
FOSDEM 2015

Starting with the
Yocto Project

Alexandre Belloni
Bootlin
alexandre.belloni@bootlin.com

Put your business card in the box to participate in the raffle!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Alexandre Belloni

I Embedded Linux engineer at Bootlin
I Embedded Linux expertise
I Development, consulting and training
I Strong open-source focus

I Open-source contributor
I Contributing the kernel support for

Atmel ARM processors
I Contributing the kernel support for

Marvell ARM (Berlin) processors
I Maintainer of the Crystalfontz boards in

the meta-fsl-arm layer

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

What is the Yocto Project ?

I Umbrella project, including:
I pseudo
I cross-prelink
I matchbox
I opkg
I psplash
I ...

I The core components of the Yocto Project are:
I BitBake, the build engine. It is a task scheduler, like make. It

interprets configuration files and recipes (also called metadata)
to perform a set of tasks, to download, configure and build
specified packages and filesystem images.

I OpenEmbedded-Core, a set of base layers. It is a set of
recipes, layers and classes which are shared between all
OpenEmbedded based systems.

I Poky, the reference system. It is a collection of projects and
tools, used to bootstrap a new distribution based on the Yocto
Project.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

The Yocto Project lexicon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

The Yocto Project lexicon

I Organization of OpenEmbedded-Core:
I Recipes describe how to fetch, configure, compile and package

applications and images. They have a specific syntax.
I Layers are sets of recipes, matching a common purpose. For

Texas Instruments board support, the meta-ti layer is used.
I Multiple layers are used within a same distribution, depending

on the requirements.
I It supports the ARM, MIPS (32 and 64 bits), PowerPC and

x86 (32 and 64 bits) architectures.
I It supports QEMU emulated machines for these architectures.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

Building an image

Building an image

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Environment setup

I All Poky files are left unchanged when building a custom
image.

I Specific configuration files and build repositories are stored in
a separate build directory.

I A script, oe-init-build-env, is provided to set up the build
directory and the environment variables (needed to be able to
use the bitbake command for example).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

oe-init-build-env

I Modifies the environment: has to be sourced!

I Adds environment variables, used by the build engine.

I Allows you to use commands provided in Poky.

I source ./oe-init-build-env [builddir]

I Sets up a basic build directory, named builddir if it is not
found. If not provided, the default name is build.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

Common targets

I Common targets are listed when sourcing the script:

core-image-minimal A small image to boot a device and have
access to core command line commands and
services.

core-image-sato Image with Sato support. Sato is a GNOME
mobile-based user interface.

meta-toolchain Includes development headers and libraries to
develop directly on the target.

adt-installer Build the application development toolkit
installer.

meta-ide-support Generates the cross-toolchain. Useful when
working with the SDK.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

The build/conf/ directory

I The conf/ directory in build holds build specific
configuration.

bblayers.conf Explicitly list the available layers.
local.conf Set up the configuration variables relative to the

current user for the build. Configuration
variables can be overridden there.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Configuring the build

I The conf/local.conf configuration file holds local user
configuration variables:

BB NUMBER THREADS How many tasks BitBake should
perform in parallel.

PARALLEL MAKE How many processes should be used when
compiling.

MACHINE The machine the target is built for, e.g.
beaglebone.

PACKAGE CLASSES Packages format (deb, ipk or rpm).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

Compilation

I The compilation is handled by the BitBake build engine.

I Usage: bitbake [options] [recipename/target ...]

I To build a target: bitbake [target]

I Building a minimal image: bitbake core-image-minimal
I This will run a full build for the selected target.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

Results

tmp/buildstats/ Build statistics for all packages built (CPU usage,
elapsed time, host, timestamps. . .).

tmp/deploy/ Final output of the build.

tmp/deploy/images/ Contains the complete images built by the
OpenEmbedded build system. These images are used
to flash the target.

tmp/work/ Set of specific work directories, split by architecture.
They are used to unpack, configure and build the
packages. Contains the patched sources, generated
objects and logs.

tmp/sysroots/ Shared libraries and headers used to compile
packages for the target but also for the host.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Summary

I Initialize the build environment

$ source poky/oe-init-build-env build

I Configure your local.conf

BB_NUMBER_THREADS = "16"

PARALLEL_MAKE = "-j 16"

MACHINE ?= "imx28evk"

I build the image

$ bitbake core-image-minimal

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Layers

Layers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Layer creation

To make modifications, it is necessary to create a new layer:

I create a meta-<machine> directory

I inside that directory, create a conf/layer.conf file

Alternatively, you could use:

I yocto-layer create and select a high priority

I or yocto-bsp create

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

conf/layer.conf

We have a conf and classes directory, add to BBPATH

BBPATH .= ":${LAYERDIR}"

BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \

${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "crystalfontz"

BBFILE_PATTERN_crystalfontz := "^${LAYERDIR}/"

BBFILE_PRIORITY_crystalfontz = "10"

LAYERDEPENDS_crystalfontz = "fsl-arm fsl-arm-extra"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

Adding the layer to the build

I The main drawback of having a layer separate from your
silicon vendor is that your customers will have to add it to
their configuration to use it.

I That configuration is done in
<builddir>/conf/bblayers.conf. Add your layer to the
BBLAYERS variable:

BBLAYERS += "${BSPDIR}/sources/meta-crystalfontz "

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Recipes

Recipes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Recipes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Basics

I Recipes describe how to handle a given package.

I A recipe is a set of instructions to describe how to retrieve,
patch, compile, install and generate binary packages for a
given application.

I It also defines what build or runtime dependencies are
required.

I The recipes are parsed by BitBake

I The format of a recipe file name is
<package-name>_<version>.bb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

Content of a recipe

I A recipe contains configuration variables: name, license,
dependencies, path to retrieve the source code. . .

I It also contains functions that can be run (fetch, configure,
compile. . .) which are called tasks.

I Tasks provide a set of actions to perform.

I bitbake -c <task> <package>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

Organization of a recipe

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

Organization of a recipe

I Many packages have more than one recipe, to support
different versions. In that case the common metadata is
included in each version specific recipe and is in a .inc file:
I <package>.inc: version agnostic metadata.
I <package>_<version>.bb: require <package>.inc and

version specific metadata.

I We can divide a recipe into three main parts:
I The header: what/who
I The sources: where
I The tasks: how

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

The header

I Configuration variables to describe the package:

DESCRIPTION describes what the software is about
HOMEPAGE URL to the project’s homepage

PRIORITY defaults to optional

SECTION package category (e.g. console/utils)
LICENSE the package’s license

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

The source locations

I We need to retrieve both the raw sources from an official
location and the resources needed to configure, patch or
install the package.

I SRC_URI defines where and how to retrieve the needed
elements. It is a set of URI schemes pointing to the resource
locations (local or remote).

I For the local files, the searched paths are defined in the
FILESPATH variable, custom ones can be added using
FILESEXTRAPATHS. BitBake will also search in subfolders
listed in the OVERRIDES variables in those paths.

I Files ending in .patch, .diff or having the apply=yes

parameter will be applied after the sources are retrieved and
extracted.

I Patches are applied in the order they are found.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Dependencies

I A package can have dependencies during the build or at
runtime. To reflect these requirements in the recipe, two
variables are used:

DEPENDS List of the package build-time dependencies.
RDEPENDS List of the package runtime dependencies. Must

be package specific (e.g. with _${PN}).

I DEPENDS = "package_b": the local do_configure task
depends on the do_populate_sysroot task of package b.

I RDEPENDS_${PN} = "package_b": the local do_build task
depends on the do_package_write_<archive-format>

task of package b.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

Tasks

Default tasks already exists, they are defined in classes:

I do fetch

I do unpack

I do patch

I do configure

I do compile

I do install

I do package

I do rootfs

You can get a list of existing tasks for a recipe with:
bitbake <recipe> -c listtasks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Writing tasks 1/3

I Functions use the sh shell syntax, with available
OpenEmbedded variables and internal functions available.

D The destination directory (root directory of
where the files are installed, before creating the
image).

WORKDIR the package’s working directory

I Syntax of a task:

do_task() {

action0

action1

...

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

Writing tasks 2/3

I Example:

do_compile() {

${CC} ${CFLAGS} ${LDFLAGS} -o hello ${WORKDIR}/hello.c

}

do_install() {

install -d ${D}${bindir}

install -m 0755 hello ${D}${bindir}

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

Writing tasks 3/3

I Or using a Makefile:

do_compile() {

oe_runmake

}

do_install() {

install -d ${D}${bindir}

install -m 0755 hello ${D}${bindir}

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Adding new tasks

Tasks can be added with addtask

do_mkimage () {

uboot-mkimage ...

}

addtask mkimage after do_compile before do_install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

Hello world recipe

DESCRIPTION = "Hello world program"

HOMEPAGE = "http://example.net/helloworld/"

PRIORITY = "optional"

SECTION = "examples"

LICENSE = "GPLv2"

SRC_URI = "file://hello.c"

do_compile() {

${CC} ${CFLAGS} ${LDFLAGS} -o hello ${WORKDIR}/hello.c

}

do_install() {

install -d ${D}${bindir}

install -m 0755 hello ${D}${bindir}

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

Extending a recipe

Extending a recipe

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

Introduction to recipe extensions

I It is a good practice not to modify recipes available in Poky.

I But it is sometimes useful to modify an existing recipe, to
apply a custom patch for example.

I The BitBake build engine allows to modify a recipe by
extending it.

I Multiple extensions can be applied to a recipe.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

Introduction to recipe extensions

I Metadata can be changed, added or appended.

I Tasks can be added or appended.

I Operators are used extensively, to add, append, prepend or
assign values.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

Extend a recipe

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1

Extend a recipe

I The recipe extensions end in .bbappend

I Append files must have the same root name as the recipe they
extend.
I example_0.1.bbappend applies to example_0.1.bb

I Append files are version specific. If the recipe is updated to
a newer version, the append files must also be updated.

I If adding new files, the path to their directory must be
prepended to the FILESEXTRAPATHS variable.
I Files are looked up in paths referenced in FILESEXTRAPATHS,

from left to right.
I Prepending a path makes sure it has priority over the recipe’s

one. This allows to override recipes’ files.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

Hello world append file

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

SRC_URI += "file://custom-modification-0.patch \

file://custom-modification-1.patch \

"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1

Warning

You can find it in some recipes but don’t use the following
construct in pkg_postinst:

pkg_postinst_wpa-supplicant () {

If we’re offline, we don’t need to do this.

if ["x$D" != "x"]; then

exit 0

fi

killall -q -HUP dbus-daemon || true

}

It can’t be extended using .bbappend

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/1

Debugging recipes

I For each task, logs are available in the temp directory in the
work folder of a recipe.

I A development shell, exporting the full environment can be
used to debug build failures:

$ bitbake -c devshell <recipe>

I To understand what a change in a recipe implies, you can
activate build history in local.conf:

INHERIT += "buildhistory"

BUILDHISTORY_COMMIT = "1"

Then use the buildhistory-diff tool to examine
differences between two builds.
I ./scripts/buildhistory-diff

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1

Images

Images

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/1

Image recipes

I an image recipe is used to define the content of the final
image

I it is the entry point of the build and defines all the necessary
packages through dependencies

I image recipes are usually in recipes-*/images/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/1

images/demo-image-cfa-mini.bb

DESCRIPTION = "Image for Crystalfontz boards"

LICENSE = "MIT"

IMAGE_INSTALL = "packagegroup-core-boot \

${ROOTFS_PKGMANAGE_BOOTSTRAP} \

${CORE_IMAGE_EXTRA_INSTALL}"

IMAGE_INSTALL += "init-ifupdown busybox-udhcpd iw"

IMAGE_INSTALL += "evtest tslib tslib-conf tslib-tests \

tslib-calibrate"

IMAGE_LINGUAS = " "

inherit core-image

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/1

Image recipes

I use IMAGE_INSTALL to specify which packages you need on
your target

I you can use packagegroups, they are useful when needing
features with complex dependencies

I inherit the base image class core-image

I you can also include already existing image recipes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/1

images/demo-image-cfa.bb (1)

include recipes-sato/images/core-image-sato.bb

IMAGE_FEATURES += "debug-tweaks"

WEB = "web-webkit"

IMAGE_INSTALL += " linux-firmware init-ifupdown busybox-udhcpd"

we don’t need the full tools-testapps

IMAGE_INSTALL += " evtest tslib tslib-conf tslib-tests tslib-calibrate xev"

IMAGE_INSTALL += " iw connman-client"

EXTRA_IMAGE_FEATURES += " \

nfs-server \

qt4-pkgs \

"

more debugging and profiling

EXTRA_IMAGE_FEATURES += " \

tools-debug \

tools-profile \

"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/1

images/demo-image-cfa.bb (2)

IMAGE_INSTALL += " \

cpufrequtils \

nano \

packagegroup-qt-in-use-demos \

qt4-demos \

qt4-examples \

cfa-config-extra \

"

export IMAGE_BASENAME = "demo-image-cfa"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/1

Image recipes

IMAGE FEATURES The primary list of features to include in an
image.

EXTRA IMAGE FEATURES List of additional features to include
in an image, typically to be put in your local.conf
file.

Available features: dbg-pkgs, dev-pkgs, doc-pkgs, nfs-server,
read-only-rootfs, splash, ssh-server-dropbear, ssh-server-openssh,
staticdev-pkgs, tools-debug, tools-profile, tools-sdk, tools-testapps,
x11, x11-base, x11-sato

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/1

Image tweaks

There is a mechanism to describe what functionalities are available
on the target, the formfactor configuration file.

I extend it with a .bbappend:
recipes-bsp/formfactor/formfactor_0.0.bbappend

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

I it install a file named machconfig

$ tree recipes-bsp/formfactor/

recipes-bsp/formfactor/

|-- formfactor

| |-- cfa10057

| | ‘-- machconfig

| ‘-- cfa10058

| ‘-- machconfig

‘-- formfactor_0.0.bbappend

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/1

cfa10058/machconfig

Display options

HAVE_TOUCHSCREEN=1

Other available variables: HAVE_KEYBOARD,
HAVE_KEYBOARD_PORTRAIT, HAVE_KEYBOARD_LANDSCAPE,
DISPLAY_CAN_ROTATE, DISPLAY_ORIENTATION,
DISPLAY_WIDTH_PIXELS, DISPLAY_HEIGHT_PIXELS,
DISPLAY_BPP, DISPLAY_WIDTH_MM, DISPLAY_HEIGHT_MM,
DISPLAY_SUBPIXEL_ORDER.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/1

Adding extra configuration

You can create a recipe to simply install a few configuration files in
your final filesystem. This is what cfa-config-extra is doing:
recipes/cfa-config-extra/cfa-config-extra.bb

DESCRIPTION = "Extra files for demo-image-cfa"

LICENSE = "GPLv2"

PR = "r1"

S="${WORKDIR}"

LIC_FILES_CHKSUM = "file://LICENSE;md5=c746876a5e2eaefef09efb9d7c1c463d"

SRC_URI += "file://qtbrowser.desktop \

file://webkit.png \

file://qtmediaplayer.desktop \

file://qtmediaplayer.png \

file://qtdemo.desktop \

file://qtdemo.png \

file://LICENSE"

inherit allarch

do_install () {

install -d ${D}/${datadir}/pixmaps

install -d ${D}/${datadir}/applications

install -m 0644 ${WORKDIR}/webkit.png ${D}/${datadir}/pixmaps

install -m 0644 ${WORKDIR}/qtbrowser.desktop ${D}/${datadir}/applications

install -m 0644 ${WORKDIR}/qtmediaplayer.png ${D}/${datadir}/pixmaps

install -m 0644 ${WORKDIR}/qtmediaplayer.desktop ${D}/${datadir}/applications

install -m 0644 ${WORKDIR}/qtdemo.png ${D}/${datadir}/pixmaps

install -m 0644 ${WORKDIR}/qtdemo.desktop ${D}/${datadir}/applications

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/1

Useful package tweaks

recipes-connectivity/connman, to be extended to install and
connman.defaults file, especially to prevent connman from
configuring some interfaces.
recipes-connectivity/connman/connman_1.17.bbappend

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

SRC_URI += " file://connman.defaults"

do_install_append() {

if ${@base_contains(’DISTRO_FEATURES’,’sysvinit’,’true’,’false’,d)}; then

install -d ${D}${sysconfdir}/default

install -m 0755 ${WORKDIR}/connman.defaults \

${D}${sysconfdir}/default/connman

fi

}

recipes-connectivity/connman/connman/connman.defaults

EXCLUDED_INTERFACES="usb0"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/1

Useful package tweaks

recipes-core/busybox, to be extended to install various
configuration files for the busybox applets
recipes-core/busybox/busybox_1.21.1.bbappend:

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

SRC_URI_append_cfa10036 = " \

file://udhcpd.conf \

"

do_install_append_cfa10036 () {

install -m 0755 ${WORKDIR}/udhcpd.conf ${D}${sysconfdir}/

}

This recipe is better than the previous one as it restrict changes to
a particular machine.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/1

Useful package tweaks

recipes-core/psplash, can be extended to change the splash
screen, needs more to change the color of the progress bar:
recipes-core/psplash/psplash_git.bbappend:

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

DEPENDS += "gdk-pixbuf-native"

PRINC = "8"

SRC_URI += "file://psplash-colors.h \

file://psplash-bar-img.png"

NB: this is only for the main logo image; if you add multiple images here,

poky will build multiple psplash packages with ’outsuffix’ in name for

each of these ...

SPLASH_IMAGES = "file://psplash-poky-img.png;outsuffix=default"

The core psplash recipe is only designed to deal with modifications to the

’logo’ image; we need to change the bar image too, since we are changing

colors

do_configure_append () {

cd ${S}

cp ../psplash-colors.h ./

strip the -img suffix from the bar png -- we could just store the

file under that suffix-less name, but that would make it confusing

for anyone updating the assets

cp ../psplash-bar-img.png ./psplash-bar.png

./make-image-header.sh ./psplash-bar.png BAR

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/1

BSP

BSP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/1

Machine configuration

Create a <machine>.conf file in conf/machine/. As we want to
support multiple similar boards (all based on cfa10036), an
include was created in conf/machine/include/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/1

conf/machine/include/cfa10036.inc

Common definitions for cfa-10036 boards

include conf/machine/include/mxs-base.inc

SOC_FAMILY = "mxs:mx28:cfa10036"

PREFERRED_PROVIDER_virtual/kernel ?= "linux-cfa"

IMAGE_BOOTLOADER = "barebox"

BAREBOX_BINARY = "barebox"

IMXBOOTLETS_MACHINE = "cfa10036"

KERNEL_IMAGETYPE = "zImage"

KERNEL_DEVICETREE = "imx28-cfa10036.dtb"

we need the kernel to be installed in the final image

IMAGE_INSTALL_append = " kernel-image kernel-devicetree"

SDCARD_ROOTFS ?= "${DEPLOY_DIR_IMAGE}/${IMAGE_NAME}.rootfs.ext3"

IMAGE_FSTYPES ?= "tar.bz2 ext3 barebox.mxsboot-sdcard sdcard"

SERIAL_CONSOLE = "115200 ttyAMA0"

MACHINE_FEATURES = "usbgadget usbhost vfat"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/1

conf/machine/cfa10036.conf

The machine configuration for the module is simple:

#@TYPE: Machine

#@NAME: Crystalfontz CFA-10036

#@SOC: i.MX28

#@DESCRIPTION: Machine configuration for CFA-10036

#@MAINTAINER: Alexandre Belloni <alexandre.belloni@bootlin.com>

include conf/machine/include/cfa10036.inc

It is always a good idea to put a contact as maintainer.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/1

conf/machine/cfa10057.conf

For a carrier board, add the corresponding device tree and the
supported features.

#@TYPE: Machine

#@NAME: Crystalfontz CFA-10057

#@SOC: i.MX28

#@DESCRIPTION: Machine configuration for CFA-10057, also called CFA-920

#@MAINTAINER: Alexandre Belloni <alexandre.belloni@bootlin.com>

include conf/machine/include/cfa10036.inc

KERNEL_DEVICETREE += "imx28-cfa10057.dtb"

MACHINE_FEATURES += "touchscreen"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/1

Kernel support

For the kernel, you have multiple choices:
I patches over silicon vendor kernel tree

I available as an include
I using a .bbappend

I custom git tree

I mainline git

You also probably have to provide a configuration file.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/1

Patches, include

The compilation logic is provided by your silicon vendor as an
include file:

I create a recipes-kernel/linux/

I write a new recipe linux-<vendor>_<version>.bb

I copy your patches to
recipes-kernel/linux/linux-<vendor>-<version>

I Example: for linux-congatec:

$ ls recipes-kernel/linux/linux-congatec*

recipes-kernel/linux/linux-congatec_3.0.35.bb

recipes-kernel/linux/linux-congatec-3.0.35:

0001-Add-linux-support-for-congatec-evaluation-board-qmx6q.patch

0001-perf-tools-Fix-getrusage-related-build-failure-on-gl.patch

0002-ARM-7668-1-fix-memset-related-crashes-caused-by-rece.patch

0003-ARM-7670-1-fix-the-memset-fix.patch

[...]

defconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/1

Patches, include: recipe

SUMMARY = "Linux Kernel based on Freescale Linux kernel to add support for Congatec boards"

include recipes-kernel/linux/linux-imx.inc

SRCREV = "bdde708ebfde4a8c1d3829578d3f6481a343533a"

LOCALVERSION = "-4.1.0+yocto"

SRCBRANCH = "imx_3.0.35_4.1.0"

SRC_URI += "file://drm-vivante-Add-00-sufix-in-returned-bus-Id.patch \

file://epdc-Rename-mxcfb_epdc_kernel.h-to-mxc_epdc.h.patch \

file://0001-perf-tools-Fix-getrusage-related-build-failure-on-gl.patch \

file://0002-ARM-7668-1-fix-memset-related-crashes-caused-by-rece.patch \

file://0003-ARM-7670-1-fix-the-memset-fix.patch \

file://0004-ENGR00271136-Fix-build-break-when-CONFIG_CLK_DEBUG-i.patch \

file://0005-ENGR00271359-Add-Multi-touch-support.patch \

file://0006-Add-support-for-DVI-monitors.patch \

file://0001-Add-linux-support-for-congatec-evaluation-board-qmx6q.patch \

file://ENGR00278350-gpu-viante-4.6.9p13-kernel-part-integra.patch \

"

COMPATIBLE_MACHINE = "(cgtqmx6)"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/1

Patches, include: recipe

SRCREV The revision of the source code used to build the
package.

SRCBRANCH New in daisy, when using git it is required to
specify in which branch the commit resides.
SRCBRANCH is used in SRC_URI, in linux-imx.inc

SRC URI The list of source files. Here patches are added in the
original SRC_URI

COMPATIBLE MACHINE A regular expression used to match
against the MACHINEOVERRIDES variable which in
turn includes MACHINE. Used to ensure the recipe
won’t build for other machines.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/1

SRC_URI: file://

I When using file:// in SRC-URI, OpenEmbedded will search
files relative to the subdirectories listed in FILESPATH

I By default, this is:
I ${BPN}, the base recipe name
I ${BP}, which is ${BPN}-${PV}, ${PV} being the package

version
I files

I also looks in a subdirectory named ${MACHINE} inside those
directories

I if set, also looks for subdirectories named from
${MACHINEOVERRIDES} and ${DISTROOVERRIDES}

I Don’t modify FILESPATH directly, use FILESEXTRAPATHS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/1

custom git tree

When using a custom git tree, you’ll have to write your own recipe.
But this doesn’t have to be difficult:

I inherit the kernel class, it already takes care of downloading,
unpacking, configuring and compiling your kernel.

I if using device trees, include
recipes-kernel/linux/linux-dtb.inc

I define SRC_URI

I define S

I define COMPATIBLE_MACHINE

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/1

recipes-kernel/linux/linux-cfa_3.10.bb

DESCRIPTION = "Linux kernel for Crystalfontz boards"

SECTION = "kernel"

LICENSE = "GPLv2"

LIC_FILES_CHKSUM = "file://COPYING;md5=d7810fab7487fb0aad327b76f1be7cd7"

inherit kernel

require recipes-kernel/linux/linux-dtb.inc

SRCBRANCH = "cfa-3.10.25"

SRC_URI = "git://github.com/crystalfontz/cfa_10036_kernel;branch=${SRCBRANCH} \

file://defconfig"

SRCREV = "61dbe8ef338ce4cc1c10d5a6cdd418c047fb136d"

S = "${WORKDIR}/git"

COMPATIBLE_MACHINE = "cfa10036"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/1

Bootloader support

I using imxbootlets to start Barebox

I the recipes are going in the recipes-bsp folder

I those recipes are extended using .bbappend

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/1

imx-bootlets/imx-bootlets_10.12.01.bbappend

I extends
recipes-bsp/imx-bootlets/imx-bootlets_10.12.01.bb

from meta-fsl-arm

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

SRC_URI_append_cfa10036 = " file://cfa10036-support.patch"

I use immediate expansion :=

I conditionally adds the cfa10036 support patch when
MACHINEOVERRIDES matches

I don’t forget the space at the beginning of the string when
using _append

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/1

barebox/barebox_2013.08.0.bbappend

I extends recipes-bsp/barebox/barebox_2013.08.0.bb

from meta-fsl-arm

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}-${PV}:"

COMPATIBLE_MACHINE_cfa10036 = "cfa10036"

I simply adds the subdirectory, it contains the configuration

$ tree recipes-bsp/barebox/barebox-2013.08.0/

recipes-bsp/barebox/barebox-2013.08.0/

‘-- cfa10036

‘-- defconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/1

Documentation

I https://www.yoctoproject.org/documentation

I in particular the variable glossary:
http://www.yoctoproject.org/docs/current/ref-

manual/ref-manual.html#ref-variables-glossary

I and the BSP developer’s guide:
http://www.yoctoproject.org/docs/current/bsp-

guide/bsp-guide.html

I Freescale BSP: http://freescale.github.io

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/1

https://www.yoctoproject.org/documentation
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-variables-glossary
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-variables-glossary
http://www.yoctoproject.org/docs/current/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/current/bsp-guide/bsp-guide.html
http://freescale.github.io

Training

I We teach a 3 day course on Yocto Project and
OpenEmbedded development

I Either on your company site

I Or in a public session, next ones: March 9-11, 2015 in Lyon,
in French or May 20-22, 2015 in Paris, in English

I Info and materials available at:
http://bootlin.com/training/yocto/

I training@bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/1

http://bootlin.com/training/yocto/

Questions?

Alexandre Belloni
alexandre.belloni@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2015/fosdem/belloni-starting-with-

YP/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/1

http://bootlin.com/pub/conferences/2015/fosdem/belloni-starting-with-YP/
http://bootlin.com/pub/conferences/2015/fosdem/belloni-starting-with-YP/

