver, touchscreen,
RTC and more to come!

bootlin

embedded Linux and kernel engineering

» In this talk, we will:

» In this talk, we will:
» Understand why we should use a build system

» In this talk, we will:

» Understand why we should use a build system
> How the Yocto Project / OpenEmbedded core are structured

» In this talk, we will:
» Understand why we should use a build system
> How the Yocto Project / OpenEmbedded core are structured
» How we can use it

» In this talk, we will:

» Understand why we should use a build system

> How the Yocto Project / OpenEmbedded core are structured
» How we can use it

» How we can update it to fit our needs

» In this talk, we will:

» Understand why we should use a build system

> How the Yocto Project / OpenEmbedded core are structured

» How we can use it

» How we can update it to fit our needs

» Give some good practices to start using the Yocto Project correctly

» In this talk, we will:

» Understand why we should use a build system

> How the Yocto Project / OpenEmbedded core are structured

» How we can use it

» How we can update it to fit our needs

» Give some good practices to start using the Yocto Project correctly

> Allows to customize many things: it is easy to do things the wrong way

> In this talk, we will:
» Understand why we should use a build system
> How the Yocto Project / OpenEmbedded core are structured
» How we can use it
» How we can update it to fit our needs
» Give some good practices to start using the Yocto Project correctly

> Allows to customize many things: it is easy to do things the wrong way

» When you see a v/, it means it is a good practice!

» In the Embedded world, we have many constraints

» In the Embedded world, we have many constraints

» Nice to reduce the system to a minimal one + add our custom application

» In the Embedded world, we have many constraints

» Nice to reduce the system to a minimal one + add our custom application

P> A build system will automate the creation of the system in a reproducible way

» In the Embedded world, we have many constraints

» Nice to reduce the system to a minimal one + add our custom application
P> A build system will automate the creation of the system in a reproducible way

> Integration means packaging applications to create a final image

» Building everything manually:

» Building everything manually:
@ Full flexibility

» Building everything manually:
@ Full flexibility
& Dependency hell

» Building everything manually:
@ Full flexibility
& Dependency hell
& Lack of reproducibility

» Building everything manually:
@ Full flexibility
& Dependency hell
& Lack of reproducibility

» Binary distribution (Debian, Ubuntu, Fedora, etc):

» Building everything manually:
@ Full flexibility
& Dependency hell
& Lack of reproducibility

» Binary distribution (Debian, Ubuntu, Fedora, etc):
@ Easy to create and extend

» Building everything manually:
@ Full flexibility
& Dependency hell
& Lack of reproducibility
» Binary distribution (Debian, Ubuntu, Fedora, etc):
@ Easy to create and extend
& Hard to customize and optimize (boot time, size)

» Building everything manually:
@ Full flexibility
& Dependency hell
& Lack of reproducibility
» Binary distribution (Debian, Ubuntu, Fedora, etc):
Easy to create and extend

S
& Hard to customize and optimize (boot time, size)
& Hard to rebuild from source

» Building everything manually:

@ Full flexibility

& Dependency hell

& Lack of reproducibility
» Binary distribution (Debian, Ubuntu, Fedora, etc):
Easy to create and extend
Hard to customize and optimize (boot time, size)
Hard to rebuild from source
Native-compilation

D
®
0
®

» Building everything manually:
@ Full flexibility
& Dependency hell
& Lack of reproducibility
» Binary distribution (Debian, Ubuntu, Fedora, etc):
@ Easy to create and extend
& Hard to customize and optimize (boot time, size)
& Hard to rebuild from source
& Native-compilation
& Not available for all architectures

» Building everything manually:
@ Full flexibility
& Dependency hell
& Lack of reproducibility
» Binary distribution (Debian, Ubuntu, Fedora, etc):
@ Easy to create and extend
& Hard to customize and optimize (boot time, size)
& Hard to rebuild from source
& Native-compilation
& Not available for all architectures
» Build systems (Buildroot, the Yocto Project, etc):

» Building everything manually:
@ Full flexibility
& Dependency hell
& Lack of reproducibility

» Binary distribution (Debian, Ubuntu, Fedora, etc):
@ Easy to create and extend
& Hard to customize and optimize (boot time, size)
& Hard to rebuild from source
& Native-compilation
& Not available for all architectures

» Build systems (Buildroot, the Yocto Project, etc):
& Not as easy as a binary distribution

» Building everything manually:
@ Full flexibility
& Dependency hell
& Lack of reproducibility
» Binary distribution (Debian, Ubuntu, Fedora, etc):
@ Easy to create and extend
& Hard to customize and optimize (boot time, size)
& Hard to rebuild from source
& Native-compilation
& Not available for all architectures
» Build systems (Buildroot, the Yocto Project, etc):

& Not as easy as a binary distribution
@ Nearly full flexibility

» Building everything manually:
@ Full flexibility
& Dependency hell
& Lack of reproducibility
» Binary distribution (Debian, Ubuntu, Fedora, etc):
@ Easy to create and extend
& Hard to customize and optimize (boot time, size)
& Hard to rebuild from source
& Native-compilation
& Not available for all architectures
» Build systems (Buildroot, the Yocto Project, etc):
& Not as easy as a binary distribution
@ Nearly full flexibility
@ Built from source: customization and optimization are easy

> Building everything manually:
@ Full flexibility
& Dependency hell
& Lack of reproducibility

» Binary distribution (Debian, Ubuntu, Fedora, etc):
@ Easy to create and extend
& Hard to customize and optimize (boot time, size)
& Hard to rebuild from source
& Native-compilation
& Not available for all architectures

» Build systems (Buildroot, the Yocto Project, etc):
& Not as easy as a binary distribution
@ Nearly full flexibility
€ Built from source: customization and optimization are easy
@ Fully reproducible

> Building everything manually:
@ Full flexibility
& Dependency hell
& Lack of reproducibility

» Binary distribution (Debian, Ubuntu, Fedora, etc):
@ Easy to create and extend
& Hard to customize and optimize (boot time, size)
& Hard to rebuild from source
& Native-compilation
& Not available for all architectures

» Build systems (Buildroot, the Yocto Project, etc):
& Not as easy as a binary distribution
@ Nearly full flexibility
€ Built from source: customization and optimization are easy
@ Fully reproducible
& Cross-compilation

%

f- Download the source

- Configure the build

- Satisfy the dependencies when needed

- Compile the application using autotools, CMake, make, ...

- Install the binary on your machine
-

%

f- Download the source

- Configure the build

- Satisfy the dependencies when needed

- Compile the application using autotools, CMake, make, ...

- Install the binary on your machine
-

Tasks

é A
- Download the source Tasks

- Configure the build Recipe

- Satisfy the dependencies when needed
- Compile the application using autotools, CMake, make, ...

- Install the binary on your machine
- J

f- Download the source h Tasks
- Configure the build Recipe
- Satisfy the dependencies when needed 0
- Compile the application using autotools, CMake, make, ...
- Install the binary on your machine Bitbake

- J

(- Download the source h Tasks
- Configure the build Recipe
- Satisfy the dependencies when needed 0
- Compile the application using autotools, CMake, make, ...
- Install the binary on your machine Bitbake

- J

» Common tasks defined in OpenEmbedded core

J

Vs
- Download the source Recipe

- Configure the build
Tasks
Recipe

- Satisfy the dependencies when needed

- Compile the application using autotools, CMake, make, ...

Recipe

- Install the binary on your machine
-

J Layer

» Common tasks defined in OpenEmbedded core
» Many recipes availables for many applications: organized in layers

J

Vs
- Download the source Recipe

- Configure the build
Tasks

Recipe

- Satisfy the dependencies when needed

- Compile the application using autotools, CMake, make, ...

Recipe

- Install the binary on your machine
\ J Layer

» Common tasks defined in OpenEmbedded core
» Many recipes availables for many applications: organized in layers
» Allow to build custom embedded Linux-based systems

Recipe

J

- Download the source

- Configure the build

Tasks
- Satisfy the dependencies when needed Recipe

- Compile the application using autotools, CMake, make, ...

Recipe

- Install the binary on your machine
\ J Layer

» Common tasks defined in OpenEmbedded core

» Many recipes availables for many applications: organized in layers

yocto -

= This is the aim of the Yocto Project PROJECT

» Allow to build custom embedded Linux-based systems

@

openembedded

» Co-maintained by the Yocto
Project and OpenEmbedded
Project

@

openembedded

» Co-maintained by the Yocto
Project and OpenEmbedded
Project

» Set of base layer with recipes
and classes

@

openembedded

» Co-maintained by the Yocto
Project and OpenEmbedded
Project

» Set of base layer with recipes
and classes

» It is the core of all the magic

@

openembedded

» Co-maintained by the Yocto
Project and OpenEmbedded
Project

» Set of base layer with recipes
and classes

» It is the core of all the magic
» It supports the ARM, MIPS (32
and 64 bits), PowerPC and x86

(32 and 64 bits) architectures +
QEMU

@

openembedded

» Co-maintained by the Yocto
Project and OpenEmbedded
Project

» Set of base layer with recipes
and classes

» It is the core of all the magic
» It supports the ARM, MIPS (32
and 64 bits), PowerPC and x86

(32 and 64 bits) architectures +
QEMU

A

openembedded

» Co-maintained by the Yocto
Project and OpenEmbedded

Project > Reference distribution of the Yocto Project

» Set of base layer with recipes
and classes

» It is the core of all the magic

» It supports the ARM, MIPS (32
and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

A

openembedded

» Co-maintained by the Yocto
Project and OpenEmbedded

Project > Reference distribution of the Yocto Project

» Contains everything you need to start a

» Set of base layer with recipes k
project:

and classes

» It is the core of all the magic

» It supports the ARM, MIPS (32
and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

A

openembedded

» Co-maintained by the Yocto
Project and OpenEmbedded

Project > Reference distribution of the Yocto Project

» Contains everything you need to start a
project:
» OpenEmbedded-core

» Set of base layer with recipes
and classes

» It is the core of all the magic

» It supports the ARM, MIPS (32
and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

A

openembedded

» Co-maintained by the Yocto

Project and OpenEmbedded
» Reference distribution of the Yocto Project

Project
> Set of base layer with recipes > Cor]talns everything you need to start a
project:
and classes
. . » OpenEmbedded-core
» It is the core of all the magic > Bitbake

» It supports the ARM, MIPS (32
and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

A

openembedded

» Co-maintained by the Yocto

Project and OpenEmbedded
» Reference distribution of the Yocto Project

Project
> Set of base layer with recipes > Cor]talns everything you need to start a
project:
and classes
. . » OpenEmbedded-core
> It is the core of all the magic > Bitbake
» It supports the ARM, MIPS (32 > Additional layers

and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

openembedded &
» Co-maintained by the Yocto
Project and OpenEmbedded
Project > Reference distribution of the Yocto Project
> Set of base layer with recipes » Contains everything you need to start a
and classes project:
] . » OpenEmbedded-core
» It is the core of all the magic > Bitbake
» It supports the ARM, MIPS (32 > Additional layers
and 64 bits), PowerPC and x86 > Also contains some useful tools to ease
(32 and 64 bitS) architectures + recipes and Iayers' creation

QEMU

OpenEmbedded Project

Bitbake

User/Developer actions

Y

Download > Configure Compile

User/Developer actions

Y

Download > Configure Compile

User/Developer actions

Y

Download > Configure Compile

@o Workflow - Users/Developers actions

User/Developer actions

Download » Configure

Y

Compile

Developer's work

Create layer

y

\ T~

Create recipe Create image Create machine
4
Extend recipe Create distro

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

10/1

()

» Find which version you want to use:

Release Activity

Codename Yocto Project Version Release Date Current Version Support Level Poky Version BitBake branch
Rocko 24 Fall 2017 Development | 18.0 136

Pyro 23 May 2017 231 Stable 170 1.34

Morty 22 Nov 2018 221 Stable 160 1.32

Krogoth 2.1 Apr 2016 213 Community 150 1.30

Figure: https://wiki.yoctoproject.org/wiki/Releases

https://wiki.yoctoproject.org/wiki/Releases

(7

» Find which version you want to use:

Release Activity

Codename Yocto Project Version Release Date Current Versi T L y Version BitBake branch
Rocko 2.4 Fall 2017 Development 180 136

Pyro 2.3 May 2017 23.1 Stable 170 134

Morty 2.2 Nov 2016 221 Stable 160 132

Krogoth 2.1 Apr 2016 2.1.3 Community 15.0 130

Figure: https://wiki.yoctoproject.org/wiki/Releases

» Support level: Development, Stable, Community

https://wiki.yoctoproject.org/wiki/Releases

%

» Find which version you want to use:

Release Activity

Codename|Yocto Project Version Release Date Current Version Support Level [Poky Version |BitBake branch|
Rocko 2.4 Fall 2017 Development 180 1.36

Pyro 2.3 May 2017 23.1 Stable 170 1.34

Morty 2.2 Nov 2016 221 Stable 160 1.32

Krogoth 2.1 Apr 2016 2.1.3 Community 15.0 1.30

Figure: https://wiki.yoctoproject.org/wiki/Releases

» Support level: Development, Stable, Community
» A codename corresponds to a Poky and Bitbake versions
Pyro = Yocto Project v2.3 — Poky v17.0 & Bitbake

v1.34

https://wiki.yoctoproject.org/wiki/Releases

%

» Find which version you want to use:

Release Activity

Codename Yocto Project Version Release Date Current Version Support Level Poky Version BitBake branch
Rocko 24 Fall 2017 Development | 18.0 136

Pyro 23 May 2017 231 Stable 170 1.34

Morty 22 Nov 2018 221 Stable 160 1.32

Krogoth 2.1 Apr 2016 213 Community 150 1.30

Figure: https://wiki.yoctoproject.org/wiki/Releases

» Support level: Development, Stable, Community
» A codename corresponds to a Poky and Bitbake versions
Pyro = Yocto Project v2.3 — Poky v17.0 & Bitbake v1.34

» How to download:

https://wiki.yoctoproject.org/wiki/Releases

(7

» Find which version you want to use:

Release Activity

Codename Yocto Project Version Release Date Current Version Support Level Poky Version BitBake branch
Rocko 24 Fall 2017 Development | 18.0 136

Pyro 23 May 2017 231 Stable 170 1.34

Morty 22 Nov 2018 221 Stable 160 1.32

Krogoth 2.1 Apr 2016 213 Community 150 1.30

Figure: https://wiki.yoctoproject.org/wiki/Releases

» Support level: Development, Stable, Community
» A codename corresponds to a Poky and Bitbake versions

Pyro = Yocto Project v2.3 — Poky v17.0 & Bitbake v1.34
» How to download:

git clone -b pyro git://git.yoctoproject.org/poky.git J

https://wiki.yoctoproject.org/wiki/Releases

(7

» Layers are sets of recipes, matching a common purpose.
To simplify things, they are just folders

http://layers.openembedded.org/layerindex/

(7

» Layers are sets of recipes, matching a common purpose.
To simplify things, they are just folders
P> Look at existing layers

Branch:pyro - | Layers = Recipss Machines Distros
Search layers Filter layers
Layer name Description Type Repository
Base git/git.openembedded.org/openembedded-core
meta-oe Additional shared OE metadata Base git/git openembedded.org/meta-openembedded
meta-96boards BSP Layer for 96boards platforms) b
meta-aarch64. AArche4 (64-bit ARM) architecture support) g
meta-acer Acer machines support) gitgithub. ibuti git
meta-arduino Board Support for the Arduino Yan) hitpsgitiab. el

Figure: http://layers.openembedded. org/layerindex/

http://layers.openembedded.org/layerindex/

%

» Layers are sets of recipes, matching a common purpose.
To simplify things, they are just folders
P> Look at existing layers

» Download

Branch:pyro ~ | Layers

Recipes Machines Distros

Filter layers

Search layers
Layer name Description Type Repository
Base git/git.openembedded.org/openembedded-core
meta-oe Additional shared OE metadata Base git/git openembedded.org/meta-openembedded
meta-96boards BSP Layer for 96boards platforms) b
meta-aarch64. AArche4 (64-bit ARM) architecture support) g
meta-acer Acer machines support) gitgithub. git
hitps //giiab. el

meta-arduino

Board Support for the Arduino Yan)

Figure: http://layers.openembedded. org/layerindex/

all other layers on same branch than Poky: Pyro

http://layers.openembedded.org/layerindex/

(7

» Layers are sets of recipes, matching a common purpose.
To simplify things, they are just folders
P> Look at existing layers

Branch:pyro - | Layers = Recipss Machines Distros
Search layers Filter layers
Layer name Description Type Repository

Base git/git.openembedded.org/openembedded-core

meta-oe Additional shared OE metadata Base git/git openembedded.org/meta-openembedded
meta-96boards BSP Layer for 96boards platforms)
meta-aarch64. AArche4 (64-bit ARM) architecture support) g
meta-acer Acer machines support) gitgithub. i git
meta-arduino Board Support for the Arduino Yan) hitpsgitiab. el

Figure: http://layers.openembedded. org/layerindex/

» Download all other layers on same branch than Poky: Pyro
v Use existing layers before creating a new one = saves you time

http://layers.openembedded.org/layerindex/

(7

» Layers are sets of recipes, matching a common purpose.
To simplify things, they are just folders
P> Look at existing layers

Branch:pyro - | Layers = Recipss Machines Distros
Search layers Filter layers
Layer name Description Type Repository

Base git/git.openembedded.org/openembedded-core

meta-oe Additional shared OE metadata Base git/git openembedded.org/meta-openembedded
meta-96boards BSP Layer for 96boards platforms)
meta-aarch64. AArche4 (64-bit ARM) architecture support) gitugi g
meta-acer Acer machines support) gitgithub. i git
meta-arduino Board Support for the Arduino Yan) hitpsgitiab. el

Figure: http://layers.openembedded. org/layerindex/

» Download all other layers on same branch than Poky: Pyro
v Use existing layers before creating a new one = saves you time
v" DO NOT EDIT POKY/UPSTREAM LAYERS = complicates updates

http://layers.openembedded.org/layerindex/

QO

P> A script with all variables needed by Bitbake must be sourced:

QO

P> A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env J

QO

P> A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env)

» Will move you in a build folder

QO

P> A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env)

» Will move you in a build folder
» Now, can run any commands

QO
P> A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env

» Will move you in a build folder
» Now, can run any commands
» All the local configurations are in the conf folder

P> A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env ‘)

» Will move you in a build folder
» Now, can run any commands
» All the local configurations are in the conf folder
build/
|-- conf

|-- bblayers.conf
|-- local.conf

OO
P> A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env

» Will move you in a build folder
» Now, can run any commands
» All the local configurations are in the conf folder
build/
|-- conf

|-- bblayers.conf
|-- local.conf

» Edit your bblayers.conf with possible additional layers:

P> A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env ‘J

» Will move you in a build folder
» Now, can run any commands
» All the local configurations are in the conf folder
build/
|-- conf

|-- bblayers.conf
|-- local.conf

» Edit your bblayers.conf with possible additional layers:

BBLAYERS 7= " \
/home/mylene/yocto/poky/meta \
/home/mylene/yocto/poky/meta-poky \
/home/mylene/yocto/poky/meta-yocto-bsp \
/home/mylene/yocto/meta-freescale \
/home/mylene/yocto/meta-qt5 \

QO

» Edit local.conf with your MACHINE and your DISTRO

QO

» Edit local.conf with your MACHINE and your DISTRO

» MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

QO

» Edit local.conf with your MACHINE and your DISTRO

» MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

> poky: beaglebone, x86, x86-64

OO

» Edit local.conf with your MACHINE and your DISTRO
» MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

> poky: beaglebone, x86, x86-64
P> meta-ti: beagleboard, pandaboard, ...

Qa

» Edit local.conf with your MACHINE and your DISTRO

» MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

> poky: beaglebone, x86, x86-64
> meta-ti: beagleboard, pandaboard, .
» meta-fsl-arm: imx23, imx28, imx6, |mx7

Qa

» Edit local.conf with your MACHINE and your DISTRO

» MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

> poky: beaglebone, x86, x86-64

meta-ti: beagleboard, pandaboard, ...
meta-fsl-arm: imx23, imx28, imx6, imx7, ...
meta-atmel: at91*, samabd*, ...

vyvyy

(v

» Edit local.conf with your MACHINE and your DISTRO

» MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

> poky: beaglebone, x86, x86-64

P> meta-ti: beagleboard, pandaboard, ...

> meta-fsl-arm: imx23, imx28, imx6, imx7, ...
» meta-atmel: at91*, samabd*, ...

» DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

(v

» Edit local.conf with your MACHINE and your DISTRO

» MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

> poky: beaglebone, x86, x86-64

P> meta-ti: beagleboard, pandaboard, ...

> meta-fsl-arm: imx23, imx28, imx6, imx7, ...
» meta-atmel: at91*, samabd*, ...

» DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

> poky: poky, poky-tiny, ...

(v

» Edit local.conf with your MACHINE and your DISTRO

» MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

> poky: beaglebone, x86, x86-64

P> meta-ti: beagleboard, pandaboard, ...

> meta-fsl-arm: imx23, imx28, imx6, imx7, ...
» meta-atmel: at91*, samabd*, ...

» DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

> poky: poky, poky-tiny, ...
> meta—angstrom: angstrom

(v

» Edit local.conf with your MACHINE and your DISTRO

» MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

> poky: beaglebone, x86, x86-64

P> meta-ti: beagleboard, pandaboard, ...

> meta-fsl-arm: imx23, imx28, imx6, imx7, ...
» meta-atmel: at91*, samabd*, ...

» DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

> poky: poky, poky-tiny, ...
> meta-angstrom: angstrom

» Noticed that local.conf = only for the local workstation.

(v

» Edit local.conf with your MACHINE and your DISTRO

» MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

> poky: beaglebone, x86, x86-64

P> meta-ti: beagleboard, pandaboard, ...

> meta-fsl-arm: imx23, imx28, imx6, imx7, ...
» meta-atmel: at91*, samabd*, ...

» DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

> poky: poky, poky-tiny, ...
> meta—angstrom: angstrom

» Noticed that local.conf = only for the local workstation.

v" Avoid changes directly in local.conf (or only for test purposes, except for some
variables such as MACHINE and DISTRO)

QO

» What is an IMAGE?
= Represents your root filesystem: all your applications, libraries, configuration
files, ... Will find it under recipes-*/images/

Qa

» What is an IMAGE?
= Represents your root filesystem: all your applications, libraries, configuration
files, ... Will find it under recipes-*/images/

» Common images already exist in Poky: core-image-minimal, core-image-base,
core-image-x11, ...

Qa

» What is an IMAGE?

= Represents your root filesystem: all your applications, libraries, configuration
files, ... Will find it under recipes-*/images/

» Common images already exist in Poky: core-image-minimal, core-image-base,
core-image-x11, ...

» Build an existing image:

%

» What is an IMAGE?

= Represents your root filesystem: all your applications, libraries, configuration
files, ... Will find it under recipes-*/images/

» Common images already exist in Poky: core-image-minimal, core-image-base,
core-image-x11, ...

» Build an existing image:

bitbake core-image-minimal J

» Machine: It represents your hardware
conf/machine/

%

» Machine: It represents your hardware
conf/machine/

kernel

dtb
bootloader

MACHINE

» Machine: It represents your hardware

conf/machine dtb
/ / eme! bootloader MACHINE

» Distro: Represents the top-level
configuration that will apply on every
build
conf/distro/

» Machine: It represents your hardware
conf/machine/

» Distro: Represents the top-level
configuration that will apply on every
build
conf/distro/

dtb
bootloader

kernel

MACHINE

DISTRO

binutils libC
. splash
compiler

» Machine: It represents your hardware
conf/machine/

» Distro: Represents the top-level
configuration that will apply on every
build
conf/distro/

» Image: It represents your root
filesystem itself: all your applications,
libraries, configuration's files, etc
recipes-core/images

dtb
bootloader

kernel

MACHINE

DISTRO

binutils libC
. splash
compiler

» Machine: It represents your hardware
conf/machine/

» Distro: Represents the top-level
configuration that will apply on every
build
conf/distro/

» Image: It represents your root
filesystem itself: all your applications,
libraries, configuration's files, etc
recipes-core/images

kernel dio

MACHINE

DISTRO

bootloader

binutils libC
. splash

compiler

ping
wpa-supplicant.conf

libQt5

Is
top libncurses dicpLesy

iptable

md5sum

Developer's work

Cregiis mdEe Create image Create machine
Y4
Extend recipe Create distro

%

» You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

%

» You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

» Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS

O

» You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

» Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS

» To be able to do that, we will create our own layer that will host all our
modifications/applications

v

You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS

To be able to do that, we will create our own layer that will host all our
modifications/applications

Poky provides a tool to create layers:

» You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS

» To be able to do that, we will create our own layer that will host all our
modifications/applications

v

> Poky provides a tool to create layers:

yocto-layer create <layer_name> -o <dest_dir> J

Create layer

» You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

» Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS

» To be able to do that, we will create our own layer that will host all our
modifications/applications

> Poky provides a tool to create layers:

yocto-layer create <layer_name> -o <dest_dir> J

v' The layer's name must be meta-* (done automatically using yocto-layer tool)

Create layer

Create image Create machine

4
|Extend recipe | | Create distro |

» You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

» Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS

» To be able to do that, we will create our own layer that will host all our
modifications/applications

> Poky provides a tool to create layers:

yocto-layer create <layer_name> -o <dest_dir> J

v' The layer's name must be meta-* (done automatically using yocto-layer tool)
v" Avoid uppercase and funny/long names

Create layer

Create image Create machine

4
|Extend recipe | | Create distro |

» You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

» Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS

» To be able to do that, we will create our own layer that will host all our
modifications/applications

> Poky provides a tool to create layers:

yocto-layer create <layer_name> -o <dest_dir> J

v' The layer's name must be meta-* (done automatically using yocto-layer tool)
v" Avoid uppercase and funny/long names

v If you have different projects with common parts, try to create two layers
= Can re-use some parts

» A recipe is a file describing tasks for an application to:

» A recipe is a file describing tasks for an application to:
P retrieve its sources

» A recipe is a file describing tasks for an application to:

P retrieve its sources
> configure it

> A recipe is a file describing tasks for an application to:
P retrieve its sources
> configure it
» compile it

> A recipe is a file describing tasks for an application to:
P retrieve its sources
> configure it
» compile it
» install it

> A recipe is a file describing tasks for an application to:
P retrieve its sources
> configure it
» compile it
» install it

» It handles all the dependencies for you.

> A recipe is a file describing tasks for an application to:

P retrieve its sources
> configure it

» compile it

» install it

» It handles all the dependencies for you.
» Many common tasks are already defined by OpenEmbedded-core

> A recipe is a file describing tasks for an application to:
P retrieve its sources
» configure it
» compile it
> install it

» It handles all the dependencies for you.
» Many common tasks are already defined by OpenEmbedded-core

» Organized in folders with the same purpose (recipes-core, recipes-bsp,
recipes-kernel, recipes-devtool, recipes-support, ...) and a sub-folder with the
application’s name

» To create a recipe, you have to create a .bb file. It is the format that bitbake
understands

P> To create a recipe, you have to create a .bb file. It is the format that bitbake
understands

» The format of a recipe file name is <application-name>_<version>.bb

P> To create a recipe, you have to create a .bb file. It is the format that bitbake
understands

» The format of a recipe file name is <application-name>_<version>.bb
P A recipe can be divided in three parts:

P> To create a recipe, you have to create a .bb file. It is the format that bitbake
understands
» The format of a recipe file name is <application-name>_<version>.bb
P A recipe can be divided in three parts:
» The header: what/who. Description of the application

P> To create a recipe, you have to create a .bb file. It is the format that bitbake
understands

» The format of a recipe file name is <application-name>_<version>.bb

P A recipe can be divided in three parts:

» The header: what/who. Description of the application
» The sources: where. Can be tarballs, remote repository, ...

P> To create a recipe, you have to create a .bb file. It is the format that bitbake
understands

» The format of a recipe file name is <application-name>_<version>.bb

P A recipe can be divided in three parts:

» The header: what/who. Description of the application
» The sources: where. Can be tarballs, remote repository, ...
» The tasks: how. How to proceed with the application’s sources

P> To create a recipe, you have to create a .bb file. It is the format that bitbake
understands

» The format of a recipe file name is <application-name>_<version>.bb

P A recipe can be divided in three parts:

» The header: what/who. Description of the application
» The sources: where. Can be tarballs, remote repository, ...
» The tasks: how. How to proceed with the application’s sources

» Classes are available for tasks commonly used: kernel, CMake, autotools, ...

Create image Create machine
. 4
recipes-support/nmon/nmon_13g.bb B e [reme am]
SUMMARY = "nmon performance monitor"
HOMEPAGE = "http://nmon.sf.net"

SECTION = "console/utils"

LICENSE = "GPLv3"

LIC_FILES_CHKSUM = "file://${WORKDIR}/Documentation.txt;md5=dbb13658cf55d687c4f2ff771a696d4a"
DEPENDS = "ncurses"

SRC_URI = "${SOURCEFORGE_MIRROR}/nmon/lmoni3g.c;name=lmon \
${SOURCEFORGE_MIRROR}/nmon/Documentation.txt;name=doc \

"

SRC_URI [1mon.md5sum] = "b1b8e6c0123ad232394991£2d4f40494"

SRC_URI [1mon.sha256sum] = "456ab2a342b31d1a352d0d940af5962fa65a12ae8757££73e6e73210832ae8b5"

SRC_URI [doc.mdbsum] = "dbb13658cf55d687c4f2ff771a696d4a"

SRC_URI [doc.sha256sum] = "1f7f83afe62a7210be5e83cd24157adb854c14599efe0b377a7eccad33869278"

CFLAGS += "-D JFS -D GETUSER -Wall -D LARGEMEM"
LDFLAGS += "-1ltinfo -lncursesw"

do_compile() {
${CC} ${CFLAGS} ${LDFLAGS} ${WORKDIR}/lmoni3g.c -o nmon
}

do_install() {
install -d ${D}${bindir}
install -m 0755 nmon ${D}${bindir}

Create image Create machine

recipes-support/nmon/nmon_13g.bb P | [Greme s

SUMMARY = "nmon performance monitor"

HOMEPAGE = "http://nmon.sf.net"

SECTION = "console/utils"

LICENSE = "GPLv3"

LIC_FILES_CHKSUM = "file://${WORKDIR}/Documentation.txt;md5=dbb13658cf55d687c4f2ff771a696d4a"
DEPENDS = "ncurses"

"Header"

SRC_URI = "${SOURCEFORGE_MIRROR}/nmon/lmoni3g.c;name=lmon \
${SOURCEFORGE_MIRROR}/nmon/Documentation.txt;name=doc \

"

SRC_URI [1mon.md5sum] = "b1b8e6c0123ad232394991f2d4£40494"

SRC_URI [1mon.sha256sum] = "456ab2a342b31d1a352d0d940af5962fa65a12ae8757££73e6e73210832ae8b5"

SRC_URI [doc.mdbsum] = "dbb13658cf55d687c4f2ff771a696d4a"

SRC_URI [doc.sha256sum] = "1f7f83afe62a7210be5e83cd24157adb854c14599efe0b377a7eccad33869278"

"Source"

CFLAGS += "-D JFS -D GETUSER -Wall -D LARGEMEM"
LDFLAGS += "-1ltinfo -lncursesw"

do_compile() {

${CC} ${CFLAGS} ${LDFLAGS} ${WORKDIR}/lmoni3g.c -o nmon
"Tasks" ¥
do_install() {

install -d ${D}${bindir}

install -m 0755 nmon ${D}${bindir}

recipes-example/helloworld/helloworld_1.0.bb

DESCRIPTION = "Print a friendly, customizable greeting"
HOMEPAGE = "https://www.gnu.org/software/hello/"
PRIORITY = "optional"

SECTION = "examples"

LICENSE = "GPLv3"

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"

SRC_URI[md5sum] = "67607d2616a0faafbbc94c59dca7c3ch”
SRC_URI [sha256sum] = "ecbb7a2214196c57f£9340aa71458e1559abd38f6d8d169666846935df19lea?"
LIC_FILES_CHKSUM = "file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

inherit autotools

recipes-example/helloworld/helloworld_1.0.bb

DESCRIPTION = "Print a friendly, customizable greeting"
HOMEPAGE = "https://www.gnu.org/software/hello/"
PRIORITY = "optional"

SECTION = "examples"

LICENSE = "GPLv3"

"Header"

SRC_URI "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"

SRC_URI [md5sum] = "67607d2616a0faaf5bc94c59dca7c3chb"
SRC_URI[sha256sum] = "ecbb7a2214196c57f£9340aa71458e1559abd38f6d8d169666846935df19fea?"
LIC_FILES_CHKSUM = "file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

"Source"

"Tasks" | inherit autotools

v' Always use remote repositories to host your application sources
= Makes development quicker + keep history

v' Always use remote repositories to host your application sources
= Makes development quicker + keep history

v" Do not put application sources in your layer directly!
= Application development = Application Integration

v' Always use remote repositories to host your application sources
= Makes development quicker + keep history

v" Do not put application sources in your layer directly!
= Application development = Application Integration

v" Keep the same folder organization: recipes-core/recipes-bsp/recipes-devtools/...
= Find recipes quicker

Create image Create machine

Y
|Extend recipe | | Create distro |

v' Always use remote repositories to host your application sources
= Makes development quicker + keep history

v" Do not put application sources in your layer directly!
= Application development = Application Integration

v Keep the same folder organization: recipes-core/recipes-bsp/recipes-devtools/...
= Find recipes quicker

v" Keep the headers / sources / tasks organization in the recipe
= All the recipes have the same content organization

Create image Create machine

|Extend recipe | | Create distro |

v' Always use remote repositories to host your application sources
= Makes development quicker + keep history

v" Do not put application sources in your layer directly!
= Application development = Application Integration

v Keep the same folder organization: recipes-core/recipes-bsp/recipes-devtools/...
= Find recipes quicker

v" Keep the headers / sources / tasks organization in the recipe
= All the recipes have the same content organization

V" Use/Create include files when possible
= Can extend other versions easily

Create layer

Create image Create machine

|Extend recipe | | Create distro |
v' Always use remote repositories to host your application sources
= Makes development quicker + keep history

v" Do not put application sources in your layer directly!
= Application development = Application Integration

v Keep the same folder organization: recipes-core/recipes-bsp/recipes-devtools/...
= Find recipes quicker

v" Keep the headers / sources / tasks organization in the recipe
= All the recipes have the same content organization

V" Use/Create include files when possible
= Can extend other versions easily

v Know how to compile the application manually before integrating it in a recipe
= Saves you time

Extend recipe

Extend recipe

> It is a good practice not to modify recipes available in Poky.

Extend recipe

> It is a good practice not to modify recipes available in Poky.

P> But it is sometimes useful to modify an existing recipe

Extend recipe

> It is a good practice not to modify recipes available in Poky.
> But it is sometimes useful to modify an existing recipe

> The BitBake build engine allows to modify a recipe by extending it

Extend recipe

> It is a good practice not to modify recipes available in Poky.
P> But it is sometimes useful to modify an existing recipe
> The BitBake build engine allows to modify a recipe by extending it

» The recipe extensions end in .bbappend

vvyYVvyyvyy

Extend recipe

It is a good practice not to modify recipes available in Poky.

But it is sometimes useful to modify an existing recipe

The BitBake build engine allows to modify a recipe by extending it
The recipe extensions end in .bbappend

Appended files must have the same root name as the recipe they extend
example_0.1.bbappend applies to example_0.1.bb
= version specific

vvyYVvyyvyy

Extend recipe

It is a good practice not to modify recipes available in Poky.

But it is sometimes useful to modify an existing recipe

The BitBake build engine allows to modify a recipe by extending it
The recipe extensions end in .bbappend

Appended files must have the same root name as the recipe they extend
example_0.1.bbappend applies to example_0.1.bb

= version specific

If adding new files, you must prepend the FILESEXTRAPATHS variable with the
path to files' directory.

Create image Create machine

recipes-support/nmon/nmon_13g.bbappend

Extend recipe | | Create distro |

FILESEXTRAPATHS prepend := "${THISDIR}/files:"

SRC_URI += "file://custom-modification-0.patch \
file://custom-modification-1.patch \

do_install_append() {

Do something
iy

|--- conf
| |-- layer.conf
|-—- recipes-support
|-=- nmon
|-- files
| |-- custom-modification-0.patch
| |-- custom-modification-1.patch
|-- nmon_13g.bbappend

> An image is the top level recipe and is used alongside the machine definition

> An image is the top level recipe and is used alongside the machine definition

» Whereas the machine describes the hardware used and its capabilities, the image

is architecture agnostic and defines how the root filesystem is built, with what
packages

> An image is the top level recipe and is used alongside the machine definition

» Whereas the machine describes the hardware used and its capabilities, the image
is architecture agnostic and defines how the root filesystem is built, with what
packages

» By default, several images are provided in Poky:

> An image is the top level recipe and is used alongside the machine definition

» Whereas the machine describes the hardware used and its capabilities, the image
is architecture agnostic and defines how the root filesystem is built, with what
packages

» By default, several images are provided in Poky:

» metax/recipes*/images/*.bb

> An image is the top level recipe and is used alongside the machine definition

» Whereas the machine describes the hardware used and its capabilities, the image

is architecture agnostic and defines how the root filesystem is built, with what
packages

» By default, several images are provided in Poky:
» metax/recipes*/images/*.bb

» An image is no more than a recipe

> An image is the top level recipe and is used alongside the machine definition

» Whereas the machine describes the hardware used and its capabilities, the image
is architecture agnostic and defines how the root filesystem is built, with what
packages

» By default, several images are provided in Poky:

» metax/recipes*/images/*.bb

v

An image is no more than a recipe

» To create an image, simply create a .bb in an images folder

> An image is the top level recipe and is used alongside the machine definition

» Whereas the machine describes the hardware used and its capabilities, the image
is architecture agnostic and defines how the root filesystem is built, with what
packages

» By default, several images are provided in Poky:

» metax/recipes*/images/*.bb

v

An image is no more than a recipe

» To create an image, simply create a .bb in an images folder

mkdir -p recipes-core/images/
touch recipes-core/images/core-image-fe.bb

» Some special configuration variables are used to describe an image:

» Some special configuration variables are used to describe an image:
IMAGE_INSTALL List of packages to install in the generated image

» Some special configuration variables are used to describe an image:

IMAGE_INSTALL List of packages to install in the generated image
IMAGE_FSTYPES List of formats the OpenEmbedded build system will use to
create images

» Some special configuration variables are used to describe an image:
IMAGE_INSTALL List of packages to install in the generated image
IMAGE_FSTYPES List of formats the OpenEmbedded build system will use to

create images

v Create a minimal image to include it in others
= Allows to have a minimal rootfs

» Some special configuration variables are used to describe an image:
IMAGE_INSTALL List of packages to install in the generated image
IMAGE_FSTYPES List of formats the OpenEmbedded build system will use to

create images

v Create a minimal image to include it in others
= Allows to have a minimal rootfs

v Create different images according to your needs: image-minimal, image-dev,
image-x11, image-qtb, etc
= Install only what you really need for your board.

recipes-core/images/core-image-fe.bb
inherit core-image

DESCRIPTION = "A small image to boot a device, created for Embedded Recipes'
LICENSE = "MIT"

"tar.bz2 ext4"
"packagegroup-core-boot \
nmon \

helloworld \

IMAGE_FSTYPES
IMAGE_INSTALL

Create machine

Create machine

» A machine describes your hardware

Create machine

» A machine describes your hardware

» Stored under meta-<bsp_name>/conf/machine/*.conf

Create machine

» A machine describes your hardware
» Stored under meta-<bsp_name>/conf/machine/*.conf

» The file name corresponds to the value set in the MACHINE variable
meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

Create machine

» A machine describes your hardware
» Stored under meta-<bsp_name>/conf/machine/*.conf

» The file name corresponds to the value set in the MACHINE variable
meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

» Contains configuration variables related to the architecture, to machine's features
and to customize the kernel image or the filesystems used.

Create machine

» A machine describes your hardware
» Stored under meta-<bsp_name>/conf/machine/*.conf

» The file name corresponds to the value set in the MACHINE variable
meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

» Contains configuration variables related to the architecture, to machine's features
and to customize the kernel image or the filesystems used.

TARGET_ARCH : The architecture of the device being built

Create machine

» A machine describes your hardware

» Stored under meta-<bsp_name>/conf/machine/*.conf

» The file name corresponds to the value set in the MACHINE variable
meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

» Contains configuration variables related to the architecture, to machine's features
and to customize the kernel image or the filesystems used.

TARGET_ARCH : The architecture of the device being built
PREFERRED_PROVIDER_ virtual /kernel : The kernel recipe to use

Create machine

» A machine describes your hardware
» Stored under meta-<bsp_name>/conf/machine/*.conf

» The file name corresponds to the value set in the MACHINE variable
meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

» Contains configuration variables related to the architecture, to machine's features
and to customize the kernel image or the filesystems used.
TARGET_ARCH : The architecture of the device being built
PREFERRED_PROVIDER_ virtual /kernel : The kernel recipe to use
SERIAL_CONSOLE : Speed and device for the serial console to attach. Passed
to the kernel as the console parameter, e.g. 115200 ttySO

O

Create recipe Create image Create machine

4
|Extend recipe | | Create distro |

» A machine describes your hardware
» Stored under meta-<bsp_name>/conf/machine/*.conf

» The file name corresponds to the value set in the MACHINE variable
meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

» Contains configuration variables related to the architecture, to machine's features
and to customize the kernel image or the filesystems used.
TARGET_ARCH : The architecture of the device being built
PREFERRED_PROVIDER_ virtual /kernel : The kernel recipe to use
SERIAL_CONSOLE : Speed and device for the serial console to attach. Passed
to the kernel as the console parameter, e.g. 115200 ttySO
KERNEL_IMAGETYPE : The type of kernel image to build, e.g. zImage

O

Create recipe Create image Create machine

4
|Extend recipe | | Create distro |

» A machine describes your hardware
» Stored under meta-<bsp_name>/conf/machine/*.conf

» The file name corresponds to the value set in the MACHINE variable
meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

» Contains configuration variables related to the architecture, to machine's features
and to customize the kernel image or the filesystems used.
TARGET_ARCH : The architecture of the device being built
PREFERRED_PROVIDER_ virtual /kernel : The kernel recipe to use
SERIAL_CONSOLE : Speed and device for the serial console to attach. Passed

to the kernel as the console parameter, e.g. 115200 ttySO

KERNEL_IMAGETYPE : The type of kernel image to build, e.g. zImage

v Describe your machine in a READVE file

Create image Create machine

4
Extend recipe | | Create distro |

conf/machine/fe-machine.conf

require conf/machine/include/soc-family.inc
require conf/machine/include/tune-cortexab.inc

TARGET _ARCH = "arm"

PREFERRED_PROVIDER_virtual/kernel 7= "linux-at91"
PREFERRED_PROVIDER_virtual/bootloader ?= "u-boot-at91"

KERNEL_IMAGETYPE = "zImage"
KERNEL_DEVICETREE = "at91-samabd3_xplained.dtb"

SERIAL_CONSOLE 7= "115200 ttySO"

User/Developer actions

Download » Configure » Compile
Developer's work
Create layer \
Create recipe/ Create image Create machine

4

Extend recipe Create distro

Thank you for listening!

i.' yocto - @

openembedded
PROIJECT

Questions? Suggestions? Comments?

Mylene Josserand

mylene@bootlin.com

Slides under CC-BY-SA 3.0

http://bootlin.com/pub/conferences/2017/embedded-recipes/josserand-introduction-to-yocto-
project/

http://bootlin.com/pub/conferences/2017/embedded-recipes/josserand-introduction-to-yocto-project/
http://bootlin.com/pub/conferences/2017/embedded-recipes/josserand-introduction-to-yocto-project/

