
Embedded Linux Conference Europe 2017

An overview of the
crypto subsystem
Boris Brezillon
boris@bootlin.com

© Copyright 2004-2018, Bootlin.

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Boris Brezillon

I Embedded Linux engineer and trainer at Bootlin
I Embedded Linux development: kernel and driver development, system integration,

boot time and power consumption optimization, consulting, etc.
I Embedded Linux, Linux driver development, Yocto Project / OpenEmbedded and

Buildroot training courses, with materials freely available under a Creative
Commons license.

I http://bootlin.com

I Contributions
I Maintainer of the NAND subsystem
I Kernel support for various ARM SoCs
I Contributed Marvell’s crypto engine driver

I Living in Toulouse, south west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

http://bootlin.com

What is this talk about?

I Short introduction to some cryptographic concepts

I Overview of services provided by the crypto subsystem and how to use it

I Overview of the driver side of the crypto framework (how to implement a driver
for a simple crypto engine)

I Random thoughts about the crypto framework

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

An overview of the crypto subsystem

Introduction to generic cryptographic concepts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

Cryptography? What is this?

I Do you know Alice and Bob? If you do, take a break and come back in five
minutes

I Cryptography is about protecting communications between two or more
participants

I Covers three main concepts:
I Confidentiality: content of the communication cannot be spied on
I Data integrity: content of the communication cannot be altered without

participants noticing
I Authentication: message origin can be checked

I Achieved by manipulating input/output messages and adding meta-data to them

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

Cryptography: Hash (or Digest)

I Used to guarantee Data Integrity

I Operates on a random number of input data

I Generates a ’unique’ fixed-size signature for a specific input

I Examples: SHA1, MD5, ...
I Main criteria for a hash algorithm:

I Keep the probability of collision as low as possible (ideally null)
I Make it impossible to re-generate data from its hash
I A small modification in the data should generate a completely different hash

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Cryptography: Cipher

I Used to guarantee Confidentiality

I Transform the data so that someone external to the group can’t read it

I Requires one or several key(s) to encrypt/decrypt data
I Ciphers can be stream or block oriented

I Stream Ciphers: operate on a stream of data
I Block Ciphers: operate on fixed-size blocks

I Ciphers can be symmetric or asymmetric
I Symmetric Ciphers: the same key (called private key) is shared among all

participants and is used to both encrypt and decrypt data
I Asymmetric Ciphers: a pair of public/private key is used. The public key can be

shared with anyone and is used to encrypt messages sent to the owner of the private
key. The private key is then used to decrypt messages.

I Examples: AES, RSA, ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

Cryptography: Block Cipher Mode

I Block ciphers can only be used to encrypt/decrypt a single block of data

I We need a solution to handle an arbitrary number of blocks

I Block cipher mode is just a protocol describing how to do that

I Most modes require an Initialization Vector (IV) to obfuscate the transmitted
data

I Examples: ECB (Electronic Codebook), CBC (Cipher Chaining Block),
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

Cryptography: MAC and HMAC

I MAC stands for Message Authentication Codes

I Mechanism used to authenticate the sender of a message

I Uses a key and a transformation algorithm to generate authentication data

I MAC can be based on Hash algorithms => HMAC

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

Cryptography: AEAD

I AEAD stands for Authenticated Encryption with Associated Data

I Combines everything in a single step (Authentication, Confidentiality and Data
Integrity)

I Is usually based on existing Cipher, Hash/HMAC algorithms

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Cryptography: Better introduction than mine

I Interested in more advanced description of these concepts?

I Watch Gilad Ben Yossef’s talk: https://youtu.be/dnGbhvweNb8,
https://goo.gl/x5ikkv

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

https://youtu.be/dnGbhvweNb8
https://goo.gl/x5ikkv

An overview of the crypto subsystem

Linux Crypto Framework: Common Principles

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

Linux Crypto Framework: Basic Concepts

I Every crypto algorithm is about transforming input data into something else
I Transformation implementation: represents an implementation of a specific

algorithm (struct crypto_alg)
I Transformation object: an instance of a specific algorithm (struct crypto_tfm)

I Everything inherits from struct crypto_alg and struct crypto_tfm either
directly on indirectly

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Linux Crypto Framework: Basic Concepts

I Supports a whole bunch of algorithms
I Here are some of them, spot the odd one

I Cipher
I Hash
I AEAD
I HMAC
I Compression

I A transformation algorithm can be a template using basic building blocks
I Examples:

I hmac(sha1): HMAC using SHA1 hash
I cbc(aes): CBC using AES
I authenc(hmac(sha1),cbc(aes)): AEAD using HMAC based on SHA1 and CBC

based on AES

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

An overview of the crypto subsystem

Linux Crypto Framework: How to use it

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Using the crypto framework

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

Dummy user example

I Disclaimer: a lot of things have been deliberately omitted to keep the example
simple
I No error checking
I Code is not separated in sub-functions
I We only provide a simple example for a basic cipher: ecb(aes)
I Headers inclusion has been omitted
I There’s no input/output parameter checking
I ...

I To sum-up: do not use this example as a base for your developments, it’s just
here to show the different steps

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

Dummy user implementation

struct encrypt_ctx {
struct crypto_skcipher *tfm;
struct skcipher_request *req;
struct completion complete;
int err;

};

static void encrypt_cb(struct crypto_async_request *req,
int error)

{
struct crypto_ctx *ctx = req->data;

if (error == -EINPROGRESS)
return;

ctx->err = error;
complete(&ctx->completion);

}

static void init(struct encrypt_ctx *ctx)
{

/* Create a CBC(AES) algorithm instance: */
ctx->tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);
/* Create a request and assign it a callback: */
ctx->req = skcipher_request_alloc(ctx->tfm,

GFP_KERNEL);
skcipher_request_set_callback(req,

CRYPTO_TFM_REQ_MAY_BACKLOG,
encrypt_cb, ctx);

init_completion(&ctx.completion);
}

static void cleanup(struct encrypt_ctx *ctx)
{

skcipher_request_free(ctx->req);
crypto_free_skcipher(ctx->tfm);

}

int encrypt(void *key, void *data, unsigned int size)
{

struct encrypt_ctx ctx;
struct scatterlist sg;
int ret;

init(&ctx);

/* Set the private key: */
crypto_skcipher_setkey(ctx.tfm, key, 32);

/*Now assign the src/dst buffer and encrypt data: */
sg_init_one(&sg, data, size);
skcipher_request_set_crypt(ctx.req, &sg, &sg, len,

NULL);
ret = crypto_skcipher_encrypt(ctx.req);
if (ret == -EINPROGRESS || ret == -EBUSY) {

wait_for_completion(&ctx.completion);
ret = ctx.err;

}

cleanup(&ctx);

return ctx.err;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

In-kernel crypto users

I Disk encryption: dm-crypt
I Network protocols:

I IPSec
I 802.11
I 802.15.4
I Bluetooth
I ...

I File systems

I Device drivers

I git grep "crypto_alloc_" and you’ll find a lot more

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Using kernel crypto features from userspace

I People have pushed for this for quite some time
I Motivation for this:

I Have a single base of code instead of duplicating it in userspace
I Use hardware crypto engines that are only exposed to the kernel world

I Two competing solutions:
I cryptodev: is an out-of-tree solution, ported from the BSD world
I AF_ALG: the in-tree/official solution

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

cryptodev vs AF_ALG

I cryptodev:
I The first solution to have emerged
I Is said to have more performance than AF_ALG
I Still maintained as an out-of-tree kernel module
I Interfaces with the in-kernel crypto framework
I Exposes a device under /dev/crypto
I Uses ioctls to setup the crypto context
I Natively supported in OpenSSL

I AF_ALG:
I Supported in mainline (appeared in Linux 2.6.38)
I Manipulated through a netlink socket
I Supported in OpenSSL as an out-of-tree module

I Which one should I use???

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

OpenSSL Speed Test: Sequential

16b 1kb 8kb
0

20,000

40,000

60,000

S
p

ee
d

in
K

by
te

s/
se

c

Cryptodev (Marvell CESA)

AF ALG (Marvell CESA)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

OpenSSL Speed Test: Sequential

16b 1kb 8kb
0

20,000

40,000

60,000

S
p

ee
d

in
K

by
te

s/
se

c
Cryptodev (Marvell CESA)

AF ALG (Marvell CESA)
No Hardware Engine

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

OpenSSL Speed Test: Parallelization (128 Threads)

16b 1kb 8kb
0

1 · 105

2 · 105

3 · 105

S
p

ee
d

in
K

by
te

s/
se

c
Cryptodev (Marvell CESA)

AF ALG (Marvell CESA)
No Hardware Engine

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

cryptodev vs AF_ALG: Conclusion

I Which one should I use???

I cryptodev shows better results, but...

I ... both cryptodev and AF_ALG are outperformed by the software userspace
solution

I And we don’t gain that much in term of CPU load when offloading to the
hardware engine (60% vs 100%)

I Of course those results are likely to be dependent on the crypto engine and its
driver

I In any case
I Think twice before using a hardware crypto engine from userspace
I Do the test before taking a decision

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

An overview of the crypto subsystem

Linux Crypto Framework: How to develop a
crypto engine driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

How to develop a crypto engine driver

I The crypto framework does not distinguish hardware engines from software
implementation

I Developing a crypto engine driver is just about registering a crypto_alg to the
crypto subsystem

I Identify the type of algorithm you want to add support for and the associated
crypto_alg interface (skcipher_alg, ahash_alg, ...)

I Implement the xxx_alg interface and call crypto_register_xxx() to register it
to the crypto framework

I We will study a simple algorithm type: cbc(aes)

I Go look at other drivers or the crypto framework doc if you need information on
other alg type interfaces

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

Important crypto_alg Fields

struct skcipher_alg xxx_cbc_aes_alg = {
...
.base = {

/* Name used by the framework to find who is implementing what. */
.cra_name = "cbc(aes)",

/* Driver name. Can be used to request a specific implementation of an algorithm. */
.cra_driver_name = "xxx-cbc-aes",

/* Priority is used when implementation auto-selection takes place:
* if there are several implementers, the one with the highest priority is chosen.
* By convention: HW engine > ASM/arch-optimized > plain C
*/
.cra_priority = 300,

/* CRYPTO_ALG_TYPE_XX: describes the type algorithm implemented here
* CRYPTO_ALG_ASYNC: the engine is operating in an asynchronous manner
* CRYPTO_ALG_KERN_DRIVER_ONLY: engine is not directly accessible to userspace
*/
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,

/* Size of the data blocks this algo operates on. */
.cra_blocksize = AES_BLOCK_SIZE,

/* Size of the context attached to an algorithm instance. */
.cra_ctxsize = sizeof(struct xxx_aes_ctx),

/* constructor/destructor methods called every time an alg instance is created/destroyed. */
.cra_init = xxx_skcipher_cra_init,
.cra_exit = xxx_skcipher_cra_exit,

},
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

skcipher_alg Fields

struct skcipher_alg mv_cesa_cbc_aes_alg = {
/* Set key implementation. */
.setkey = xxx_aes_setkey,

/* Encrypt/decrypt implementation. */
.encrypt = xxx_cbc_aes_encrypt,
.decrypt = xxx_cbc_aes_decrypt,

/* Symmetric key size. */
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
/* IV size */
.ivsize = AES_BLOCK_SIZE,
.base = {
....
},

};

static int xxx_encrypt(struct skcipher_request *req)
{

struct my_ctx *ctx = crypto_tfm_ctx(req->base.tfm);

/* Prepare and queue the request here. Return 0 if the request has
* been executed, -EINPROGRESS if it's been queued, -EBUSY if it's
* been backlogged or a different error code for other kind of
* errors.
*/

return ret;
}

static int xxx_decrypt(struct skcipher_request *req)
{

struct my_ctx *ctx = crypto_tfm_ctx(req->base.tfm);

/* Similar to xxx_encrypt() except this time we prepare and queue
* a decrypt operation.
*/

return ret;
}

static int xxx_setkey(struct crypto_skcipher *cipher, const u8 *key,
unsigned int len)

{
struct my_ctx *ctx = crypto_tfm_ctx(req->base.tfm);

/* Expand key and assing store the result in the ctx. */
return ret;

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

An overview of the crypto subsystem

Feedback on my experience with the crypto
framework

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

The framework is a complex beast

I Good aspects:
I Can easily be extended to support new algorithms (even non crypto related ones)
I It comes with an extensive testsuite to detect bad implementation or regressions

I Bad aspects:
I The crypto framework is so open that you sometime have several ways to expose the

same thing (example: crypto_alg+ablkcipher or skcipher)
I The object model is not consistent (how to inherit from a base interface is not

enforced even in the core)
I Hard to tell what the good practices are (old/existing drivers are usually not

converted to the new way of doing things)
I Important details can be discovered the hard way (example: completion callback

should be called with softirqs disabled)

I Who am I to complain about these problems, the NAND framework is probably
worse in this regard...

I Getting these things addressed requires a non-negligible effort and some help from
drivers contributors

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Limiting the number of interrupts: NAPI for crypto?

I Crypto engines may generate a lot of interrupts (potentially one per crypto
request, maybe more if the engine has a limited FIFO size)

I Crypto can be used by the net stack which may decide to switch in polling mode
under heavy net load

I The lack of NAPI-awareness at the crypto level defeats NAPI mode: you’ll end up
with a bunch of crypto interrupts which will prevent your system from running
smoothly while under heavy net+crypto load

I CESA driver approach to limit the number of interrupts: try to queue requests at
the DMA level and use a threaded IRQ in IRQF_ONESHOT mode to do some
polling instead of re-activating interrupts right away

I Not a perfect solution: bigger latency than the irq+softirq approach

I Question: should we add a NAPI-like interface?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

Load balancing: random thoughts

I Current priority-based algorithm selection shows its limits:
I Some systems come with several instances of the same engine but only one of them

can be used/exposed, unless the driver implements its own load balancing logic
I We can’t distribute the load over heterogeneous engines in the system: the engine

with the highest priority gets all the requests

I Should we introduce a generic load-balancing mechanism?
I Here is a list of things to address if we do:

I Introduce the concept of crypto engine, because some engines expose several crypto
algs, but can’t process things in parallel

I Calculate a per-request load based on the request type, the request length and the
engine it is queued to (or something simpler load = length?)

I Keep track of the total load of each engine registered to the system in order to
decide where the next request will go

I Algorithm contexts/states are driver dependent: we need an
intermediate/driver-agnostic representation to allow moving the context/state from
one engine to another

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

Load balancing: random thoughts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

Questions? Suggestions? Comments?

Boris Brezillon

boris.brezillon@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2017/elce/brezillon-crypto-framework/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

http://bootlin.com/pub/conferences/2017/elce/brezillon-crypto-framework/

