Kernel
maintainership: an
oral tradition

(Image credit: Andrew Cheal under license CC BY-ND 2.0)

Gregory CLEMENT

Bootlin
gregory.clement@bootlin.com

» Embedded Linux engineer and trainer at Bootlin
> Embedded Linux expertise [4
» Development, consulting and training b tl
» Strong open-source focus O O l n
» Open-source contributor

» Contributing to kernel support for the Armada 370,
375, 38x, 39x and Armada XP ARM SoCs from o

Marvell.

» Co-maintainer of mvebu sub-architecture (SoCs from
Marvell Engineering Business Unit)

» Living near Lyon, France

embedded Linux and kernel engineering

%

» Motivation

» Implicit or unwritten rules.

» Make such rules more explicit.

» Help new maintainers and contributors.
» Guidelines | would have liked to find.

» Overview

» The role of a maintainer
» Accepting a patch
» Interaction with other maintainers

» Gathering patches for the subsystem
» Through emails.
» Sometimes through a git tree.
P> Reviewing the submitted patches
» Best case: accepted as is.
» Most often: ask for a new version pointing the parts to improve.
» Worst case: rejected.
» Pushing the gathered patches to the upper subsystem

» Pull request to another maintainer.
» Or directly to Linus Torvalds.

> Creating a new subsystem:
» Most obvious.
» Under arch/ usually a new family of a CPU or an SoC.
» Under drivers/ usually a new framework or a specialization of an existing class
driver.
» Joining the current maintainer:
» After being active in the subsystem especially by doing reviews.
» Generally asked by the current maintainer(s) but sometimes after offering help.
» Replacing a maintainer:
» Either co-opted by the current maintainer before leaving.
» Or asked by upper maintainer because of your involvement in this subsystem.
» Or on a volunteering base because you are interested by the subject (and because
you need to push your own patches).

» Reviewing the patch in a couple of days (or hours)
> Writing and testing the code took a long time,
reviewing it should be fast.
» Eager to have feedback to make things move on.
» Knowing the hardware by heart
» As maintainer of the subsystem you appear as the
expert of the hardware it supports.
» Supposed to have all the variants of the hardware.
» Updating the status of the submitted patches
» Letting know if the patches have been received,

reviewed, applied or rejected.
» Expected to be done in real time.

» Don't introduce any breakage.
» No merge conflict.

» No regression.

(Image credit: Mike Pennington under license CC BY-SA 2.0)

P> At least one week between submission and being applied
P Leave time to interested people to review the series
» Could be shorter for a new version of a series already reviewed
» Stay in linux-next one week before being submitted to the upper subsystem

> Allows to fix merge conflicts before creating an immutable branch.
» Could be shorter if already been in linux-next before or if the changes are well
contained.

» The deeper the subsystem is, the longer will be the time between submission and
being merged in mainline

Submission process

X number of version Pushed to
upper subsystem

1 week

... until N weeks 1 week
—_— S - - > —>
Review in linux-next

Patch
submission

» As the Linux release candidates are weekly, then for a subsystem at N-1, series
submitted after -rc6 (or rc7) won't be in the next release.

Submission Timeline on N-1 Subsystem

Candidate for 4.3

Candidate

for 4.4+

4.2-rc2

4.2-rc3

4.2-rcl 1 week

4.2-rc6

4.2-rc7

4.2-rc8

4.2

4.3-rcl

» Obvious criteria
> Must respect the coding rules (use checkpatch.pl for this).
» Must compile without warning.

» No regression.

P Testing the hardware is nice to have but not mandatory.

» For a new device feature or device you can assume it was tested by the submitter.
» Ask for a Tested-by from other users if you have any doubt.
» Rely on testing farms if you can.

» Be careful of dependencies with other subsystems.

> At least 2 branches:
» current for gathering the fixes of the current release candidate.
» for-next for gathering the patches for the next release candidate.
» Could be useful to have a third branch for the release candidate after.
» Could have topic branches:
» For big subsystems such as arm-soc.
> To let other subsystems merge your subsystem related part of series (see later).

> Based on the -rcl to make the merge easier.

Most users use a kernel from a distribution.

Most distributions use stable kernels.

When receiving a fix, always ask if it could be useful for older kernels.

Tag the commit with Cc: <stable@vger.kernel.org>.

Indicate from which from which version it applies by adding it in comment.
Even better use the tag Fixes: SHA-1_ID ("title of the patch").

vVvyYVvYyVvVvyyypy

» The place where are merged all the commits expected to be in the kernel after the
next merge window closes.

» How to use it as a maintainer
» The branches merged in linux-next have to be declared to Stephen Rothwell.
» Send him an email with the name of the repository and the branch to merge.
» Do not have to be an immutable branch: all the branches are merged again for each
linux-next release (on a daily basis).

» Benefit of being in linux-next
> Being merged every day with all the other branches allows to detect the merge
conflicts early.
» As a bonus, Stephen often resolves the conflict.
» Used by the autobuilder such as 0-Day done by 01.org from Intel or the
kernel CI supported by Linaro.

» Projects which automatically test your branch
» 0-Day:
> Fetches the branches from the main kernel repository (at least git.kernel.org).
» Compiles test various defconfig and architecture.
» Boots and does some performance tests on hardware.
» Now seems also to apply patches directly from the mailing lists.

» kernel CI:

» Compiles several branches mainly ARM related.
» Boots and test on many boards.
» Fancy website to retrieve the results.

vVvyVvyVvVvyy

v

You are a maintainer but you remain a developer.

You have the possibility to directly apply your own patches.
Not really in the spirit of an open development.

Still good to have reviews and suggestions.

However most of the time you won't get a review as you are supposed to be the
one who reviews!

But still apply the submission process: waiting at least one week after submitting
to the mailing list before applying the patch in your -next branch.

» Subsystems maintained more and more often by several people.
> Benefits:

» Allows to be more responsive especially if located in distant timezones.
» Avoids having a stalled subsystem during holidays.
> Eases the turn over: easier to leave and easier to join a team.

» Drawbacks

> Need to find an agreement in case of opposite opinions.
» Need to coordinate.

» Each co-maintainer has her/his own interests and fields of expertise.
» Spreads the review.
» Allows to stay focused.
> An Acked-by given by a co-maintainer is enough.
» Only one co-maintainer gathering the patches and taking care of the pull requests
for a given kernel release cycle.

» Easier to keep track of the submitted patches.
» The git repository remains shared at least for emergency.
» Better to decide in advance who will be the next in charge.

» Coordinating by email is fine most of the time.

Some series modify several subsystems at the same time.
Dependencies between the patches.

We want the kernel to be bisectable.

The order in which the patches are applied matters.

Can'’t predict in which order the subsystem will be merged.

vVvyVvyVvyvyypy

Need to synchronize with the maintainers of other subsystems to solve this.

» One maintainer takes the entire series:

» Will have commits modifying another subsystem in her/his git tree.

» May cause merge conflicts.
» One maintainer creates an immutable branch

» A topic branch with only the patch from the series.

» Will be in both trees: it will avoid the merge conflict.

» |f a fix is needed, it can’t be squashed, it will have to be a separate commit.
> Merging the series in two kernel releases:

» No merge conflict.

» No immutable branch.

» But the feature is delayed of at least 3 months.
» Still possible to have the feature by delaying the clean-up in the second release.

»ldentify the patches to apply
when reading the emails.

»Apply them on your branch.

»Add your Signed-off-by
(as you are going to submit
them you have to do it).

M-x gnus-registry-set-article-mark under emacs
or by using patchwork.

M-x dvc-gnus-article-apply-patch under emacs.

git commit --amend -s --no-edit

»Sign your branch

»Push your branch on your

public repository

»Generate the pull
cover letter:

request

git tag -s tag_name branch_name

git push public_repo tags/tag_name

git request-pull previous_tag public_repo \
tags/tag_name | cat

previous_tag is either the tag previously pulled during
the last request or the rc1 of the current kernel.

» Find the good balance between
maintainer duty and submitter
expectations.

» Be nice and helpful with the
submitters especially the new ones.

» Remain vigilant about the code quality
and stability of the kernel.

Questions?

Gregory CLEMENT
gregory.clement@bootlin.com

Slides under CC-BY-SA 3.0

http://bootlin.com/pub/conferences/2015/elce/clement-kernel-maintainership-oral-tradition

http://bootlin.com/pub/conferences/2015/elce/clement-kernel-maintainership-oral-tradition

