
Embedded Linux Conference 2015

Device Tree as a
stable ABI: a fairy
tale?

Thomas Petazzoni
Bootlin
thomas.petazzoni@bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Thomas Petazzoni

I CTO and Embedded Linux engineer at
Bootlin
I Embedded Linux specialists.
I Development, consulting and training.
I http://bootlin.com

I Contributions
I Kernel support for the Marvell

Armada ARM SoCs from Marvell
I Major contributor to Buildroot, an

open-source, simple and fast embedded
Linux build system

I Living in Toulouse, south west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 

http://bootlin.com


Context

I ARM platforms have been switching to a Device Tree based
hardware representation for a few years.

I Intended goals
I get rid of numerous board files
I encourage the usage of generic subsystems instead of

arch-specific solutions
I and make multiplatform support easier
I → quite successful in those goals!

I But the usage of the Device Tree on ARM also came with a
requirement: it should be a stable ABI
I An old Device Tree for a given hardware platform must

continue to work with newer kernel versions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



Assumptions

I Handling backward compatibility is easy
I “Just handle a default behavior to be compatible with the old

situation”

I Having stable Device Tree is needed by the users: hardware
vendors, distributions

I Good review by a team of Device Tree bindings maintainers
will make sure the bindings are good enough to be stable.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



Backward compatibility is easy?

I Yes, if the change in your binding is just to add a new
property.

I But what if
I you need to add new nodes?
I phandles pointing to them?
I re-organize nodes to use simple-mfd?
I ...

I Causes:
I Undocumented or poorly documented hardware: no datasheet,

only vendor BSP code available
I Badly understood hardware: information was available, but

was somehow overlooked.
I Simply badly designed bindings.

I We’ll go through a number of examples to illustrate those
cases.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



Marvell Berlin BG2Q system control IP (1)

I No datasheet available, work is
done based on vendor kernel
code + datasheets of older
SoCs that are sometimes
similar, sometimes not.

I A set of registers called System
control that controls the
muxing of a number of pins.

I A classical DT representation:

I And a pinctrl
platform_driver matching
against this compatible string.

I So far, so good.

sysctrl: pin-controller@d000 {

compatible = "marvell,berlin2q-system-ctrl";

reg = <0xd000 0x100>;

uart0_pmux: uart0-pmux {

groups = "GSM12";

function = "uart0";

};

uart1_pmux: uart1-pmux {

groups = "GSM14";

function = "uart1";

};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



Marvell Berlin BG2Q system control IP (2)

I Much later, asked to work on
supporting the ADC.

I Turns out the ADC registers
are part of the same System
control registers.

I Ah, great there is new
simple-mfd Device Tree
binding proposed by Linus
Walleij. Exactly does what we
need.

I Works fine, but how to handle
backward compatibility when
DT nodes are re-organized this
way?

sysctrl: system-controller@d000 {

compatible = "marvell,berlin2q-system-ctrl",

"simple-mfd", "syscon";

reg = <0xd000 0x100>;

sys_pinctrl: pin-controller {

compatible =

"marvell,berlin2q-system-pinctrl";

uart0_pmux: uart0-pmux {

groups = "GSM12";

function = "uart0";

};

[...]

};

adc: adc {

compatible = "marvell,berlin2-adc";

interrupt-parent = <&sic>;

interrupts = <12>, <14>;

interrupt-names = "adc", "tsen";

};

};

I Similar, but even more complicated situation with the Chip Control
registers: pin-muxing, reset, clocks.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



Allwinner MMC clock phase (1)

I No datasheet, only vendor code.

I Originally: one clock for the MMC, plus some magic bits
controlling two phases: output phase and sample phase.

I Represented as one clock mmcX_clk

clocks = <&ahb_gates 8>, <&mmc0_clk>;

clock-names = "ahb", "mmc";

I Custom clock API used to control both the output phase and
sample phase, used by the MMC driver.

clk_sunxi_mmc_phase_control(host->clk_mmc, sclk_dly, oclk_dly);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 



Allwinner MMC clock phase (2)

I Contacted the vendor, and after lots of efforts, finally got
some details.

I In fact, the output and sample parameters are clocks by
themselves: so there are three clocks and not one.

I Moved to a three clocks model:

clocks = <&ahb_gates 8>, <&mmc0_clk 0>, <&mmc0_clk 1>, <&mmc0_clk 2>;

clock-names = "ahb", "mmc", "output", "sample";

I And a generic clock framework API:

clk_set_phase(host->clk_sample, sclk_dly);

clk_set_phase(host->clk_output, oclk_dly);

I To keep DT backward compatibility, options are:
I Keep an ugly non-accurate HW representation
I Carry lots of legacy (and never tested) code in the MMC and

clock drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



Marvell window 13 issue (1)

I Marvell processors have a concept of configurable windows

I You define a base address, a size, and a target device (NOR,
PCIe device, BootROM, SRAM, etc.) and the device appears
in physical memory.

I Some of the windows have a remap capability. In addition to
the base address visible from the CPU side, you can define a
remap address which is the device visible address.

I Each window has control and base registers

I Remappable windows also have remap high and remap low
registers

I Not configuring those remap registers when available lead to
an unusable window.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



Marvell window 13 issue (2)

I At first sight, Armada 370, 375, 38x and XP looked the same.

I They have 20 windows, of which the first 8 have the remap
capability.

I So, in all Device Tree files, we used:

compatible = "marvell,armada380-mbus", "marvell,armada370-mbus", "simple-bus";

compatible = "marvell,armada375-mbus", "marvell,armada370-mbus", "simple-bus";

I Originally, only the marvell,armada370-mbus was matching.

I Later, we discovered that Armada XP, 375 and 38x had a
remappable window 13.

I You need a different handling of window 13 between Armada
370 on one side, and Armada XP/375/38x on the other side.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Marvell window 13 issue (3)

I Thanks to the provision of a more SoC-specific compatible
string, we could override the behavior for Armada XP, Armada
375, Armada 38x.

compatible = "marvell,armada375-mbus", "marvell,armada370-mbus", "simple-bus";

I However, marvell,armada370-mbus remains in the
compatible list, which is incorrect.
I Armada XP/375/38x functionality is not a super set of

Armada 370 functionality.
I Using the Armada 370 MBus behavior on Armada XP, 375 and

38x is a bug.

I Not a backward compatibility problem, but shows that one
can easily overlook minor differences between SoC revisions
that make similar hardware blocks incompatible.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



Marvell CPU reset IP

I On Armada XP, enabling SMP requires fiddling with the
Power Management Service Unit (PMSU) and CPU reset
registers.

I So, we created a Device Tree node:

armada-370-xp-pmsu@22000 {

compatible = "marvell,armada-370-xp-pmsu";

reg = <0x22100 0x400>, <0x20800 0x20>;

};

I The first register area is the PMSU, the second are the CPU
reset bits.

I One driver, pmsu.c, was mapping those registers, and
providing the necessary functions for SMP enabling.

I We introduced this in Linux 3.8, at a time where there was no
reset framework → no use of the reset DT binding.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



Marvell CPU reset IP (2)

I Then came the Armada 375.

I It has the exact same CPU reset
bits, but does not have a PMSU.

I Clearly, one DT node for both
registers areas was a mistake, so we
splitted in two nodes.

I We kept backward compatibility code
in the new CPU reset driver, by
looking for the register addresses in
the second reg of
marvell,armada-370-xp-pmsu.

pmsu@22000 {

compatible =

"marvell,armada-370-pmsu";

reg = <0x22000 0x1000>;

};

cpurst@20800 {

compatible =

"marvell,armada-370-cpu-reset";

reg = <0x20800 0x20>;

};

I This example is more a design mistake from the developers, but
doesn’t this happens?

I Shouldn’t the review have pointed out the stupidity of one DT
nodes for two different hardware blocks?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



Marvell CPU reset IP (3)

I Ideally, we would like to use the CPU reset framework and its
Device Tree binding, now that it exists?

I Refactoring code to use more modern framework is what good
kernel citizens should do, no?

I Except that using the CPU reset framework involves creating
resets phandles pointing to the reset controller node.

I And in our case, the reset controller node did not exist in the
old DT, since it was mistakenly mixed with the PMSU node.

I Moving to the CPU reset framework and supporting backward
compatibility would have required:
I Dynamically creating the CPU reset node, with at least a

#reset-cells property.
I Dynamically adding the resets properties to each CPU, with

a phandle pointing to the CPU reset node.

I → in the end we gave up and simply did not use the reset
framework

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



Marvell CPU reset IP (4)

Old DT
cpus {

cpu@0 {

device_type = "cpu";

compatible = "marvell,sheeva-v7";

reg = <0>;

};

cpu@1 {

device_type = "cpu";

compatible = "marvell,sheeva-v7";

reg = <1>;

};

};

armada-370-xp-pmsu@22000 {

compatible = "marvell,armada-370-xp-pmsu";

reg = <0x22100 0x400>, <0x20800 0x20>;

};

New non-ideal DT
cpus {

cpu@0 {

device_type = "cpu";

compatible = "marvell,sheeva-v7";

reg = <0>;

};

cpu@1 {

device_type = "cpu";

compatible = "marvell,sheeva-v7";

reg = <1>;

};

};

pmsu@22000 {

compatible = "marvell,armada-370-pmsu";

reg = <0x22000 0x1000>;

};

cpurst@20800 {

compatible = "marvell,armada-370-cpu-reset";

reg = <0x20800 0x20>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 



Marvell CPU reset IP (5)

Old DT
cpus {

cpu@0 {

device_type = "cpu";

compatible = "marvell,sheeva-v7";

reg = <0>;

};

cpu@1 {

device_type = "cpu";

compatible = "marvell,sheeva-v7";

reg = <1>;

};

};

armada-370-xp-pmsu@22000 {

compatible = "marvell,armada-370-xp-pmsu";

reg = <0x22100 0x400>, <0x20800 0x20>;

};

Ideal DT
cpus {

cpu@0 {

device_type = "cpu";

compatible = "marvell,sheeva-v7";

reg = <0>;

resets = <&cpurst 0>;

};

cpu@1 {

device_type = "cpu";

compatible = "marvell,sheeva-v7";

reg = <1>;

resets = <&cpurst 1>;

};

};

cpurst: cpurst@20800 {

compatible = "marvell,armada-370-cpu-reset";

reg = <0x20800 0x20>;

#reset-cells = <1>;

};

pmsu@22000 {

compatible = "marvell,armada-370-pmsu";

reg = <0x22000 0x1000>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



A timing problem (1)

Idea behind stable DT bindings:

Hardware vendors can ship the hardware with a DT describing the
platform, and any recent kernel version will work with it, thanks to

the DT bindings being a stable ABI.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



A timing problem (2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



A timing problem (3)

I Do we really want to let hardware vendors define what DT
bindings should be?

I Without review from the community?

I Really?

I Or should we speed up the upstreaming process?

I But how is this compatible with taking the time to define
proper DT bindings that will be stable?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



Enough review?

I Stability of the system call ABI is achieved by careful review
of the proposed changes.

I What amount of review do we have for DT bindings?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 



Testing?

I Maintaining backward compatibility requires a lot of code in
device drivers to handle old DT bindings.

I No, not just a simple fall back to a default behavior when
property foo is not here.

I Who will test this code?

I Most likely nobody, it will be dead, untested, unmaintained
code.

I At a time where devm_* functions are generalized to avoid
mistakes in untested error handling, we’re adding huge
amounts of backward compatibility code.

I Is that really reasonable?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 



Usefulness

I For Linux distros?
I Fedora is installing DTBs in /boot/dtb-<kernel-version>/
I E.g: /boot/dtb-3.11.10-301.fc20.armv7hl/vexpress-

v2p-ca9.dtb

I For hardware vendors?
I From Documentation/arm/Atmel/README: Device Tree files

and Device Tree bindings that apply to AT91 SoCs and boards
are considered as ”Unstable”. To be completely clear, any at91
binding can change at any time. So, be sure to use a Device
Tree Binary and a Kernel Image generated from the same
source tree.

I Atmel is one of the most well supported platform in mainline,
with excellent fully public datasheets, and slow evolution of the
SoC family.

I And still they want their bindings to not be stable.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



Comparing to the system call ABI

I Kernel developers already consider maintaining the system call
backward compatibility to be a difficult exercise.

I Lot of review and discussion before introducing a new system
call.

I Lots of testing naturally happening, since mixing userspace /
kernel versions is the default way of using Linux.

I The surface of the system call ABI is much more narrow, and
not directly tied to constantly changing hardware details.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

 



Reality

“So embedded people are going to ship with unfinished DT
and upgrade later. They have to. There is no choice. Stable
DT doesn’t change anything unless you can create perfect
stable bindings for a new SOC instantaneously.”

— Jason Gunthorpe

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

 



Conclusion

I Maintaining Device Tree backward compatibility
I has a high cost in maintenance and testing effort
I prevents refactoring code to use new generic kernel frameworks
I is not used by Linux distributions, not wanted by hardware

vendors
I has no chance to work due to the timing of product

development vs. speed of upstreaming

I So: should we really care?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

 



thomas.petazzoni@bootlin.com

Slides under CC-BY-SA 3.0

http://bootlin.com/pub/conferences/2015/elc/petazzoni-dt-as-stable-abi-

fairy-tale/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

http://bootlin.com/pub/conferences/2015/elc/petazzoni-dt-as-stable-abi-fairy-tale/
http://bootlin.com/pub/conferences/2015/elc/petazzoni-dt-as-stable-abi-fairy-tale/

