
Embedded Recipes Conference - 2017

Introduction to the Yocto Project /
OpenEmbedded-core

Mylène Josserand
Bootlin
mylene@bootlin.com

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Mylène Josserand

▶ Embedded Linux engineer at Bootlin since
2016
▶ Embedded Linux expertise
▶ Development, consulting and training around

the Yocto Project
▶ One of the authors of Bootlin’ Yocto Project

/ OpenEmbedded training materials.
▶ Kernel contributor: audio driver, touchscreen,

RTC and more to come!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

Introduction

▶ In this talk, we will:

▶ Understand why we should use a build system
▶ How the Yocto Project / OpenEmbedded core are structured
▶ How we can use it
▶ How we can update it to fit our needs
▶ Give some good practices to start using the Yocto Project correctly

▶ Allows to customize many things: it is easy to do things the wrong way
▶ When you see a ✓, it means it is a good practice!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Introduction

▶ In this talk, we will:
▶ Understand why we should use a build system

▶ How the Yocto Project / OpenEmbedded core are structured
▶ How we can use it
▶ How we can update it to fit our needs
▶ Give some good practices to start using the Yocto Project correctly

▶ Allows to customize many things: it is easy to do things the wrong way
▶ When you see a ✓, it means it is a good practice!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Introduction

▶ In this talk, we will:
▶ Understand why we should use a build system
▶ How the Yocto Project / OpenEmbedded core are structured

▶ How we can use it
▶ How we can update it to fit our needs
▶ Give some good practices to start using the Yocto Project correctly

▶ Allows to customize many things: it is easy to do things the wrong way
▶ When you see a ✓, it means it is a good practice!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Introduction

▶ In this talk, we will:
▶ Understand why we should use a build system
▶ How the Yocto Project / OpenEmbedded core are structured
▶ How we can use it

▶ How we can update it to fit our needs
▶ Give some good practices to start using the Yocto Project correctly

▶ Allows to customize many things: it is easy to do things the wrong way
▶ When you see a ✓, it means it is a good practice!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Introduction

▶ In this talk, we will:
▶ Understand why we should use a build system
▶ How the Yocto Project / OpenEmbedded core are structured
▶ How we can use it
▶ How we can update it to fit our needs

▶ Give some good practices to start using the Yocto Project correctly
▶ Allows to customize many things: it is easy to do things the wrong way
▶ When you see a ✓, it means it is a good practice!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Introduction

▶ In this talk, we will:
▶ Understand why we should use a build system
▶ How the Yocto Project / OpenEmbedded core are structured
▶ How we can use it
▶ How we can update it to fit our needs
▶ Give some good practices to start using the Yocto Project correctly

▶ Allows to customize many things: it is easy to do things the wrong way
▶ When you see a ✓, it means it is a good practice!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Introduction

▶ In this talk, we will:
▶ Understand why we should use a build system
▶ How the Yocto Project / OpenEmbedded core are structured
▶ How we can use it
▶ How we can update it to fit our needs
▶ Give some good practices to start using the Yocto Project correctly

▶ Allows to customize many things: it is easy to do things the wrong way

▶ When you see a ✓, it means it is a good practice!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Introduction

▶ In this talk, we will:
▶ Understand why we should use a build system
▶ How the Yocto Project / OpenEmbedded core are structured
▶ How we can use it
▶ How we can update it to fit our needs
▶ Give some good practices to start using the Yocto Project correctly

▶ Allows to customize many things: it is easy to do things the wrong way
▶ When you see a ✓, it means it is a good practice!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Why use a build system?

▶ In the Embedded world, we have many constraints
▶ Nice to reduce the system to a minimal one + add our custom application
▶ A build system will automate the creation of the system in a reproducible way
▶ Integration means packaging applications to create a final image

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

Why use a build system?

▶ In the Embedded world, we have many constraints

▶ Nice to reduce the system to a minimal one + add our custom application
▶ A build system will automate the creation of the system in a reproducible way
▶ Integration means packaging applications to create a final image

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

Why use a build system?

▶ In the Embedded world, we have many constraints
▶ Nice to reduce the system to a minimal one + add our custom application

▶ A build system will automate the creation of the system in a reproducible way
▶ Integration means packaging applications to create a final image

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

Why use a build system?

▶ In the Embedded world, we have many constraints
▶ Nice to reduce the system to a minimal one + add our custom application
▶ A build system will automate the creation of the system in a reproducible way

▶ Integration means packaging applications to create a final image

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

Why use a build system?

▶ In the Embedded world, we have many constraints
▶ Nice to reduce the system to a minimal one + add our custom application
▶ A build system will automate the creation of the system in a reproducible way
▶ Integration means packaging applications to create a final image

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

System integration: several possibilities

▶ Building everything manually:

⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):

⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):

⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility

⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):

⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):

⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell

⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):

⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):

⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):

⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):

⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):

⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):

⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):⊕
Easy to create and extend

⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):

⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)

⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):

⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source

⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):

⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation

⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):

⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):

⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):

⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):⊗
Not as easy as a binary distribution

⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):⊗
Not as easy as a binary distribution⊕
Nearly full flexibility

⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy

⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible

⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

System integration: several possibilities

▶ Building everything manually:⊕
Full flexibility⊗
Dependency hell⊗
Lack of reproducibility

▶ Binary distribution (Debian, Ubuntu, Fedora, etc):⊕
Easy to create and extend⊗
Hard to customize and optimize (boot time, size)⊗
Hard to rebuild from source⊗
Native-compilation⊗
Not available for all architectures

▶ Build systems (Buildroot, the Yocto Project, etc):⊗
Not as easy as a binary distribution⊕
Nearly full flexibility⊕
Built from source: customization and optimization are easy⊕
Fully reproducible⊕
Cross-compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

Representation in the Yocto Project

▶ Common tasks defined in OpenEmbedded core
▶ Many recipes availables for many applications: organized in layers
▶ Allow to build custom embedded Linux-based systems

⇒ This is the aim of the Yocto Project

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Representation in the Yocto Project

▶ Common tasks defined in OpenEmbedded core
▶ Many recipes availables for many applications: organized in layers
▶ Allow to build custom embedded Linux-based systems

⇒ This is the aim of the Yocto Project

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Representation in the Yocto Project

▶ Common tasks defined in OpenEmbedded core
▶ Many recipes availables for many applications: organized in layers
▶ Allow to build custom embedded Linux-based systems

⇒ This is the aim of the Yocto Project

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Representation in the Yocto Project

▶ Common tasks defined in OpenEmbedded core
▶ Many recipes availables for many applications: organized in layers
▶ Allow to build custom embedded Linux-based systems

⇒ This is the aim of the Yocto Project

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Representation in the Yocto Project

▶ Common tasks defined in OpenEmbedded core
▶ Many recipes availables for many applications: organized in layers
▶ Allow to build custom embedded Linux-based systems

⇒ This is the aim of the Yocto Project

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Representation in the Yocto Project

▶ Common tasks defined in OpenEmbedded core

▶ Many recipes availables for many applications: organized in layers
▶ Allow to build custom embedded Linux-based systems

⇒ This is the aim of the Yocto Project

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Representation in the Yocto Project

▶ Common tasks defined in OpenEmbedded core
▶ Many recipes availables for many applications: organized in layers

▶ Allow to build custom embedded Linux-based systems

⇒ This is the aim of the Yocto Project

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Representation in the Yocto Project

▶ Common tasks defined in OpenEmbedded core
▶ Many recipes availables for many applications: organized in layers
▶ Allow to build custom embedded Linux-based systems

⇒ This is the aim of the Yocto Project

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Representation in the Yocto Project

▶ Common tasks defined in OpenEmbedded core
▶ Many recipes availables for many applications: organized in layers
▶ Allow to build custom embedded Linux-based systems

⇒ This is the aim of the Yocto Project
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

OpenEmbedded core & Poky

▶ Co-maintained by the Yocto
Project and OpenEmbedded
Project

▶ Set of base layer with recipes
and classes

▶ It is the core of all the magic
▶ It supports the ARM, MIPS (32

and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

▶ Reference distribution of the Yocto Project
▶ Contains everything you need to start a

project:

▶ OpenEmbedded-core
▶ Bitbake
▶ Additional layers

▶ Also contains some useful tools to ease
recipes and layers’ creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

OpenEmbedded core & Poky

▶ Co-maintained by the Yocto
Project and OpenEmbedded
Project

▶ Set of base layer with recipes
and classes

▶ It is the core of all the magic
▶ It supports the ARM, MIPS (32

and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

▶ Reference distribution of the Yocto Project
▶ Contains everything you need to start a

project:

▶ OpenEmbedded-core
▶ Bitbake
▶ Additional layers

▶ Also contains some useful tools to ease
recipes and layers’ creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

OpenEmbedded core & Poky

▶ Co-maintained by the Yocto
Project and OpenEmbedded
Project

▶ Set of base layer with recipes
and classes

▶ It is the core of all the magic
▶ It supports the ARM, MIPS (32

and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

▶ Reference distribution of the Yocto Project
▶ Contains everything you need to start a

project:

▶ OpenEmbedded-core
▶ Bitbake
▶ Additional layers

▶ Also contains some useful tools to ease
recipes and layers’ creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

OpenEmbedded core & Poky

▶ Co-maintained by the Yocto
Project and OpenEmbedded
Project

▶ Set of base layer with recipes
and classes

▶ It is the core of all the magic

▶ It supports the ARM, MIPS (32
and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

▶ Reference distribution of the Yocto Project
▶ Contains everything you need to start a

project:

▶ OpenEmbedded-core
▶ Bitbake
▶ Additional layers

▶ Also contains some useful tools to ease
recipes and layers’ creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

OpenEmbedded core & Poky

▶ Co-maintained by the Yocto
Project and OpenEmbedded
Project

▶ Set of base layer with recipes
and classes

▶ It is the core of all the magic
▶ It supports the ARM, MIPS (32

and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

▶ Reference distribution of the Yocto Project
▶ Contains everything you need to start a

project:

▶ OpenEmbedded-core
▶ Bitbake
▶ Additional layers

▶ Also contains some useful tools to ease
recipes and layers’ creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

OpenEmbedded core & Poky

▶ Co-maintained by the Yocto
Project and OpenEmbedded
Project

▶ Set of base layer with recipes
and classes

▶ It is the core of all the magic
▶ It supports the ARM, MIPS (32

and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

▶ Reference distribution of the Yocto Project
▶ Contains everything you need to start a

project:

▶ OpenEmbedded-core
▶ Bitbake
▶ Additional layers

▶ Also contains some useful tools to ease
recipes and layers’ creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

OpenEmbedded core & Poky

▶ Co-maintained by the Yocto
Project and OpenEmbedded
Project

▶ Set of base layer with recipes
and classes

▶ It is the core of all the magic
▶ It supports the ARM, MIPS (32

and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

▶ Reference distribution of the Yocto Project

▶ Contains everything you need to start a
project:

▶ OpenEmbedded-core
▶ Bitbake
▶ Additional layers

▶ Also contains some useful tools to ease
recipes and layers’ creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

OpenEmbedded core & Poky

▶ Co-maintained by the Yocto
Project and OpenEmbedded
Project

▶ Set of base layer with recipes
and classes

▶ It is the core of all the magic
▶ It supports the ARM, MIPS (32

and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

▶ Reference distribution of the Yocto Project
▶ Contains everything you need to start a

project:

▶ OpenEmbedded-core
▶ Bitbake
▶ Additional layers

▶ Also contains some useful tools to ease
recipes and layers’ creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

OpenEmbedded core & Poky

▶ Co-maintained by the Yocto
Project and OpenEmbedded
Project

▶ Set of base layer with recipes
and classes

▶ It is the core of all the magic
▶ It supports the ARM, MIPS (32

and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

▶ Reference distribution of the Yocto Project
▶ Contains everything you need to start a

project:
▶ OpenEmbedded-core

▶ Bitbake
▶ Additional layers

▶ Also contains some useful tools to ease
recipes and layers’ creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

OpenEmbedded core & Poky

▶ Co-maintained by the Yocto
Project and OpenEmbedded
Project

▶ Set of base layer with recipes
and classes

▶ It is the core of all the magic
▶ It supports the ARM, MIPS (32

and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

▶ Reference distribution of the Yocto Project
▶ Contains everything you need to start a

project:
▶ OpenEmbedded-core
▶ Bitbake

▶ Additional layers
▶ Also contains some useful tools to ease

recipes and layers’ creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

OpenEmbedded core & Poky

▶ Co-maintained by the Yocto
Project and OpenEmbedded
Project

▶ Set of base layer with recipes
and classes

▶ It is the core of all the magic
▶ It supports the ARM, MIPS (32

and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

▶ Reference distribution of the Yocto Project
▶ Contains everything you need to start a

project:
▶ OpenEmbedded-core
▶ Bitbake
▶ Additional layers

▶ Also contains some useful tools to ease
recipes and layers’ creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

OpenEmbedded core & Poky

▶ Co-maintained by the Yocto
Project and OpenEmbedded
Project

▶ Set of base layer with recipes
and classes

▶ It is the core of all the magic
▶ It supports the ARM, MIPS (32

and 64 bits), PowerPC and x86
(32 and 64 bits) architectures +
QEMU

▶ Reference distribution of the Yocto Project
▶ Contains everything you need to start a

project:
▶ OpenEmbedded-core
▶ Bitbake
▶ Additional layers

▶ Also contains some useful tools to ease
recipes and layers’ creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

The Yocto Project / OpenEmbedded Core / Poky

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

Workflow - General

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

Workflow - General

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

Workflow - General

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

Workflow - Users/Developers actions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Workflow - 1. Download

▶ Find which version you want to use:

▶ Support level: Development, Stable, Community
▶ A codename corresponds to a Poky and Bitbake versions

Pyro = Yocto Project v2.3 → Poky v17.0 & Bitbake v1.34
▶ How to download:

git clone -b pyro git://git.yoctoproject.org/poky.git

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

Workflow - 1. Download

▶ Find which version you want to use:

Figure: https://wiki.yoctoproject.org/wiki/Releases

▶ Support level: Development, Stable, Community
▶ A codename corresponds to a Poky and Bitbake versions

Pyro = Yocto Project v2.3 → Poky v17.0 & Bitbake v1.34
▶ How to download:

git clone -b pyro git://git.yoctoproject.org/poky.git

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

https://wiki.yoctoproject.org/wiki/Releases

Workflow - 1. Download

▶ Find which version you want to use:

Figure: https://wiki.yoctoproject.org/wiki/Releases

▶ Support level: Development, Stable, Community

▶ A codename corresponds to a Poky and Bitbake versions
Pyro = Yocto Project v2.3 → Poky v17.0 & Bitbake v1.34

▶ How to download:

git clone -b pyro git://git.yoctoproject.org/poky.git

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

https://wiki.yoctoproject.org/wiki/Releases

Workflow - 1. Download

▶ Find which version you want to use:

Figure: https://wiki.yoctoproject.org/wiki/Releases

▶ Support level: Development, Stable, Community
▶ A codename corresponds to a Poky and Bitbake versions

Pyro = Yocto Project v2.3 → Poky v17.0 & Bitbake v1.34

▶ How to download:

git clone -b pyro git://git.yoctoproject.org/poky.git

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

https://wiki.yoctoproject.org/wiki/Releases

Workflow - 1. Download

▶ Find which version you want to use:

Figure: https://wiki.yoctoproject.org/wiki/Releases

▶ Support level: Development, Stable, Community
▶ A codename corresponds to a Poky and Bitbake versions

Pyro = Yocto Project v2.3 → Poky v17.0 & Bitbake v1.34
▶ How to download:

git clone -b pyro git://git.yoctoproject.org/poky.git

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

https://wiki.yoctoproject.org/wiki/Releases

Workflow - 1. Download

▶ Find which version you want to use:

Figure: https://wiki.yoctoproject.org/wiki/Releases

▶ Support level: Development, Stable, Community
▶ A codename corresponds to a Poky and Bitbake versions

Pyro = Yocto Project v2.3 → Poky v17.0 & Bitbake v1.34
▶ How to download:

git clone -b pyro git://git.yoctoproject.org/poky.git

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

https://wiki.yoctoproject.org/wiki/Releases

Workflow - 1. Download
▶ Layers are sets of recipes, matching a common purpose.

To simplify things, they are just folders

▶ Look at existing layers

Figure: http://layers.openembedded.org/layerindex/

▶ Download all other layers on same branch than Poky: Pyro
✓ Use existing layers before creating a new one ⇒ saves you time
✓ DO NOT EDIT POKY/UPSTREAM LAYERS ⇒ complicates updates

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

http://layers.openembedded.org/layerindex/

Workflow - 1. Download
▶ Layers are sets of recipes, matching a common purpose.

To simplify things, they are just folders
▶ Look at existing layers

Figure: http://layers.openembedded.org/layerindex/

▶ Download all other layers on same branch than Poky: Pyro
✓ Use existing layers before creating a new one ⇒ saves you time
✓ DO NOT EDIT POKY/UPSTREAM LAYERS ⇒ complicates updates

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

http://layers.openembedded.org/layerindex/

Workflow - 1. Download
▶ Layers are sets of recipes, matching a common purpose.

To simplify things, they are just folders
▶ Look at existing layers

Figure: http://layers.openembedded.org/layerindex/

▶ Download all other layers on same branch than Poky: Pyro

✓ Use existing layers before creating a new one ⇒ saves you time
✓ DO NOT EDIT POKY/UPSTREAM LAYERS ⇒ complicates updates

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

http://layers.openembedded.org/layerindex/

Workflow - 1. Download
▶ Layers are sets of recipes, matching a common purpose.

To simplify things, they are just folders
▶ Look at existing layers

Figure: http://layers.openembedded.org/layerindex/

▶ Download all other layers on same branch than Poky: Pyro
✓ Use existing layers before creating a new one ⇒ saves you time

✓ DO NOT EDIT POKY/UPSTREAM LAYERS ⇒ complicates updates

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

http://layers.openembedded.org/layerindex/

Workflow - 1. Download
▶ Layers are sets of recipes, matching a common purpose.

To simplify things, they are just folders
▶ Look at existing layers

Figure: http://layers.openembedded.org/layerindex/

▶ Download all other layers on same branch than Poky: Pyro
✓ Use existing layers before creating a new one ⇒ saves you time
✓ DO NOT EDIT POKY/UPSTREAM LAYERS ⇒ complicates updates

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

http://layers.openembedded.org/layerindex/

Workflow - 2. Configure the build

▶ A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env

▶ Will move you in a build folder
▶ Now, can run any commands
▶ All the local configurations are in the conf folder

build/
|-- conf

|-- bblayers.conf
|-- local.conf

▶ Edit your bblayers.conf with possible additional layers:

BBLAYERS ?= " \
/home/mylene/yocto/poky/meta \
/home/mylene/yocto/poky/meta-poky \
/home/mylene/yocto/poky/meta-yocto-bsp \
/home/mylene/yocto/meta-freescale \
/home/mylene/yocto/meta-qt5 \
"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Workflow - 2. Configure the build
▶ A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env

▶ Will move you in a build folder
▶ Now, can run any commands
▶ All the local configurations are in the conf folder

build/
|-- conf

|-- bblayers.conf
|-- local.conf

▶ Edit your bblayers.conf with possible additional layers:

BBLAYERS ?= " \
/home/mylene/yocto/poky/meta \
/home/mylene/yocto/poky/meta-poky \
/home/mylene/yocto/poky/meta-yocto-bsp \
/home/mylene/yocto/meta-freescale \
/home/mylene/yocto/meta-qt5 \
"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Workflow - 2. Configure the build
▶ A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env

▶ Will move you in a build folder
▶ Now, can run any commands
▶ All the local configurations are in the conf folder

build/
|-- conf

|-- bblayers.conf
|-- local.conf

▶ Edit your bblayers.conf with possible additional layers:

BBLAYERS ?= " \
/home/mylene/yocto/poky/meta \
/home/mylene/yocto/poky/meta-poky \
/home/mylene/yocto/poky/meta-yocto-bsp \
/home/mylene/yocto/meta-freescale \
/home/mylene/yocto/meta-qt5 \
"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Workflow - 2. Configure the build
▶ A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env

▶ Will move you in a build folder

▶ Now, can run any commands
▶ All the local configurations are in the conf folder

build/
|-- conf

|-- bblayers.conf
|-- local.conf

▶ Edit your bblayers.conf with possible additional layers:

BBLAYERS ?= " \
/home/mylene/yocto/poky/meta \
/home/mylene/yocto/poky/meta-poky \
/home/mylene/yocto/poky/meta-yocto-bsp \
/home/mylene/yocto/meta-freescale \
/home/mylene/yocto/meta-qt5 \
"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Workflow - 2. Configure the build
▶ A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env

▶ Will move you in a build folder
▶ Now, can run any commands

▶ All the local configurations are in the conf folder

build/
|-- conf

|-- bblayers.conf
|-- local.conf

▶ Edit your bblayers.conf with possible additional layers:

BBLAYERS ?= " \
/home/mylene/yocto/poky/meta \
/home/mylene/yocto/poky/meta-poky \
/home/mylene/yocto/poky/meta-yocto-bsp \
/home/mylene/yocto/meta-freescale \
/home/mylene/yocto/meta-qt5 \
"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Workflow - 2. Configure the build
▶ A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env

▶ Will move you in a build folder
▶ Now, can run any commands
▶ All the local configurations are in the conf folder

build/
|-- conf

|-- bblayers.conf
|-- local.conf

▶ Edit your bblayers.conf with possible additional layers:

BBLAYERS ?= " \
/home/mylene/yocto/poky/meta \
/home/mylene/yocto/poky/meta-poky \
/home/mylene/yocto/poky/meta-yocto-bsp \
/home/mylene/yocto/meta-freescale \
/home/mylene/yocto/meta-qt5 \
"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Workflow - 2. Configure the build
▶ A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env

▶ Will move you in a build folder
▶ Now, can run any commands
▶ All the local configurations are in the conf folder

build/
|-- conf

|-- bblayers.conf
|-- local.conf

▶ Edit your bblayers.conf with possible additional layers:

BBLAYERS ?= " \
/home/mylene/yocto/poky/meta \
/home/mylene/yocto/poky/meta-poky \
/home/mylene/yocto/poky/meta-yocto-bsp \
/home/mylene/yocto/meta-freescale \
/home/mylene/yocto/meta-qt5 \
"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Workflow - 2. Configure the build
▶ A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env

▶ Will move you in a build folder
▶ Now, can run any commands
▶ All the local configurations are in the conf folder

build/
|-- conf

|-- bblayers.conf
|-- local.conf

▶ Edit your bblayers.conf with possible additional layers:

BBLAYERS ?= " \
/home/mylene/yocto/poky/meta \
/home/mylene/yocto/poky/meta-poky \
/home/mylene/yocto/poky/meta-yocto-bsp \
/home/mylene/yocto/meta-freescale \
/home/mylene/yocto/meta-qt5 \
"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Workflow - 2. Configure the build
▶ A script with all variables needed by Bitbake must be sourced:

source oe-init-build-env

▶ Will move you in a build folder
▶ Now, can run any commands
▶ All the local configurations are in the conf folder

build/
|-- conf

|-- bblayers.conf
|-- local.conf

▶ Edit your bblayers.conf with possible additional layers:
BBLAYERS ?= " \
/home/mylene/yocto/poky/meta \
/home/mylene/yocto/poky/meta-poky \
/home/mylene/yocto/poky/meta-yocto-bsp \
/home/mylene/yocto/meta-freescale \
/home/mylene/yocto/meta-qt5 \
"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Workflow - 2. Configure the build
▶ Edit local.conf with your MACHINE and your DISTRO

▶ MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

▶ poky: beaglebone, x86, x86-64
▶ meta-ti: beagleboard, pandaboard, ...
▶ meta-fsl-arm: imx23, imx28, imx6, imx7, ...
▶ meta-atmel: at91*, sama5d*, ...

▶ DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

▶ poky: poky, poky-tiny, ...
▶ meta-angstrom: angstrom

▶ Noticed that local.conf ⇒ only for the local workstation.
✓ Avoid changes directly in local.conf (or only for test purposes, except for some

variables such as MACHINE and DISTRO)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Workflow - 2. Configure the build
▶ Edit local.conf with your MACHINE and your DISTRO

▶ MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

▶ poky: beaglebone, x86, x86-64
▶ meta-ti: beagleboard, pandaboard, ...
▶ meta-fsl-arm: imx23, imx28, imx6, imx7, ...
▶ meta-atmel: at91*, sama5d*, ...

▶ DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

▶ poky: poky, poky-tiny, ...
▶ meta-angstrom: angstrom

▶ Noticed that local.conf ⇒ only for the local workstation.
✓ Avoid changes directly in local.conf (or only for test purposes, except for some

variables such as MACHINE and DISTRO)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Workflow - 2. Configure the build
▶ Edit local.conf with your MACHINE and your DISTRO

▶ MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

▶ poky: beaglebone, x86, x86-64

▶ meta-ti: beagleboard, pandaboard, ...
▶ meta-fsl-arm: imx23, imx28, imx6, imx7, ...
▶ meta-atmel: at91*, sama5d*, ...

▶ DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

▶ poky: poky, poky-tiny, ...
▶ meta-angstrom: angstrom

▶ Noticed that local.conf ⇒ only for the local workstation.
✓ Avoid changes directly in local.conf (or only for test purposes, except for some

variables such as MACHINE and DISTRO)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Workflow - 2. Configure the build
▶ Edit local.conf with your MACHINE and your DISTRO

▶ MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

▶ poky: beaglebone, x86, x86-64
▶ meta-ti: beagleboard, pandaboard, ...

▶ meta-fsl-arm: imx23, imx28, imx6, imx7, ...
▶ meta-atmel: at91*, sama5d*, ...

▶ DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

▶ poky: poky, poky-tiny, ...
▶ meta-angstrom: angstrom

▶ Noticed that local.conf ⇒ only for the local workstation.
✓ Avoid changes directly in local.conf (or only for test purposes, except for some

variables such as MACHINE and DISTRO)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Workflow - 2. Configure the build
▶ Edit local.conf with your MACHINE and your DISTRO

▶ MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

▶ poky: beaglebone, x86, x86-64
▶ meta-ti: beagleboard, pandaboard, ...
▶ meta-fsl-arm: imx23, imx28, imx6, imx7, ...

▶ meta-atmel: at91*, sama5d*, ...
▶ DISTRO: Represents the top-level configuration that will apply to every build. It

will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

▶ poky: poky, poky-tiny, ...
▶ meta-angstrom: angstrom

▶ Noticed that local.conf ⇒ only for the local workstation.
✓ Avoid changes directly in local.conf (or only for test purposes, except for some

variables such as MACHINE and DISTRO)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Workflow - 2. Configure the build
▶ Edit local.conf with your MACHINE and your DISTRO

▶ MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

▶ poky: beaglebone, x86, x86-64
▶ meta-ti: beagleboard, pandaboard, ...
▶ meta-fsl-arm: imx23, imx28, imx6, imx7, ...
▶ meta-atmel: at91*, sama5d*, ...

▶ DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

▶ poky: poky, poky-tiny, ...
▶ meta-angstrom: angstrom

▶ Noticed that local.conf ⇒ only for the local workstation.
✓ Avoid changes directly in local.conf (or only for test purposes, except for some

variables such as MACHINE and DISTRO)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Workflow - 2. Configure the build
▶ Edit local.conf with your MACHINE and your DISTRO

▶ MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

▶ poky: beaglebone, x86, x86-64
▶ meta-ti: beagleboard, pandaboard, ...
▶ meta-fsl-arm: imx23, imx28, imx6, imx7, ...
▶ meta-atmel: at91*, sama5d*, ...

▶ DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

▶ poky: poky, poky-tiny, ...
▶ meta-angstrom: angstrom

▶ Noticed that local.conf ⇒ only for the local workstation.
✓ Avoid changes directly in local.conf (or only for test purposes, except for some

variables such as MACHINE and DISTRO)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Workflow - 2. Configure the build
▶ Edit local.conf with your MACHINE and your DISTRO

▶ MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

▶ poky: beaglebone, x86, x86-64
▶ meta-ti: beagleboard, pandaboard, ...
▶ meta-fsl-arm: imx23, imx28, imx6, imx7, ...
▶ meta-atmel: at91*, sama5d*, ...

▶ DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

▶ poky: poky, poky-tiny, ...

▶ meta-angstrom: angstrom

▶ Noticed that local.conf ⇒ only for the local workstation.
✓ Avoid changes directly in local.conf (or only for test purposes, except for some

variables such as MACHINE and DISTRO)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Workflow - 2. Configure the build
▶ Edit local.conf with your MACHINE and your DISTRO

▶ MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

▶ poky: beaglebone, x86, x86-64
▶ meta-ti: beagleboard, pandaboard, ...
▶ meta-fsl-arm: imx23, imx28, imx6, imx7, ...
▶ meta-atmel: at91*, sama5d*, ...

▶ DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

▶ poky: poky, poky-tiny, ...
▶ meta-angstrom: angstrom

▶ Noticed that local.conf ⇒ only for the local workstation.
✓ Avoid changes directly in local.conf (or only for test purposes, except for some

variables such as MACHINE and DISTRO)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Workflow - 2. Configure the build
▶ Edit local.conf with your MACHINE and your DISTRO

▶ MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

▶ poky: beaglebone, x86, x86-64
▶ meta-ti: beagleboard, pandaboard, ...
▶ meta-fsl-arm: imx23, imx28, imx6, imx7, ...
▶ meta-atmel: at91*, sama5d*, ...

▶ DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

▶ poky: poky, poky-tiny, ...
▶ meta-angstrom: angstrom

▶ Noticed that local.conf ⇒ only for the local workstation.

✓ Avoid changes directly in local.conf (or only for test purposes, except for some
variables such as MACHINE and DISTRO)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Workflow - 2. Configure the build
▶ Edit local.conf with your MACHINE and your DISTRO

▶ MACHINE: Describes your hardware. Can find it under specific layers: BSP layers.
Look at conf/machine/ folders

▶ poky: beaglebone, x86, x86-64
▶ meta-ti: beagleboard, pandaboard, ...
▶ meta-fsl-arm: imx23, imx28, imx6, imx7, ...
▶ meta-atmel: at91*, sama5d*, ...

▶ DISTRO: Represents the top-level configuration that will apply to every build. It
will include tools needed to use your hardware: compiler, libC, etc + some specific
variables Look at conf/distro/ folders

▶ poky: poky, poky-tiny, ...
▶ meta-angstrom: angstrom

▶ Noticed that local.conf ⇒ only for the local workstation.
✓ Avoid changes directly in local.conf (or only for test purposes, except for some

variables such as MACHINE and DISTRO)
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Workflow - 3. Build an image

▶ What is an IMAGE?
⇒ Represents your root filesystem: all your applications, libraries, configuration
files, ... Will find it under recipes-*/images/

▶ Common images already exist in Poky: core-image-minimal, core-image-base,
core-image-x11, ...

▶ Build an existing image:

bitbake core-image-minimal

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Workflow - 3. Build an image

▶ What is an IMAGE?
⇒ Represents your root filesystem: all your applications, libraries, configuration
files, ... Will find it under recipes-*/images/

▶ Common images already exist in Poky: core-image-minimal, core-image-base,
core-image-x11, ...

▶ Build an existing image:

bitbake core-image-minimal

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Workflow - 3. Build an image

▶ What is an IMAGE?
⇒ Represents your root filesystem: all your applications, libraries, configuration
files, ... Will find it under recipes-*/images/

▶ Common images already exist in Poky: core-image-minimal, core-image-base,
core-image-x11, ...

▶ Build an existing image:

bitbake core-image-minimal

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Workflow - 3. Build an image

▶ What is an IMAGE?
⇒ Represents your root filesystem: all your applications, libraries, configuration
files, ... Will find it under recipes-*/images/

▶ Common images already exist in Poky: core-image-minimal, core-image-base,
core-image-x11, ...

▶ Build an existing image:

bitbake core-image-minimal

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Workflow - 3. Build an image

▶ What is an IMAGE?
⇒ Represents your root filesystem: all your applications, libraries, configuration
files, ... Will find it under recipes-*/images/

▶ Common images already exist in Poky: core-image-minimal, core-image-base,
core-image-x11, ...

▶ Build an existing image:

bitbake core-image-minimal

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

MACHINE/DISTRO/IMAGE: a little reminder

▶ Machine: It represents your hardware
conf/machine/

▶ Distro: Represents the top-level
configuration that will apply on every
build
conf/distro/

▶ Image: It represents your root
filesystem itself: all your applications,
libraries, configuration’s files, etc
recipes-core/images

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

MACHINE/DISTRO/IMAGE: a little reminder

▶ Machine: It represents your hardware
conf/machine/

▶ Distro: Represents the top-level
configuration that will apply on every
build
conf/distro/

▶ Image: It represents your root
filesystem itself: all your applications,
libraries, configuration’s files, etc
recipes-core/images

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

MACHINE/DISTRO/IMAGE: a little reminder

▶ Machine: It represents your hardware
conf/machine/

▶ Distro: Represents the top-level
configuration that will apply on every
build
conf/distro/

▶ Image: It represents your root
filesystem itself: all your applications,
libraries, configuration’s files, etc
recipes-core/images

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

MACHINE/DISTRO/IMAGE: a little reminder

▶ Machine: It represents your hardware
conf/machine/

▶ Distro: Represents the top-level
configuration that will apply on every
build
conf/distro/

▶ Image: It represents your root
filesystem itself: all your applications,
libraries, configuration’s files, etc
recipes-core/images

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

MACHINE/DISTRO/IMAGE: a little reminder

▶ Machine: It represents your hardware
conf/machine/

▶ Distro: Represents the top-level
configuration that will apply on every
build
conf/distro/

▶ Image: It represents your root
filesystem itself: all your applications,
libraries, configuration’s files, etc
recipes-core/images

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

MACHINE/DISTRO/IMAGE: a little reminder

▶ Machine: It represents your hardware
conf/machine/

▶ Distro: Represents the top-level
configuration that will apply on every
build
conf/distro/

▶ Image: It represents your root
filesystem itself: all your applications,
libraries, configuration’s files, etc
recipes-core/images

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

MACHINE/DISTRO/IMAGE: a little reminder

▶ Machine: It represents your hardware
conf/machine/

▶ Distro: Represents the top-level
configuration that will apply on every
build
conf/distro/

▶ Image: It represents your root
filesystem itself: all your applications,
libraries, configuration’s files, etc
recipes-core/images

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

Workflow - Developer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

Workflow - 4. Create a layer

▶ You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

▶ Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS
▶ To be able to do that, we will create our own layer that will host all our

modifications/applications
▶ Poky provides a tool to create layers:

yocto-layer create <layer_name> -o <dest_dir>

✓ The layer’s name must be meta-* (done automatically using yocto-layer tool)
✓ Avoid uppercase and funny/long names
✓ If you have different projects with common parts, try to create two layers

⇒ Can re-use some parts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Workflow - 4. Create a layer

▶ You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

▶ Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS
▶ To be able to do that, we will create our own layer that will host all our

modifications/applications
▶ Poky provides a tool to create layers:

yocto-layer create <layer_name> -o <dest_dir>

✓ The layer’s name must be meta-* (done automatically using yocto-layer tool)
✓ Avoid uppercase and funny/long names
✓ If you have different projects with common parts, try to create two layers

⇒ Can re-use some parts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Workflow - 4. Create a layer

▶ You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

▶ Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS

▶ To be able to do that, we will create our own layer that will host all our
modifications/applications

▶ Poky provides a tool to create layers:

yocto-layer create <layer_name> -o <dest_dir>

✓ The layer’s name must be meta-* (done automatically using yocto-layer tool)
✓ Avoid uppercase and funny/long names
✓ If you have different projects with common parts, try to create two layers

⇒ Can re-use some parts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Workflow - 4. Create a layer

▶ You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

▶ Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS
▶ To be able to do that, we will create our own layer that will host all our

modifications/applications

▶ Poky provides a tool to create layers:

yocto-layer create <layer_name> -o <dest_dir>

✓ The layer’s name must be meta-* (done automatically using yocto-layer tool)
✓ Avoid uppercase and funny/long names
✓ If you have different projects with common parts, try to create two layers

⇒ Can re-use some parts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Workflow - 4. Create a layer

▶ You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

▶ Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS
▶ To be able to do that, we will create our own layer that will host all our

modifications/applications
▶ Poky provides a tool to create layers:

yocto-layer create <layer_name> -o <dest_dir>

✓ The layer’s name must be meta-* (done automatically using yocto-layer tool)
✓ Avoid uppercase and funny/long names
✓ If you have different projects with common parts, try to create two layers

⇒ Can re-use some parts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Workflow - 4. Create a layer

▶ You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

▶ Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS
▶ To be able to do that, we will create our own layer that will host all our

modifications/applications
▶ Poky provides a tool to create layers:

yocto-layer create <layer_name> -o <dest_dir>

✓ The layer’s name must be meta-* (done automatically using yocto-layer tool)
✓ Avoid uppercase and funny/long names
✓ If you have different projects with common parts, try to create two layers

⇒ Can re-use some parts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Workflow - 4. Create a layer

▶ You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

▶ Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS
▶ To be able to do that, we will create our own layer that will host all our

modifications/applications
▶ Poky provides a tool to create layers:

yocto-layer create <layer_name> -o <dest_dir>

✓ The layer’s name must be meta-* (done automatically using yocto-layer tool)

✓ Avoid uppercase and funny/long names
✓ If you have different projects with common parts, try to create two layers

⇒ Can re-use some parts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Workflow - 4. Create a layer

▶ You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

▶ Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS
▶ To be able to do that, we will create our own layer that will host all our

modifications/applications
▶ Poky provides a tool to create layers:

yocto-layer create <layer_name> -o <dest_dir>

✓ The layer’s name must be meta-* (done automatically using yocto-layer tool)
✓ Avoid uppercase and funny/long names

✓ If you have different projects with common parts, try to create two layers
⇒ Can re-use some parts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Workflow - 4. Create a layer

▶ You may have custom hardware, need to update recipes from upstream layers,
integrate your own application, etc

▶ Already said before: DO NOT EDIT POKY/UPSTREAM LAYERS
▶ To be able to do that, we will create our own layer that will host all our

modifications/applications
▶ Poky provides a tool to create layers:

yocto-layer create <layer_name> -o <dest_dir>

✓ The layer’s name must be meta-* (done automatically using yocto-layer tool)
✓ Avoid uppercase and funny/long names
✓ If you have different projects with common parts, try to create two layers

⇒ Can re-use some parts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Workflow - 5. Create a recipe

▶ A recipe is a file describing tasks for an application to:

▶ retrieve its sources
▶ configure it
▶ compile it
▶ install it

▶ It handles all the dependencies for you.
▶ Many common tasks are already defined by OpenEmbedded-core
▶ Organized in folders with the same purpose (recipes-core, recipes-bsp,

recipes-kernel, recipes-devtool, recipes-support, ...) and a sub-folder with the
application’s name

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Workflow - 5. Create a recipe

▶ A recipe is a file describing tasks for an application to:

▶ retrieve its sources
▶ configure it
▶ compile it
▶ install it

▶ It handles all the dependencies for you.
▶ Many common tasks are already defined by OpenEmbedded-core
▶ Organized in folders with the same purpose (recipes-core, recipes-bsp,

recipes-kernel, recipes-devtool, recipes-support, ...) and a sub-folder with the
application’s name

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Workflow - 5. Create a recipe

▶ A recipe is a file describing tasks for an application to:
▶ retrieve its sources

▶ configure it
▶ compile it
▶ install it

▶ It handles all the dependencies for you.
▶ Many common tasks are already defined by OpenEmbedded-core
▶ Organized in folders with the same purpose (recipes-core, recipes-bsp,

recipes-kernel, recipes-devtool, recipes-support, ...) and a sub-folder with the
application’s name

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Workflow - 5. Create a recipe

▶ A recipe is a file describing tasks for an application to:
▶ retrieve its sources
▶ configure it

▶ compile it
▶ install it

▶ It handles all the dependencies for you.
▶ Many common tasks are already defined by OpenEmbedded-core
▶ Organized in folders with the same purpose (recipes-core, recipes-bsp,

recipes-kernel, recipes-devtool, recipes-support, ...) and a sub-folder with the
application’s name

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Workflow - 5. Create a recipe

▶ A recipe is a file describing tasks for an application to:
▶ retrieve its sources
▶ configure it
▶ compile it

▶ install it
▶ It handles all the dependencies for you.
▶ Many common tasks are already defined by OpenEmbedded-core
▶ Organized in folders with the same purpose (recipes-core, recipes-bsp,

recipes-kernel, recipes-devtool, recipes-support, ...) and a sub-folder with the
application’s name

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Workflow - 5. Create a recipe

▶ A recipe is a file describing tasks for an application to:
▶ retrieve its sources
▶ configure it
▶ compile it
▶ install it

▶ It handles all the dependencies for you.
▶ Many common tasks are already defined by OpenEmbedded-core
▶ Organized in folders with the same purpose (recipes-core, recipes-bsp,

recipes-kernel, recipes-devtool, recipes-support, ...) and a sub-folder with the
application’s name

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Workflow - 5. Create a recipe

▶ A recipe is a file describing tasks for an application to:
▶ retrieve its sources
▶ configure it
▶ compile it
▶ install it

▶ It handles all the dependencies for you.

▶ Many common tasks are already defined by OpenEmbedded-core
▶ Organized in folders with the same purpose (recipes-core, recipes-bsp,

recipes-kernel, recipes-devtool, recipes-support, ...) and a sub-folder with the
application’s name

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Workflow - 5. Create a recipe

▶ A recipe is a file describing tasks for an application to:
▶ retrieve its sources
▶ configure it
▶ compile it
▶ install it

▶ It handles all the dependencies for you.
▶ Many common tasks are already defined by OpenEmbedded-core

▶ Organized in folders with the same purpose (recipes-core, recipes-bsp,
recipes-kernel, recipes-devtool, recipes-support, ...) and a sub-folder with the
application’s name

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Workflow - 5. Create a recipe

▶ A recipe is a file describing tasks for an application to:
▶ retrieve its sources
▶ configure it
▶ compile it
▶ install it

▶ It handles all the dependencies for you.
▶ Many common tasks are already defined by OpenEmbedded-core
▶ Organized in folders with the same purpose (recipes-core, recipes-bsp,

recipes-kernel, recipes-devtool, recipes-support, ...) and a sub-folder with the
application’s name

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Workflow - 5. Create a recipe

▶ To create a recipe, you have to create a .bb file. It is the format that bitbake
understands

▶ The format of a recipe file name is <application-name>_<version>.bb
▶ A recipe can be divided in three parts:

▶ The header: what/who. Description of the application
▶ The sources: where. Can be tarballs, remote repository, ...
▶ The tasks: how. How to proceed with the application’s sources

▶ Classes are available for tasks commonly used: kernel, CMake, autotools, ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Workflow - 5. Create a recipe

▶ To create a recipe, you have to create a .bb file. It is the format that bitbake
understands

▶ The format of a recipe file name is <application-name>_<version>.bb

▶ A recipe can be divided in three parts:

▶ The header: what/who. Description of the application
▶ The sources: where. Can be tarballs, remote repository, ...
▶ The tasks: how. How to proceed with the application’s sources

▶ Classes are available for tasks commonly used: kernel, CMake, autotools, ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Workflow - 5. Create a recipe

▶ To create a recipe, you have to create a .bb file. It is the format that bitbake
understands

▶ The format of a recipe file name is <application-name>_<version>.bb
▶ A recipe can be divided in three parts:

▶ The header: what/who. Description of the application
▶ The sources: where. Can be tarballs, remote repository, ...
▶ The tasks: how. How to proceed with the application’s sources

▶ Classes are available for tasks commonly used: kernel, CMake, autotools, ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Workflow - 5. Create a recipe

▶ To create a recipe, you have to create a .bb file. It is the format that bitbake
understands

▶ The format of a recipe file name is <application-name>_<version>.bb
▶ A recipe can be divided in three parts:

▶ The header: what/who. Description of the application

▶ The sources: where. Can be tarballs, remote repository, ...
▶ The tasks: how. How to proceed with the application’s sources

▶ Classes are available for tasks commonly used: kernel, CMake, autotools, ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Workflow - 5. Create a recipe

▶ To create a recipe, you have to create a .bb file. It is the format that bitbake
understands

▶ The format of a recipe file name is <application-name>_<version>.bb
▶ A recipe can be divided in three parts:

▶ The header: what/who. Description of the application
▶ The sources: where. Can be tarballs, remote repository, ...

▶ The tasks: how. How to proceed with the application’s sources
▶ Classes are available for tasks commonly used: kernel, CMake, autotools, ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Workflow - 5. Create a recipe

▶ To create a recipe, you have to create a .bb file. It is the format that bitbake
understands

▶ The format of a recipe file name is <application-name>_<version>.bb
▶ A recipe can be divided in three parts:

▶ The header: what/who. Description of the application
▶ The sources: where. Can be tarballs, remote repository, ...
▶ The tasks: how. How to proceed with the application’s sources

▶ Classes are available for tasks commonly used: kernel, CMake, autotools, ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Workflow - 5. Create a recipe

▶ To create a recipe, you have to create a .bb file. It is the format that bitbake
understands

▶ The format of a recipe file name is <application-name>_<version>.bb
▶ A recipe can be divided in three parts:

▶ The header: what/who. Description of the application
▶ The sources: where. Can be tarballs, remote repository, ...
▶ The tasks: how. How to proceed with the application’s sources

▶ Classes are available for tasks commonly used: kernel, CMake, autotools, ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Workflow - 5. Create a recipe
recipes-support/nmon/nmon_13g.bb

SUMMARY = "nmon performance monitor"
HOMEPAGE = "http://nmon.sf.net"
SECTION = "console/utils"
LICENSE = "GPLv3"
LIC_FILES_CHKSUM = "file://${WORKDIR}/Documentation.txt;md5=dbb13658cf55d687c4f2ff771a696d4a"
DEPENDS = "ncurses"

SRC_URI = "${SOURCEFORGE_MIRROR}/nmon/lmon13g.c;name=lmon \
${SOURCEFORGE_MIRROR}/nmon/Documentation.txt;name=doc \

"
SRC_URI[lmon.md5sum] = "b1b8e6c0123ad232394991f2d4f40494"
SRC_URI[lmon.sha256sum] = "456ab2a342b31d1a352d0d940af5962fa65a12ae8757ff73e6e73210832ae8b5"
SRC_URI[doc.md5sum] = "dbb13658cf55d687c4f2ff771a696d4a"
SRC_URI[doc.sha256sum] = "1f7f83afe62a7210be5e83cd24157adb854c14599efe0b377a7ecca933869278"

CFLAGS += "-D JFS -D GETUSER -Wall -D LARGEMEM"
LDFLAGS += "-ltinfo -lncursesw"

do_compile() {
${CC} ${CFLAGS} ${LDFLAGS} ${WORKDIR}/lmon13g.c -o nmon

}

do_install() {
install -d ${D}${bindir}
install -m 0755 nmon ${D}${bindir}

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

Workflow - 5. Create a recipe
recipes-support/nmon/nmon_13g.bb

| SUMMARY = "nmon performance monitor"
| HOMEPAGE = "http://nmon.sf.net"
| SECTION = "console/utils"

"Header" | LICENSE = "GPLv3"
| LIC_FILES_CHKSUM = "file://${WORKDIR}/Documentation.txt;md5=dbb13658cf55d687c4f2ff771a696d4a"
| DEPENDS = "ncurses"

| SRC_URI = "${SOURCEFORGE_MIRROR}/nmon/lmon13g.c;name=lmon \
| ${SOURCEFORGE_MIRROR}/nmon/Documentation.txt;name=doc \
| "
| SRC_URI[lmon.md5sum] = "b1b8e6c0123ad232394991f2d4f40494"

"Source" | SRC_URI[lmon.sha256sum] = "456ab2a342b31d1a352d0d940af5962fa65a12ae8757ff73e6e73210832ae8b5"
| SRC_URI[doc.md5sum] = "dbb13658cf55d687c4f2ff771a696d4a"
| SRC_URI[doc.sha256sum] = "1f7f83afe62a7210be5e83cd24157adb854c14599efe0b377a7ecca933869278"

| CFLAGS += "-D JFS -D GETUSER -Wall -D LARGEMEM"
| LDFLAGS += "-ltinfo -lncursesw"
|
| do_compile() {
| ${CC} ${CFLAGS} ${LDFLAGS} ${WORKDIR}/lmon13g.c -o nmon

"Tasks" | }
|
| do_install() {
| install -d ${D}${bindir}
| install -m 0755 nmon ${D}${bindir}
| }

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

Workflow - 5. Create a recipe

recipes-example/helloworld/helloworld_1.0.bb

DESCRIPTION = "Print a friendly, customizable greeting"
HOMEPAGE = "https://www.gnu.org/software/hello/"
PRIORITY = "optional"
SECTION = "examples"
LICENSE = "GPLv3"

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"
SRC_URI[md5sum] = "67607d2616a0faaf5bc94c59dca7c3cb"
SRC_URI[sha256sum] = "ecbb7a2214196c57ff9340aa71458e1559abd38f6d8d169666846935df191ea7"
LIC_FILES_CHKSUM = "file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

inherit autotools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

Workflow - 5. Create a recipe

recipes-example/helloworld/helloworld_1.0.bb

| DESCRIPTION = "Print a friendly, customizable greeting"
| HOMEPAGE = "https://www.gnu.org/software/hello/"

"Header" | PRIORITY = "optional"
| SECTION = "examples"
| LICENSE = "GPLv3"

| SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"
"Source" | SRC_URI[md5sum] = "67607d2616a0faaf5bc94c59dca7c3cb"

| SRC_URI[sha256sum] = "ecbb7a2214196c57ff9340aa71458e1559abd38f6d8d169666846935df191ea7"
| LIC_FILES_CHKSUM = "file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

"Tasks" | inherit autotools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

Workflow - 5. Create a recipe

✓ Always use remote repositories to host your application sources
⇒ Makes development quicker + keep history

✓ Do not put application sources in your layer directly!
⇒ Application development ̸= Application Integration

✓ Keep the same folder organization: recipes-core/recipes-bsp/recipes-devtools/...
⇒ Find recipes quicker

✓ Keep the headers / sources / tasks organization in the recipe
⇒ All the recipes have the same content organization

✓ Use/Create include files when possible
⇒ Can extend other versions easily

✓ Know how to compile the application manually before integrating it in a recipe
⇒ Saves you time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

Workflow - 5. Create a recipe

✓ Always use remote repositories to host your application sources
⇒ Makes development quicker + keep history

✓ Do not put application sources in your layer directly!
⇒ Application development ̸= Application Integration

✓ Keep the same folder organization: recipes-core/recipes-bsp/recipes-devtools/...
⇒ Find recipes quicker

✓ Keep the headers / sources / tasks organization in the recipe
⇒ All the recipes have the same content organization

✓ Use/Create include files when possible
⇒ Can extend other versions easily

✓ Know how to compile the application manually before integrating it in a recipe
⇒ Saves you time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

Workflow - 5. Create a recipe

✓ Always use remote repositories to host your application sources
⇒ Makes development quicker + keep history

✓ Do not put application sources in your layer directly!
⇒ Application development ̸= Application Integration

✓ Keep the same folder organization: recipes-core/recipes-bsp/recipes-devtools/...
⇒ Find recipes quicker

✓ Keep the headers / sources / tasks organization in the recipe
⇒ All the recipes have the same content organization

✓ Use/Create include files when possible
⇒ Can extend other versions easily

✓ Know how to compile the application manually before integrating it in a recipe
⇒ Saves you time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

Workflow - 5. Create a recipe

✓ Always use remote repositories to host your application sources
⇒ Makes development quicker + keep history

✓ Do not put application sources in your layer directly!
⇒ Application development ̸= Application Integration

✓ Keep the same folder organization: recipes-core/recipes-bsp/recipes-devtools/...
⇒ Find recipes quicker

✓ Keep the headers / sources / tasks organization in the recipe
⇒ All the recipes have the same content organization

✓ Use/Create include files when possible
⇒ Can extend other versions easily

✓ Know how to compile the application manually before integrating it in a recipe
⇒ Saves you time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

Workflow - 5. Create a recipe

✓ Always use remote repositories to host your application sources
⇒ Makes development quicker + keep history

✓ Do not put application sources in your layer directly!
⇒ Application development ̸= Application Integration

✓ Keep the same folder organization: recipes-core/recipes-bsp/recipes-devtools/...
⇒ Find recipes quicker

✓ Keep the headers / sources / tasks organization in the recipe
⇒ All the recipes have the same content organization

✓ Use/Create include files when possible
⇒ Can extend other versions easily

✓ Know how to compile the application manually before integrating it in a recipe
⇒ Saves you time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

Workflow - 5. Create a recipe

✓ Always use remote repositories to host your application sources
⇒ Makes development quicker + keep history

✓ Do not put application sources in your layer directly!
⇒ Application development ̸= Application Integration

✓ Keep the same folder organization: recipes-core/recipes-bsp/recipes-devtools/...
⇒ Find recipes quicker

✓ Keep the headers / sources / tasks organization in the recipe
⇒ All the recipes have the same content organization

✓ Use/Create include files when possible
⇒ Can extend other versions easily

✓ Know how to compile the application manually before integrating it in a recipe
⇒ Saves you time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

Workflow - 6. Extend a recipe

▶ It is a good practice not to modify recipes available in Poky.
▶ But it is sometimes useful to modify an existing recipe
▶ The BitBake build engine allows to modify a recipe by extending it
▶ The recipe extensions end in .bbappend
▶ Appended files must have the same root name as the recipe they extend

example_0.1.bbappend applies to example_0.1.bb
⇒ version specific

▶ If adding new files, you must prepend the FILESEXTRAPATHS variable with the
path to files’ directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Workflow - 6. Extend a recipe

▶ It is a good practice not to modify recipes available in Poky.

▶ But it is sometimes useful to modify an existing recipe
▶ The BitBake build engine allows to modify a recipe by extending it
▶ The recipe extensions end in .bbappend
▶ Appended files must have the same root name as the recipe they extend

example_0.1.bbappend applies to example_0.1.bb
⇒ version specific

▶ If adding new files, you must prepend the FILESEXTRAPATHS variable with the
path to files’ directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Workflow - 6. Extend a recipe

▶ It is a good practice not to modify recipes available in Poky.
▶ But it is sometimes useful to modify an existing recipe

▶ The BitBake build engine allows to modify a recipe by extending it
▶ The recipe extensions end in .bbappend
▶ Appended files must have the same root name as the recipe they extend

example_0.1.bbappend applies to example_0.1.bb
⇒ version specific

▶ If adding new files, you must prepend the FILESEXTRAPATHS variable with the
path to files’ directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Workflow - 6. Extend a recipe

▶ It is a good practice not to modify recipes available in Poky.
▶ But it is sometimes useful to modify an existing recipe
▶ The BitBake build engine allows to modify a recipe by extending it

▶ The recipe extensions end in .bbappend
▶ Appended files must have the same root name as the recipe they extend

example_0.1.bbappend applies to example_0.1.bb
⇒ version specific

▶ If adding new files, you must prepend the FILESEXTRAPATHS variable with the
path to files’ directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Workflow - 6. Extend a recipe

▶ It is a good practice not to modify recipes available in Poky.
▶ But it is sometimes useful to modify an existing recipe
▶ The BitBake build engine allows to modify a recipe by extending it
▶ The recipe extensions end in .bbappend

▶ Appended files must have the same root name as the recipe they extend
example_0.1.bbappend applies to example_0.1.bb
⇒ version specific

▶ If adding new files, you must prepend the FILESEXTRAPATHS variable with the
path to files’ directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Workflow - 6. Extend a recipe

▶ It is a good practice not to modify recipes available in Poky.
▶ But it is sometimes useful to modify an existing recipe
▶ The BitBake build engine allows to modify a recipe by extending it
▶ The recipe extensions end in .bbappend
▶ Appended files must have the same root name as the recipe they extend

example_0.1.bbappend applies to example_0.1.bb
⇒ version specific

▶ If adding new files, you must prepend the FILESEXTRAPATHS variable with the
path to files’ directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Workflow - 6. Extend a recipe

▶ It is a good practice not to modify recipes available in Poky.
▶ But it is sometimes useful to modify an existing recipe
▶ The BitBake build engine allows to modify a recipe by extending it
▶ The recipe extensions end in .bbappend
▶ Appended files must have the same root name as the recipe they extend

example_0.1.bbappend applies to example_0.1.bb
⇒ version specific

▶ If adding new files, you must prepend the FILESEXTRAPATHS variable with the
path to files’ directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Workflow - 6. Extend a recipe
recipes-support/nmon/nmon_13g.bbappend

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

SRC_URI += "file://custom-modification-0.patch \
file://custom-modification-1.patch \

"

do_install_append() {
Do something

}

.
|--- conf
| |-- layer.conf
|--- recipes-support

|--- nmon
|-- files
| |-- custom-modification-0.patch
| |-- custom-modification-1.patch
|-- nmon_13g.bbappend

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

Workflow - 7. Create an image

▶ An image is the top level recipe and is used alongside the machine definition
▶ Whereas the machine describes the hardware used and its capabilities, the image

is architecture agnostic and defines how the root filesystem is built, with what
packages

▶ By default, several images are provided in Poky:

▶ meta*/recipes*/images/*.bb

▶ An image is no more than a recipe
▶ To create an image, simply create a .bb in an images folder

mkdir -p recipes-core/images/
touch recipes-core/images/core-image-fe.bb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Workflow - 7. Create an image

▶ An image is the top level recipe and is used alongside the machine definition

▶ Whereas the machine describes the hardware used and its capabilities, the image
is architecture agnostic and defines how the root filesystem is built, with what
packages

▶ By default, several images are provided in Poky:

▶ meta*/recipes*/images/*.bb

▶ An image is no more than a recipe
▶ To create an image, simply create a .bb in an images folder

mkdir -p recipes-core/images/
touch recipes-core/images/core-image-fe.bb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Workflow - 7. Create an image

▶ An image is the top level recipe and is used alongside the machine definition
▶ Whereas the machine describes the hardware used and its capabilities, the image

is architecture agnostic and defines how the root filesystem is built, with what
packages

▶ By default, several images are provided in Poky:

▶ meta*/recipes*/images/*.bb

▶ An image is no more than a recipe
▶ To create an image, simply create a .bb in an images folder

mkdir -p recipes-core/images/
touch recipes-core/images/core-image-fe.bb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Workflow - 7. Create an image

▶ An image is the top level recipe and is used alongside the machine definition
▶ Whereas the machine describes the hardware used and its capabilities, the image

is architecture agnostic and defines how the root filesystem is built, with what
packages

▶ By default, several images are provided in Poky:

▶ meta*/recipes*/images/*.bb
▶ An image is no more than a recipe
▶ To create an image, simply create a .bb in an images folder

mkdir -p recipes-core/images/
touch recipes-core/images/core-image-fe.bb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Workflow - 7. Create an image

▶ An image is the top level recipe and is used alongside the machine definition
▶ Whereas the machine describes the hardware used and its capabilities, the image

is architecture agnostic and defines how the root filesystem is built, with what
packages

▶ By default, several images are provided in Poky:
▶ meta*/recipes*/images/*.bb

▶ An image is no more than a recipe
▶ To create an image, simply create a .bb in an images folder

mkdir -p recipes-core/images/
touch recipes-core/images/core-image-fe.bb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Workflow - 7. Create an image

▶ An image is the top level recipe and is used alongside the machine definition
▶ Whereas the machine describes the hardware used and its capabilities, the image

is architecture agnostic and defines how the root filesystem is built, with what
packages

▶ By default, several images are provided in Poky:
▶ meta*/recipes*/images/*.bb

▶ An image is no more than a recipe

▶ To create an image, simply create a .bb in an images folder

mkdir -p recipes-core/images/
touch recipes-core/images/core-image-fe.bb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Workflow - 7. Create an image

▶ An image is the top level recipe and is used alongside the machine definition
▶ Whereas the machine describes the hardware used and its capabilities, the image

is architecture agnostic and defines how the root filesystem is built, with what
packages

▶ By default, several images are provided in Poky:
▶ meta*/recipes*/images/*.bb

▶ An image is no more than a recipe
▶ To create an image, simply create a .bb in an images folder

mkdir -p recipes-core/images/
touch recipes-core/images/core-image-fe.bb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Workflow - 7. Create an image

▶ An image is the top level recipe and is used alongside the machine definition
▶ Whereas the machine describes the hardware used and its capabilities, the image

is architecture agnostic and defines how the root filesystem is built, with what
packages

▶ By default, several images are provided in Poky:
▶ meta*/recipes*/images/*.bb

▶ An image is no more than a recipe
▶ To create an image, simply create a .bb in an images folder

mkdir -p recipes-core/images/
touch recipes-core/images/core-image-fe.bb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Workflow - 7. Create an image

▶ Some special configuration variables are used to describe an image:

IMAGE_INSTALL List of packages to install in the generated image
IMAGE_FSTYPES List of formats the OpenEmbedded build system will use to

create images

✓ Create a minimal image to include it in others
⇒ Allows to have a minimal rootfs

✓ Create different images according to your needs: image-minimal, image-dev,
image-x11, image-qt5, etc
⇒ Install only what you really need for your board.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

Workflow - 7. Create an image

▶ Some special configuration variables are used to describe an image:

IMAGE_INSTALL List of packages to install in the generated image
IMAGE_FSTYPES List of formats the OpenEmbedded build system will use to

create images
✓ Create a minimal image to include it in others

⇒ Allows to have a minimal rootfs
✓ Create different images according to your needs: image-minimal, image-dev,

image-x11, image-qt5, etc
⇒ Install only what you really need for your board.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

Workflow - 7. Create an image

▶ Some special configuration variables are used to describe an image:
IMAGE_INSTALL List of packages to install in the generated image

IMAGE_FSTYPES List of formats the OpenEmbedded build system will use to
create images

✓ Create a minimal image to include it in others
⇒ Allows to have a minimal rootfs

✓ Create different images according to your needs: image-minimal, image-dev,
image-x11, image-qt5, etc
⇒ Install only what you really need for your board.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

Workflow - 7. Create an image

▶ Some special configuration variables are used to describe an image:
IMAGE_INSTALL List of packages to install in the generated image
IMAGE_FSTYPES List of formats the OpenEmbedded build system will use to

create images

✓ Create a minimal image to include it in others
⇒ Allows to have a minimal rootfs

✓ Create different images according to your needs: image-minimal, image-dev,
image-x11, image-qt5, etc
⇒ Install only what you really need for your board.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

Workflow - 7. Create an image

▶ Some special configuration variables are used to describe an image:
IMAGE_INSTALL List of packages to install in the generated image
IMAGE_FSTYPES List of formats the OpenEmbedded build system will use to

create images
✓ Create a minimal image to include it in others

⇒ Allows to have a minimal rootfs

✓ Create different images according to your needs: image-minimal, image-dev,
image-x11, image-qt5, etc
⇒ Install only what you really need for your board.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

Workflow - 7. Create an image

▶ Some special configuration variables are used to describe an image:
IMAGE_INSTALL List of packages to install in the generated image
IMAGE_FSTYPES List of formats the OpenEmbedded build system will use to

create images
✓ Create a minimal image to include it in others

⇒ Allows to have a minimal rootfs
✓ Create different images according to your needs: image-minimal, image-dev,

image-x11, image-qt5, etc
⇒ Install only what you really need for your board.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

Workflow - 7. Create an image

recipes-core/images/core-image-fe.bb

inherit core-image

DESCRIPTION = "A small image to boot a device, created for Embedded Recipes"
LICENSE = "MIT"

IMAGE_FSTYPES = "tar.bz2 ext4"
IMAGE_INSTALL = "packagegroup-core-boot \

nmon \
helloworld \
"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

Workflow - 8. Create a machine

▶ A machine describes your hardware
▶ Stored under meta-<bsp_name>/conf/machine/*.conf
▶ The file name corresponds to the value set in the MACHINE variable

meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

▶ Contains configuration variables related to the architecture, to machine’s features
and to customize the kernel image or the filesystems used.

TARGET_ARCH : The architecture of the device being built
PREFERRED_PROVIDER_virtual/kernel : The kernel recipe to use
SERIAL_CONSOLE : Speed and device for the serial console to attach. Passed

to the kernel as the console parameter, e.g. 115200 ttyS0
KERNEL_IMAGETYPE : The type of kernel image to build, e.g. zImage

✓ Describe your machine in a README file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Workflow - 8. Create a machine

▶ A machine describes your hardware

▶ Stored under meta-<bsp_name>/conf/machine/*.conf
▶ The file name corresponds to the value set in the MACHINE variable

meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

▶ Contains configuration variables related to the architecture, to machine’s features
and to customize the kernel image or the filesystems used.

TARGET_ARCH : The architecture of the device being built
PREFERRED_PROVIDER_virtual/kernel : The kernel recipe to use
SERIAL_CONSOLE : Speed and device for the serial console to attach. Passed

to the kernel as the console parameter, e.g. 115200 ttyS0
KERNEL_IMAGETYPE : The type of kernel image to build, e.g. zImage

✓ Describe your machine in a README file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Workflow - 8. Create a machine

▶ A machine describes your hardware
▶ Stored under meta-<bsp_name>/conf/machine/*.conf

▶ The file name corresponds to the value set in the MACHINE variable
meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

▶ Contains configuration variables related to the architecture, to machine’s features
and to customize the kernel image or the filesystems used.

TARGET_ARCH : The architecture of the device being built
PREFERRED_PROVIDER_virtual/kernel : The kernel recipe to use
SERIAL_CONSOLE : Speed and device for the serial console to attach. Passed

to the kernel as the console parameter, e.g. 115200 ttyS0
KERNEL_IMAGETYPE : The type of kernel image to build, e.g. zImage

✓ Describe your machine in a README file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Workflow - 8. Create a machine

▶ A machine describes your hardware
▶ Stored under meta-<bsp_name>/conf/machine/*.conf
▶ The file name corresponds to the value set in the MACHINE variable

meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

▶ Contains configuration variables related to the architecture, to machine’s features
and to customize the kernel image or the filesystems used.

TARGET_ARCH : The architecture of the device being built
PREFERRED_PROVIDER_virtual/kernel : The kernel recipe to use
SERIAL_CONSOLE : Speed and device for the serial console to attach. Passed

to the kernel as the console parameter, e.g. 115200 ttyS0
KERNEL_IMAGETYPE : The type of kernel image to build, e.g. zImage

✓ Describe your machine in a README file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Workflow - 8. Create a machine

▶ A machine describes your hardware
▶ Stored under meta-<bsp_name>/conf/machine/*.conf
▶ The file name corresponds to the value set in the MACHINE variable

meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

▶ Contains configuration variables related to the architecture, to machine’s features
and to customize the kernel image or the filesystems used.

TARGET_ARCH : The architecture of the device being built
PREFERRED_PROVIDER_virtual/kernel : The kernel recipe to use
SERIAL_CONSOLE : Speed and device for the serial console to attach. Passed

to the kernel as the console parameter, e.g. 115200 ttyS0
KERNEL_IMAGETYPE : The type of kernel image to build, e.g. zImage

✓ Describe your machine in a README file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Workflow - 8. Create a machine

▶ A machine describes your hardware
▶ Stored under meta-<bsp_name>/conf/machine/*.conf
▶ The file name corresponds to the value set in the MACHINE variable

meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

▶ Contains configuration variables related to the architecture, to machine’s features
and to customize the kernel image or the filesystems used.
TARGET_ARCH : The architecture of the device being built

PREFERRED_PROVIDER_virtual/kernel : The kernel recipe to use
SERIAL_CONSOLE : Speed and device for the serial console to attach. Passed

to the kernel as the console parameter, e.g. 115200 ttyS0
KERNEL_IMAGETYPE : The type of kernel image to build, e.g. zImage

✓ Describe your machine in a README file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Workflow - 8. Create a machine

▶ A machine describes your hardware
▶ Stored under meta-<bsp_name>/conf/machine/*.conf
▶ The file name corresponds to the value set in the MACHINE variable

meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

▶ Contains configuration variables related to the architecture, to machine’s features
and to customize the kernel image or the filesystems used.
TARGET_ARCH : The architecture of the device being built
PREFERRED_PROVIDER_virtual/kernel : The kernel recipe to use

SERIAL_CONSOLE : Speed and device for the serial console to attach. Passed
to the kernel as the console parameter, e.g. 115200 ttyS0

KERNEL_IMAGETYPE : The type of kernel image to build, e.g. zImage
✓ Describe your machine in a README file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Workflow - 8. Create a machine

▶ A machine describes your hardware
▶ Stored under meta-<bsp_name>/conf/machine/*.conf
▶ The file name corresponds to the value set in the MACHINE variable

meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

▶ Contains configuration variables related to the architecture, to machine’s features
and to customize the kernel image or the filesystems used.
TARGET_ARCH : The architecture of the device being built
PREFERRED_PROVIDER_virtual/kernel : The kernel recipe to use
SERIAL_CONSOLE : Speed and device for the serial console to attach. Passed

to the kernel as the console parameter, e.g. 115200 ttyS0

KERNEL_IMAGETYPE : The type of kernel image to build, e.g. zImage
✓ Describe your machine in a README file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Workflow - 8. Create a machine

▶ A machine describes your hardware
▶ Stored under meta-<bsp_name>/conf/machine/*.conf
▶ The file name corresponds to the value set in the MACHINE variable

meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

▶ Contains configuration variables related to the architecture, to machine’s features
and to customize the kernel image or the filesystems used.
TARGET_ARCH : The architecture of the device being built
PREFERRED_PROVIDER_virtual/kernel : The kernel recipe to use
SERIAL_CONSOLE : Speed and device for the serial console to attach. Passed

to the kernel as the console parameter, e.g. 115200 ttyS0
KERNEL_IMAGETYPE : The type of kernel image to build, e.g. zImage

✓ Describe your machine in a README file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Workflow - 8. Create a machine

▶ A machine describes your hardware
▶ Stored under meta-<bsp_name>/conf/machine/*.conf
▶ The file name corresponds to the value set in the MACHINE variable

meta-ti/conf/machine/beaglebone.conf
MACHINE = "beaglebone"

▶ Contains configuration variables related to the architecture, to machine’s features
and to customize the kernel image or the filesystems used.
TARGET_ARCH : The architecture of the device being built
PREFERRED_PROVIDER_virtual/kernel : The kernel recipe to use
SERIAL_CONSOLE : Speed and device for the serial console to attach. Passed

to the kernel as the console parameter, e.g. 115200 ttyS0
KERNEL_IMAGETYPE : The type of kernel image to build, e.g. zImage

✓ Describe your machine in a README file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Workflow - 8. Create a machine

conf/machine/fe-machine.conf

require conf/machine/include/soc-family.inc
require conf/machine/include/tune-cortexa5.inc

TARGET_ARCH = "arm"

PREFERRED_PROVIDER_virtual/kernel ?= "linux-at91"
PREFERRED_PROVIDER_virtual/bootloader ?= "u-boot-at91"

KERNEL_IMAGETYPE = "zImage"
KERNEL_DEVICETREE = "at91-sama5d3_xplained.dtb"

SERIAL_CONSOLE ?= "115200 ttyS0"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

Conclusion

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

Embedded Recipes Conference - 2017

Thank you for listening!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

Questions? Suggestions? Comments?

Mylène Josserand
mylene@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2017/embedded-recipes/josserand-introduction-to-yocto-

project/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

http://bootlin.com/pub/conferences/2017/embedded-recipes/josserand-introduction-to-yocto-project/
http://bootlin.com/pub/conferences/2017/embedded-recipes/josserand-introduction-to-yocto-project/

