
Embedded Linux Conference Europe 2015

Kernel
maintainership: an
oral tradition

(Image credit: Andrew Cheal under license CC BY-ND 2.0)

Gregory CLEMENT
Bootlin
gregory.clement@bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Gregory CLEMENT

▶ Embedded Linux engineer and trainer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Open-source contributor
▶ Contributing to kernel support for the Armada 370,

375, 38x, 39x and Armada XP ARM SoCs from
Marvell.

▶ Co-maintainer of mvebu sub-architecture (SoCs from
Marvell Engineering Business Unit)

▶ Living near Lyon, France

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 



Motivation and Overview

▶ Motivation
▶ Implicit or unwritten rules.
▶ Make such rules more explicit.
▶ Help new maintainers and contributors.
▶ Guidelines I would have liked to find.

▶ Overview
▶ The role of a maintainer
▶ Accepting a patch
▶ Interaction with other maintainers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



The role of a maintainer

▶ Gathering patches for the subsystem
▶ Through emails.
▶ Sometimes through a git tree.

▶ Reviewing the submitted patches
▶ Best case: accepted as is.
▶ Most often: ask for a new version pointing the parts to improve.
▶ Worst case: rejected.

▶ Pushing the gathered patches to the upper subsystem
▶ Pull request to another maintainer.
▶ Or directly to Linus Torvalds.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



Becoming a maintainer

▶ Creating a new subsystem:
▶ Most obvious.
▶ Under arch/ usually a new family of a CPU or an SoC.
▶ Under drivers/ usually a new framework or a specialization of an existing class

driver.
▶ Joining the current maintainer:

▶ After being active in the subsystem especially by doing reviews.
▶ Generally asked by the current maintainer(s) but sometimes after offering help.

▶ Replacing a maintainer:
▶ Either co-opted by the current maintainer before leaving.
▶ Or asked by upper maintainer because of your involvement in this subsystem.
▶ Or on a volunteering base because you are interested by the subject (and because

you need to push your own patches).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



Expectation of the submitter

▶ Reviewing the patch in a couple of days (or hours)
▶ Writing and testing the code took a long time,

reviewing it should be fast.
▶ Eager to have feedback to make things move on.

▶ Knowing the hardware by heart
▶ As maintainer of the subsystem you appear as the

expert of the hardware it supports.
▶ Supposed to have all the variants of the hardware.

▶ Updating the status of the submitted patches
▶ Letting know if the patches have been received,

reviewed, applied or rejected.
▶ Expected to be done in real time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



Expectation of the upper maintainer

▶ Don’t introduce any breakage.
▶ No merge conflict.
▶ No regression.

(Image credit: Mike Pennington under license CC BY-SA 2.0)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



Timeline for the submission of a patch 1/3

▶ At least one week between submission and being applied
▶ Leave time to interested people to review the series
▶ Could be shorter for a new version of a series already reviewed

▶ Stay in linux-next one week before being submitted to the upper subsystem
▶ Allows to fix merge conflicts before creating an immutable branch.
▶ Could be shorter if already been in linux-next before or if the changes are well

contained.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 



Timeline for the submission of a patch 2/3

▶ The deeper the subsystem is, the longer will be the time between submission and
being merged in mainline

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



Timeline for the submission of a patch 3/3

▶ As the Linux release candidates are weekly, then for a subsystem at N-1, series
submitted after -rc6 (or rc7) won’t be in the next release.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



Accepting a patch

▶ Obvious criteria
▶ Must respect the coding rules (use checkpatch.pl for this).
▶ Must compile without warning.

▶ No regression.
▶ Testing the hardware is nice to have but not mandatory.

▶ For a new device feature or device you can assume it was tested by the submitter.
▶ Ask for a Tested-by from other users if you have any doubt.
▶ Rely on testing farms if you can.

▶ Be careful of dependencies with other subsystems.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Organization of the subsystem git tree

▶ At least 2 branches:
▶ current for gathering the fixes of the current release candidate.
▶ for-next for gathering the patches for the next release candidate.

▶ Could be useful to have a third branch for the release candidate after.
▶ Could have topic branches:

▶ For big subsystems such as arm-soc.
▶ To let other subsystems merge your subsystem related part of series (see later).

▶ Based on the -rc1 to make the merge easier.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



The stable kernels

▶ Most users use a kernel from a distribution.
▶ Most distributions use stable kernels.
▶ When receiving a fix, always ask if it could be useful for older kernels.
▶ Tag the commit with Cc: <stable@vger.kernel.org>.
▶ Indicate from which from which version it applies by adding it in comment.
▶ Even better use the tag Fixes: SHA-1_ID ("title of the patch").

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



The linux-next kernel 1/2

▶ The place where are merged all the commits expected to be in the kernel after the
next merge window closes.

▶ How to use it as a maintainer
▶ The branches merged in linux-next have to be declared to Stephen Rothwell.
▶ Send him an email with the name of the repository and the branch to merge.
▶ Do not have to be an immutable branch: all the branches are merged again for each

linux-next release (on a daily basis).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



The linux-next kernel 2/2

▶ Benefit of being in linux-next
▶ Being merged every day with all the other branches allows to detect the merge

conflicts early.
▶ As a bonus, Stephen often resolves the conflict.
▶ Used by the autobuilder such as 0-Day done by 01.org from Intel or the

kernel CI supported by Linaro.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



Automatic tester projects

▶ Projects which automatically test your branch
▶ 0-Day:

▶ Fetches the branches from the main kernel repository (at least git.kernel.org).
▶ Compiles test various defconfig and architecture.
▶ Boots and does some performance tests on hardware.
▶ Now seems also to apply patches directly from the mailing lists.

▶ kernel CI:
▶ Compiles several branches mainly ARM related.
▶ Boots and test on many boards.
▶ Fancy website to retrieve the results.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 



Dealing with your own patches

▶ You are a maintainer but you remain a developer.
▶ You have the possibility to directly apply your own patches.
▶ Not really in the spirit of an open development.
▶ Still good to have reviews and suggestions.
▶ However most of the time you won’t get a review as you are supposed to be the

one who reviews!
▶ But still apply the submission process: waiting at least one week after submitting

to the mailing list before applying the patch in your -next branch.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



Coordinating with the co-maintainers 1/2

▶ Subsystems maintained more and more often by several people.
▶ Benefits:

▶ Allows to be more responsive especially if located in distant timezones.
▶ Avoids having a stalled subsystem during holidays.
▶ Eases the turn over: easier to leave and easier to join a team.

▶ Drawbacks
▶ Need to find an agreement in case of opposite opinions.
▶ Need to coordinate.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



Coordinating with the co-maintainers 2/2

▶ Each co-maintainer has her/his own interests and fields of expertise.
▶ Spreads the review.
▶ Allows to stay focused.

▶ An Acked-by given by a co-maintainer is enough.
▶ Only one co-maintainer gathering the patches and taking care of the pull requests

for a given kernel release cycle.
▶ Easier to keep track of the submitted patches.
▶ The git repository remains shared at least for emergency.
▶ Better to decide in advance who will be the next in charge.

▶ Coordinating by email is fine most of the time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



Coordinating with the maintainers of other subsystems 1/2

▶ Some series modify several subsystems at the same time.
▶ Dependencies between the patches.
▶ We want the kernel to be bisectable.
▶ The order in which the patches are applied matters.
▶ Can’t predict in which order the subsystem will be merged.
▶ Need to synchronize with the maintainers of other subsystems to solve this.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



Coordinating with the maintainers of other subsystems 2/2

▶ One maintainer takes the entire series:
▶ Will have commits modifying another subsystem in her/his git tree.
▶ May cause merge conflicts.

▶ One maintainer creates an immutable branch
▶ A topic branch with only the patch from the series.
▶ Will be in both trees: it will avoid the merge conflict.
▶ If a fix is needed, it can’t be squashed, it will have to be a separate commit.

▶ Merging the series in two kernel releases:
▶ No merge conflict.
▶ No immutable branch.
▶ But the feature is delayed of at least 3 months.
▶ Still possible to have the feature by delaying the clean-up in the second release.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 



Submitting the gathered patches 1/2

▶Identify the patches to apply
when reading the emails.

M-x gnus-registry-set-article-mark under emacs
or by using patchwork.

▶Apply them on your branch. M-x dvc-gnus-article-apply-patch under emacs.

▶Add your Signed-off-by
(as you are going to submit
them you have to do it).

git commit --amend -s --no-edit

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 



Submitting the gathered patches 2/2

▶Sign your branch git tag -s tag_name branch_name

▶Push your branch on your
public repository

git push public_repo tags/tag_name

▶Generate the pull request
cover letter:

git request-pull previous_tag public_repo \
tags/tag_name | cat
previous_tag is either the tag previously pulled during
the last request or the rc1 of the current kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



Final words

▶ Find the good balance between
maintainer duty and submitter
expectations.

▶ Be nice and helpful with the
submitters especially the new ones.

▶ Remain vigilant about the code quality
and stability of the kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

 



Questions?

Gregory CLEMENT
gregory.clement@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2015/elce/clement-kernel-maintainership-oral-tradition

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

http://bootlin.com/pub/conferences/2015/elce/clement-kernel-maintainership-oral-tradition

