
Embedded Linux Conference 2016

Bringing display and 3D
to the C.H.I.P computer
Maxime Ripard
maxime@bootlin.com

© Copyright 2004-2018, Bootlin.

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Maxime Ripard

I Embedded Linux engineer and trainer at Bootlin
I Embedded Linux development: kernel and driver development, system integration,

boot time and power consumption optimization, consulting, etc.
I Embedded Linux training, Linux driver development training and Android system

development training, with materials freely available under a Creative Commons
license.

I http://bootlin.com

I Contributions
I Co-maintainer for the sunXi SoCs from Allwinner
I Contributor to a couple of other open-source projects, Buildroot, U-Boot, Barebox

I Living in Toulouse, south west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 

http://bootlin.com


Bringing display and 3D to the C.H.I.P computer

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



C.H.I.P. ?

I 9$ SBC

I Based on an Allwinner R8 (equivalent to A13)

I 1GHz Cortex-A8 CPU

I Mali 400 GPU

I Plenty of GPIOs to bitbang stuff (and real controllers too!)

I Running mainline-ish Linux kernel (4.3, soon to be 4.4)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



Development effort

I A significant part of the work already done
I But key features for a desktop-like application were missing

I Audio
I NAND support
I Display

I Plus board specific developments
I Wifi regulators
I DIP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



Bringing display and 3D to the C.H.I.P computer

How to display things in Linux?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



Doing display things

I Different solutions, provided by different subsystems:
I FBDEV: Framebuffer Device
I DRM/KMS: Direct Rendering Manager / Kernel Mode Setting
I More exotic ones: V4L2, auxdisplay

I How to choose one: it depends on your needs
I Each subsytem provides its own set of features
I Different levels of complexity
I Different levels of activity

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



Which one to choose?

I DRM
I Actively maintained
I Provides fine grained control on the display pipeline
I Widely used by user-space graphic stacks
I Provides a full set of advanced features

I FBDEV
I Deprecated?
I Does not provides all the features found in the modern display controllers (overlays,

sprites, hw cursor, ...)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 



Bringing display and 3D to the C.H.I.P computer

DRM/KMS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



DRM/KMS: Definition

I DRM stands for Direct Rendering Manager and was introduced to deal with
graphic cards embedding GPUs

I KMS stands for Kernel Mode Setting and is a sub-part of the DRM API

I Though rendering and mode setting are now split in two different APIs (accessible
through /dev/dri/renderX and /dev/dri/controlDX)

I KMS provide a way to configure the display pipeline of a graphic card (or an
embedded system)

I KMS is what we’re interested in when looking for an FBDEV alternative

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



DRM/KMS pipeline

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



KMS components

I Planes
I Image source
I Associated with one (or more!) framebuffers
I Holds a resized version of that framebuffer

I CRTCs
I Take the planes, and does the composition
I Contains the display mode and parameters

I Encoders
I Take the raw data from the CRTC and convert it to a particular format

I Connectors
I Outputs the encoded data to an external display
I Handles hotplug events
I Reads EDIDs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



Allwinner display pipeline

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



DRM vs SoC pipeline

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



DRM Stack: KMS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



DRM Stack: GEM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 



DRM Stack: CMA

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



DRM Stack: PRIME

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



Bringing display and 3D to the C.H.I.P computer

GPU integration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



Solutions

I The GPU found in most Allwinner SoCs is the Mali-400 from ARM (with a
variable number of cores)

I There are two options to support that GPU:
I Lima

I Reversed engineered proof-of-concept
I Triggered the reverse engineering effort of the GPUs (freedreno, etnaviv, etc.)
I Development (closed to?) stopped two years ago

I ARM-Provided support
I Featureful
I Two parts: GPL kernel driver and proprietary OpenGL ES implementation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



DRM Stack: GPU

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 



Development

I Everything is provided by ARM on their website (if you’re lucky)

I On the userspace side, you just need to put the library they provided on your
system

I On the driver side, you need to create a platform glue that will deal with:
I Memory mapping
I Interrupts
I Clocks
I Reset lines
I Power Domains
I Basically everything needed for the GPU to operate properly on your SoC

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 



X11 integration

I We need a DDX (Device Dependent X) driver

I xf86-video-modesetting is working on top of KMS and MESA (Gallium3D)

I ARM developped xf86-video-armsoc for SoC using a 3rd party GPU (Mali,
PowerVR, Vivante, etc.)

I Relies on KMS for the display configuration, driver-specific ioctl for buffer
allocations and vendor-provided OpenGL ES implementation

I Just have to write a small glue to use your driver allocator, and give some hints to
X about what your hardware support (hw cursor, vblank, etc.)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



Questions? Suggestions? Comments?

Maxime Ripard
maxime@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2016/elc/ripard-drm

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

http://bootlin.com/pub/conferences/2016/elc/ripard-drm

