SD/eMMC: new speed modes and their support in Linux

Gregory CLEMENT
Bootlin gregory@bootlin.com
Gregory CLEMENT

- Embedded Linux engineer and trainer at Bootlin
 - Embedded Linux expertise
 - Development, consulting and training
 - Strong open-source focus
- Open-source contributor
 - Contributing to kernel support for the Armada 370, 375, 38x, 39x and Armada XP ARM SoCs and Armada 3700, 7K/8K ARM64 SoCs from Marvell.
 - Co-maintainer of mvebu sub-architecture (SoCs from Marvell Engineering Business Unit)
 - Living near Lyon, France
SD card and eMMC have common point:

- Both come from MMC (MultiMediaCards).
- Increase their bandwidth as new versions of the standards were released
 - Now they can reach more than 400MB/s in theory
- Supported in Linux though the mmc subsystem
Overview of this talk

- Presentation of **SD Card** and **eMMC**
- Initial support in Linux
- The new speed modes
- State of the support for these new speed modes in Linux
SD card

- SD stands for *Secure Digital*
 - “Secure” for copyright content
-Introduced in 1999
- MMC extension
- Standardized by **SDA** (*SD Association* created in 2000)
SD card - Hardware

- Flash chip + small micro-controller in a card
- 9 pins: CLK, CMD, DAT0-3, VDD, VSS1-2
- SPI mode compatibility
 - DAT3 -> CS, CMD -> DI, DAT0 -> DO
- In initial release 25MHz clock
SD Bus protocol

- Command and data bit stream
- Command and response on CMD line
- Data on the data lines
- Basic transaction command/response
- Some operations can have data token
- All communication initiated by the host
- Data transfer in block with CRC
- Multiple data block: always stop by a host command
SD card vs MMC

- Initial version: 1 data line for **MMC** vs 4 for **SD card**
- Nowadays **MMC** can go up to 8 data lines
- No DRM in **MMC**
- Command set diverged
- Both have SPI compatibility mode
- other MMC extension from MMCA and JDEC
- eMMC stands for *embedded* MultiMedia Card
- Mentioned in the MMC spec v4.1 in 2007
- Flash chip + small micro-controller in BGA chip

- Pinout:
 - Since 4.1, 14 pins: CLK, CMD, DAT0–7, VccQ, VssQ, Vcc, Vss
 - With 4.4 version, one more pin: RST_n (Reset)
 - With 5.0 version, one more pin: DS (Data Strobe)

- No more SPI mode compatibility since 4.3

- In initial release: 52 MHz clock
eMMC - Protocol

Bus protocol same than the SD bus protocol (both came from MMC)

- Command, response on CMD line
- Data on the data lines
- Basic transaction command/response
- Some operation can have data token
- All communication initiate by the host
- Data transfer in block with CRC
- Multiple data blocks: always stop by a host command
Both defined by the same specification but there still differences:

- **eMMC** BGA chip soldered to a board
- **MMC card** removable part
- Dedicated feature for **eMMC** such as partitioning, device information
- **eMMC** widely used whereas the MMC card are hard to find
- MMC Framework added in 2004 with 2.6.9 by Russell King
- SD card Support added in 2005 with 2.6.14 by Pierre Ossman (who became MMC maintainer in 2006)
- SDHCI (Secure Digital Host Controller Interface) added with 2.6.17 in 2006
- High Speed mode (clock up to 52MHz) for MMC added with 2.6.20
- High Speed mode for SD Card added in the same release
- SDIO extension support with 2.6.24 in 2007
Support in Linux

- Code located in drivers/mmc and headers in include/linux/mmc/
- Currently maintained by **Ulf Hansson** since 2014
- Code separated in two parts:
 - **core**: protocol for **MMC/eMMC** and **SD Card** as well as common functions for the framework
 - **host**: support for the controllers
 - host/sdhci* for the controller based on **SDHCI** maintained by **Adrian Hunter**
 - **SPI mode** supported in host/mmc_spi.c but currently without maintainer
Speed mode improvement - High Speed

- Maximum clock from 26MHz to 52MHz for **MMC**
- Maximum clock from 25MHz to 50MHz for **SD Card**
- Introduce the speed mode selection sequence using **CMD6**
- Introduce since **SD v2** and **MMC v4**
Speed mode improvement - **UHS-I 1/2**

- Introduced with **SD 3.01** (2010)
- New speed modes (name are base on the bandwidth):
 - **SDR12** (max bandwidth: 12MB/s)
 - **SDR25** (max bandwidth: 25MB/s)
 - **SDR50** (max bandwidth: 50MB/s)
 - **SDR104** (max bandwidth: 104MB/s)
 - **DDR50** (max bandwidth: 50MB/s)
- All these new modes under 1.8V compared to the 3.3V for **DS** (Default Speed 25MHz) and **HS** (High Speed at 50MHz)
- New step in the switch sequence: modifying the voltage
Speed mode improvement - **UHS-I** 2/2

- **SDR12**: simple data rate with clock at 25MHz (with 4 lines)
- **SDR25**: simple data rate with clock at 50MHz (with 4 lines)
- **SDR50**: simple data rate with clock at 100MHz (with 4 lines)
- **SDR104**: simple data rate with clock at 208MHz (with 4 lines). For this speed mode tuning (**CMD19**) is required
- **DDR50**: double data rate with clock at 50MHz. Data sample on each front of the clock
Speed mode improvement - DDR mode for eMMC

- Introduced with **MMC 4.4** (2009)
- Up to 52MHz (as high Speed mode)
- Configured with **CMD6** but with different arguments than **SD Card**
- Can be used at 3V
- At host controller level, same configuration used than for **DDR50**
Speed mode improvement - **HS-200**

- Introduced with **MMC 4.5** (2011)
- Up to 200MHz at single data rate
- Tuning command (**CMD21**) can be used to find optimal data sampling.
- Must be used at 1.8V or 1.2V
Speed mode improvement - HS-400

- Introduced with **MMC 5.0** (2013)
- Up to 200MHz at dual data rate
- New DS (Data Strobe) line: used during DATA out and CRC response
- Tuning command (**CMD21**) can be used to find optimal data sampling.
- Must be used at 1.8V or 1.2V
- With **MMC 5.1** (2014), **Enhanced Strobe** added: strobe also provided during CMD Response
Speed mode improvement - **UHS-II**

- Introduced with **SD 4.1** (2013)
- Completely new mode
- New set of signal: \(\text{RCLK}^+, \text{RCLK}^-, \text{D0}^+, \text{D0}^-, \text{D1}^+, \text{D1}^-, \text{VSS}3-5, \text{VDD}1-2\)
- 2 data lanes \((\text{D0, D1})\) using 2 differential signals
- **RCLK**: 26 to 52 MHZ
- Data \(\times 15\) or \(\times 30\) depending of the mode, up to 312MB/s
- Completely different protocol: exchange of packet messages on both way
- Each packet have header and payload data
- At transaction layer possibility to encapsulate SD packet
- At lower level still needed to be able to use the new protocol
- With **SD 6.0** (2017): **UHS-III** (624 MB/s)
New speed Support in Linux - History

- **DDR 50 mode** added with **2.6.37** in 2010
- **UHS-I** added with **3.0** in 2011
- **HS200** added with **3.10** in 2012
- **HS400** added with **3.16** in 2014
- **HS400 retuning** added with **4.2** in 2015
- **HS400es (Enhanced Strobe)** added with **4.8** in 2016
Current support in Linux

- Signal voltage switching needed for most of the new speed mode
 - Supported by the framework in `core.c`
 - Make use of the regulator framework
- Tuning used by eMMC and SD Card
 - Function present in the core
 - But implemented at controller driver level
- Switching sequence handled by the core but most of the steps can be customized for the host controller.
- **eMMC** speed mode support quite complete, most of the development now at driver level and specific to each controller.

- **SD Card**: no support at all for **UHS-II** (and **UHS III**), adding this new protocol would be a big task.
Questions? Suggestions? Comments?

Gregory CLEMENT

gregory@bootlin.com

Slides under CC-BY-SA 3.0