
Embedded Linux Conference Europe 2017

Porting U-Boot and Linux on new ARM boards:
a step-by-step guide

Quentin Schulz
Bootlin
quentin.schulz@bootlin.com

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Quentin Schulz

▶ Embedded Linux and kernel engineer at
Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus
▶ Linux kernel contributors, ARM SoC support,

kernel maintainers
▶ Added support in U-Boot and Linux kernel for

an i.MX6 custom board,

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 



Preamble

▶ Feedback from my journey to support a custom board in U-Boot and Linux,
▶ Examples for a board with a well-known SoC (i.MX6) and already supported IPs,

almost no coding skill involved in this talk,
▶ More focused on the U-Boot part,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



Golden rules

▶ If you have the sources of your BSP, compile and run the BSP to:
1. Validate the IP you’re working on works with some code,
2. Have a reference code,
3. Have a code that you can use to debug,

▶ Focus on correctly configuring RAM and UART only,
▶ Commit,
▶ One IP at a time,
▶ Commit,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



Custom board presentation

▶ i.MX6-based module with an extension board,
▶ Ethernet, I2C, SPI, NAND, eMMC, SD Card reader, USB device, EEPROM,

GPIO, UART, audio (I2S), HDMI, LVDS, PCIe, USB host, RTC, PMIC,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



Embedded Linux Conference Europe 2017

U-Boot porting
Quentin Schulz
quentin.schulz@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



U-Boot status

▶ On-going migration from board header file defines to Kconfig options,
▶ On-going migration from manual drivers probing to Driver Model,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



U-Boot directories

▶ arch/
anything arch or platform related: DTS, CPU init, pinmux controller, DRAM,
clocks, ...

▶ board/
code board specific (init, pinmuxing configuration, etc), Kconfig file specifying
board header file, board file, paths, Makefile for board file,

▶ configs/
all boards’ defconfigs

▶ drivers/
▶ include/

all headers
▶ include/configs/

all boards’ header files
▶ ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 



U-Boot new board support workflow

1. Create the board file,
2. Create the board Kconfig file,
3. Create the board Makefile,
4. Create the board defconfig,
5. Create the board header file,
6. Source board’s Kconfig in the architecture’s Kconfig,
7. Define the TARGET Kconfig option in its CPU’s Kconfig,

▶ some platforms (e.g. sunxi (Allwinner)) share common files so only a defconfig
would be required,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



1. Create the board file

board/my_vendor/my_board/my_board.c
#include <...>

DECLARE_GLOBAL_DATA_PTR;

int dram_init(void)
{

gd->ram_size = imx_ddr_size();
return 0;

}

int board_init(void)
{

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



Global data

▶ DECLARE_GLOBAL_DATA_PTR,
▶ usable in code with gd global variable,
▶ on ARM, equals to hardware register r9 for ARM32 and x18 for ARM64,
▶ used to store info in ”some memory which is available very early after boot to

allow for a minimum set of global variables during system initialization (until we
have set up the memory controller so that we can use RAM)”,

▶ include/asm-generic/global_data.h to find what kind of information it can
store,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



2. Create the board Kconfig file

board/my_vendor/my_board/Kconfig
if TARGET_MY_BOARD

config SYS_BOARD
default "my_board"

config SYS_VENDOR
default "my_vendor"

config SYS_CONFIG_NAME
default "my_board"

endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



Kconfig options

▶ SYS_VENDOR and SYS_BOARD are used to identify the directory where make find
the files it needs to compile,
▶ if both are present,

▶ board/SYS_VENDOR/SYS_BOARD/
▶ if SYS_VENDOR is omitted,

▶ board/SYS_BOARD/
▶ if SYS_BOARD is omitted,

▶ board/SYS_VENDOR/common/
▶ SYS_CONFIG_NAME is used to identify the board header file,

▶ include/configs/SYS_CONFIG_NAME.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



3. Create the board Makefile

board/my_vendor/my_board/Makefile
obj-y := my_board.o

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



4. Create the board defconfig

configs/my_board_defconfig
CONFIG_ARM=y
CONFIG_ARCH_MX6=y
CONFIG_TARGET_MY_BOARD=y
CONFIG_MXC_UART=y

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



4. Create the board defconfig

▶ put here anything that is selectable in Kconfig (menuconfig),
▶ drivers, features, U-Boot behaviour, libs, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 



5. Create the board header file (minimal example for i.MX6 Solo)

include/configs/my_board.h
#ifndef __MY_BOARD_CONFIG_H__
#define __MY_BOARD_CONFIG_H__

#define CONFIG_MXC_UART_BASE UART5_BASE

#include "mx6_common.h"

#define CONFIG_NR_DRAM_BANKS 1
#define CONFIG_SYS_MAX_FLASH_BANKS 1
#define CONFIG_SYS_MALLOC_LEN (10 * SZ_1M)
#define CONFIG_SYS_FSL_ESDHC_ADDR 0
#define PHYS_SDRAM MMDC0_ARB_BASE_ADDR
#define CONFIG_SYS_SDRAM_BASE PHYS_SDRAM
#define CONFIG_SYS_INIT_RAM_ADDR IRAM_BASE_ADDR
#define CONFIG_SYS_INIT_RAM_SIZE IRAM_SIZE
#define CONFIG_SYS_INIT_SP_OFFSET \

(CONFIG_SYS_INIT_RAM_SIZE - GENERATED_GBL_DATA_SIZE)

#define CONFIG_SYS_INIT_SP_ADDR \
(CONFIG_SYS_INIT_RAM_ADDR + CONFIG_SYS_INIT_SP_OFFSET)

#endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



6. Source board’s Kconfig file

arch/arm/Kconfig or
arch/arm/mach-imx/mx6/Kconfig
...
source "board/imx31_phycore/Kconfig"
source "board/isee/igep003x/Kconfig"
source "board/my_vendor/my_board/Kconfig"
source "board/olimex/mx23_olinuxino/Kconfig"
source "board/phytec/pcm051/Kconfig"
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



7. Define board’s TARGET Kconfig option

arch/arm/mach-imx/mx6/Kconfig
choice
...
config TARGET_MY_BOARD

bool "My awesome board"
select MX6S

...
endchoice

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



U-Boot init sequence

▶ U-Boot will run two lists of functions whose purpose is to init or configure specific
IPs before the user have access to the console,

▶ the first list is defined in common/board_f.c in the
static init_fnc_t init_sequence_f[] array,

▶ first list takes care of initialising DRAM, mapping it and relocating the bootloader
code once it’s working,

▶ the second list is defined in common/board_r.c in the
static init_fnc_t init_sequence_r[] array,

▶ some functions are run only when a constant is defined (e.g.
CONFIG_BOARD_EARLY_INIT_F defined to run board_early_init_f()),

▶ any function returning a non-zero value will stop the init sequence and make
U-Boot fail to boot,
▶ define DEBUG when having trouble with init sequence,

▶ not all ”features” are available in all functions (i.e. no udelay in
board_early_init_f())

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



Driver selection

▶ take inspiration from boards with the same IP,
▶ inspect drivers in the appropriate subsystem,

1. focus on the driver’s behaviour,
2. then check out the registers, bit offsets, masks, etc.
3. check for undefined macros or constants,
4. check for piece of code surrounded by ifdef blocks,

▶ look for the object file of this driver in the Makefile of the subsystem,

obj-$(CONFIG_MY_DRIVER) += my_driver.o

▶ grep for CONFIG_MY_DRIVER,
▶ visible symbol in some Kconfig file => add to board defconfig,
▶ non-visible symbol in some Kconfig file or not defined => board header file,

▶ make sure your driver is compiled (look for my_driver.o),

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 



Driver selection - NAND example

▶ drivers/mtd/nand/nand_mxs.c,
▶ CONFIG_NAND_MXS for compiling the driver,
▶ CONFIG_SYS_MAX_NAND_DEVICE and CONFIG_SYS_NAND_BASE constants for

configuring the device,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 



Driver selection - NAND example

configs/my_board_defconfig
CONFIG_ARM=y
CONFIG_ARCH_MX6=y
CONFIG_TARGET_MY_BOARD=y
CONFIG_MXC_UART=y
CONFIG_NAND_MXS=y

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



Driver selection - NAND example

include/configs/my_board.h
...
/* Define NAND settings */
/* Max number of NAND devices supported */
#define CONFIG_SYS_MAX_NAND_DEVICE 1
#define CONFIG_SYS_NAND_BASE 0x00112000
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

 



Driver selection - NAND example

board/my_vendor/my_board.c
...
static iomux_v3_cfg_t const nand_pads[] = {...};
...
int board_init(void)
{

imx_iomux_v3_setup_multiple_pads(nand_pads, ARRAY_SIZE(nand_pads));

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

 



Note on Device Trees

▶ the migration to Device Trees started back in 2012 and the code is slowly
migrated, driver by driver, subsystem by subsystem,

▶ need for Driver model to use device trees,
▶ most drivers have big ifdef blocks for CONFIG_DM,

▶ you can’t really chose on a per-driver basis to enable DM support,
▶ idem for subsystem core code,
▶ I didn’t go really deep into it as we needed either no or full support for Device

Trees and the NAND framework isn’t migrated to the DM,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

 



Effort needed to support U-Boot

▶ Ethernet, EEPROM, NAND, eMMC, SD Card reader, USB device, GPIO, UART,
audio (I2S), PMIC,

$ wc -l board/my_vendor/my_board/* configs/my_board_defconfig include/configs/my_board.h
15 board/my_vendor/my_board/Kconfig
8 board/my_vendor/my_board/Makefile

159 board/my_vendor/my_board/my_board.cfg #DCD conf for DDR controller and memory
218 board/my_vendor/my_board/my_board.c
39 configs/my_board_defconfig
110 include/configs/my_board.h
510 total

▶ +1 line in arch/arm/Kconfig,
▶ +4 lines in arch/arm/cpu/armv7/mx6/Kconfig,
▶ actually ~100 lines of ”real” code (PHY and board init, mmc configuration),
▶ no modification of U-Boot source code otherwise,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

 



Effort needed to update U-Boot

▶ got some weird bug with the RSA lib when checking fitImage signatures in
U-Boot,

▶ update from 2017.03 to 2017.07 was very easy:
▶ port board header file, board file, board Makefile, board Kconfig and update the

Kconfig of the architecture,
▶ make sure options defined in board header files are not Kconfig options now,

▶ problem solved in ~30min by updating,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

 



Problems encountered

▶ board init sequence is toggling a few GPIOs with a given timing,
▶ all signals (even UART) go through the FPGA,
▶ failing board init sequence, no FPGA, no UART, no hair left on my head,
▶ no udelay in board_early_init_f,
▶ a workaround was to use a forloop with cpurelax(),

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

 



Embedded Linux Conference Europe 2017

Linux kernel porting
Quentin Schulz
quentin.schulz@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

 



Linux kernel new board support workflow

1. Create the board’s Device Tree,
2. Add your board’s DTB to the architecture DTS Makefile,
3. Create a defconfig for your board,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

 



Device Tree

▶ a file in a special DTS (Device Tree Source) format,
▶ purely describes the hardware of your board,
▶ matches an IP with a driver thanks to compatible strings,
▶ documentation can be found in Documentation/devicetree/bindings,
▶ for a more in-depth explanation on what a Device Tree is and how to write it:

https://www.youtube.com/watch?v=m_NyYEBxfn8,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

 

https://www.youtube.com/watch?v=m_NyYEBxfn8


1. Create the board’s Device Tree

1. write a map of your IPs’ relationships,
2. find the SoC DTSI that you’ll include,
3. look for IPs’ drivers in the correct subsystem,

▶ greping the (code)name of the IP is usually a good start,
4. once found, look for the compatible string in

Documentation/devicetree/bindings,
5. follow the documentation to add the correct binding,
6. some bindings are framework-wide defined so make sure to read the

documentation of the framework involved,
7. for SoC IPs, correct binding is usually as simple as enabling them and setting the

correct power supply and pinmuxing since most is already described in the SoC
Device Tree,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

 



1. Create the board’s Device Tree

arch/arm/boot/dts/imx6s-my-board.dts
#include "imx6dl.dtsi"

/ {
model = "MyVendor myBoard";
compatible = "my_vendor,my_board";

};

...

&pcie {
reset-gpio = <&gpio3 18 GPIO_ACTIVE_LOW>;
vpcie-supply = <&reg_pcie>;
status = "okay";

};

&uart5 {
status = "okay";

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

 



2. Add the DTB to the arch DTS Makefile

arch/arm/boot/dts/Makefile
dtb-$(CONFIG_MACH_KIRKWOOD) += \
#...

dtb-$(CONFIG_SOC_IMX6Q) += \
#...

imx6qp-sabresd.dtb \
imx6s-my-board.dtb

#...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

 



3. Create a defconfig for your board

1. start from the SoC family defconfig (e.g. imx_v6_v7_defconfig) or if there isn’t
one, from the architecture (e.g. multi_v7_defconfig),

2. strip the defconfig of useless SoC families, drivers and features,
3. add the CONFIG of the drivers you want to compile,

▶ greping for the basename of the driver is the way to go,
▶ most drivers depend on subsystems or other options, you have to add them to your

defconfig as well if your driver doesn’t select them,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

 



Problems encountered

▶ PCIe driver was probing but not enumerating devices,
▶ driver was working in BSP, found out missing support for regulator was the culprit,
▶ quickly wrote a 40 lines patch and sent it upstream,

▶ Ethernet driver was missing a post reset delay for the PHY that was set in BSP,
▶ quickly wrote a 20 lines patch and sent it upstream,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1

 



Effort needed to support Linux

▶ Ethernet, I2C, SPI, NAND, eMMC, SD Card reader, USB device, EEPROM,
GPIO, UART, audio (I2S), HDMI, LVDS, PCIe, USB host, RTC, PMIC,

$ wc -l arch/arm/boot/dts/imx6s-my-board.dts
arch/arm/configs/my_board_defconfig

606 arch/arm/boot/dts/imx6s-my-board.dts
401 arch/arm/configs/my_board_defconfig
1007 total

▶ +1 line in arch/arm/boot/dts/Makefile,
▶ +20 lines for regulator support in PCIe driver (now upstream),
▶ +40 lines for Ethernet PHY post reset delay (now upstream),
▶ no modification of Linux source code otherwise,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

 



Effort needed to update Linux

▶ got some weird bug with dual display, the display driver would completely crash if
both HDMI and LVDS outputs were enabled at the same time,

▶ update from 4.9 to 4.13 was very easy:
▶ copy DTB from 4.9 to 4.13 and make sure the bindings haven’t changed in-between

those versions,
▶ add the one-liner in arch/arm/boot/dts/Makefile,
▶ patches were already upstream so nothing else to do,

▶ problem solved in ~30min by updating,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1

 



Questions? Suggestions? Comments?

Quentin Schulz
quentin.schulz@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2017/elce/schulz-how-to-support-new-board-u-boot-linux

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/1

http://bootlin.com/pub/conferences/2017/elce/schulz-how-to-support-new-board-u-boot-linux

