
Captronic

Porting Linux on an
ARM board
Bootlin
info@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/220

Alexandre Belloni

▶ Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Open-source contributor
▶ Maintainer for the Linux kernel RTC

subsystem
▶ Co-Maintainer of kernel support for Atmel

ARM processors
▶ Contributing to kernel support for Marvell

ARM (Berlin) processors

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/220

Bootlin Mission

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/220

Bootlin at a glance

▶ Engineering company created in 2004
(not a training company!)

▶ Locations: Orange, Toulouse, Lyon (France)
▶ Serving customers all around the world

See http://bootlin.com/company/customers/
▶ Head count: 9

Only Free Software enthusiasts!
▶ Focus: Embedded Linux, Linux kernel, Android Free Software / Open Source for

embedded and real-time systems.
▶ Activities: development, training, consulting, technical support.
▶ Added value: get the best of the user and development community and the

resources it offers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/220

http://bootlin.com/company/customers/

Bootlin on-line resources

▶ All our training materials:
http://bootlin.com/docs/

▶ Technical blog:
http://bootlin.com/blog/

▶ News and discussions (Google +):
https://plus.google.com/+Bootlin

▶ News and discussions (LinkedIn):
https://www.linkedin.com/groups/4501089

▶ Quick news (Twitter):
http://twitter.com/bootlincom

▶ Linux Cross Reference - browse Linux kernel sources on-line:
http://lxr.bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/220

http://bootlin.com/docs/
http://bootlin.com/blog/
https://plus.google.com/+Bootlin
https://www.linkedin.com/groups/4501089
http://twitter.com/bootlincom
http://lxr.bootlin.com

Captronic

Course content
Bootlin
info@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/220

Porting linux

Porting Linux includes a number of steps, starting even before software is involved:
▶ SoC selection
▶ SoM, SBC selection or board conception
▶ Bootloader selection
▶ Bootloader port
▶ Linux kernel version selection
▶ Linux port
▶ Root filesystem integration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/220

Captronic

ARM Ecosystem
Bootlin
info@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/220

ARM Ecosystem

ARM SoCs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/220

ARM platforms

▶ ARM (the company) designs CPU cores: instruction set, MMU, caches, etc.
▶ They don’t sell any hardware

▶ Silicon vendors buy the CPU core design from ARM, and around it add a
number of peripherals, either designed internally or bought from third parties
▶ Texas Instruments, Atmel, Marvell, Freescale, Qualcomm, Nvidia, etc.
▶ They sell System-on-chip or SoCs

▶ System makers design an actual board, with one or several processors, and a
number of on-board peripherals

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/220

Schematic view of an ARM platform

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/220

System on Chip
A System on Chip is typically composed of:

▶ One or multiple CPU cores
▶ A bus
▶ Oscillators and PLL
▶ Timers
▶ Memory controller
▶ Interrupt controller
▶ Multiple peripherals:

▶ UART
▶ RTC
▶ SPI
▶ I2C
▶ ADC
▶ USB controller
▶ ...

ARM920T Core

JTAG
Scan

ICE

AIC Fast SRAM
16K bytesPI

O

PLLB

PLLA

OSC
PMC

System
Timer

OSC RTC

EBI

PIOA/PIOB/PIOC/PIOD
Controller

DBGU

MCI

USART0

USART1

USART2

USART3

SPI

SSC0

SSC1

SSC2

Timer Counter

TC0

TC1

TC2

Timer Counter

TC3

TC4

TC5

TWI

PI
O

PI
O

D0-D15
A0/NBS0
A1/NBS2/NWR2
A2-A15/A18-A22
A16/BA0
A17/BA1
NCS0/BFCS
NCS1/SDCS

NCS3/SMCS
NRD/NOE/CFOE
NWR0/NWE/CFWE
NWR1/NBS1/CFIOR
NWR3/NBS3/CFIOW
SDCK
SDCKE
RAS-CAS
SDWE
SDA10
BFRDY/SMOE
BFCK
BFAVD
BFBAA/SMWE
BFOE
BFWE
A23-A24

NWAIT

NCS5/CFCE1

D16-D31

TF0
TK0
TD0
RD0
RK0
RF0

TF1
TK1
TD1
RD1
RK1
RF1

TF2
TK2
TD2
RD2
RK2
RF2

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0
TIOA1
TIOB1
TIOA2
TIOB2

TCLK3
TCLK4
TCLK5
TIOA3
TIOB3
TIOA4
TIOB4
TIOA5
TIOB5

TWD

TWCK

JTAGSEL
TDI

TDO
TMS
TCK

NTRST

FIQ

IRQ0-IRQ6

PCK0-PCK3

PLLRCB

PLLRCA

XIN

XOUT

XIN32

XOUT32

DDM
DDP

MCCK
MCCDA

MCDA0-MCDA3
MCCDB

RXD0
TXD0
SCK0
RTS0
CTS0

RXD1
TXD1
SCK1
RTS1
CTS1
DSR1
DTR1
DCD1

RI1

RXD2
TXD2
SCK2
RTS2
CTS2

RXD3
TXD3
SCK3
RTS3
CTS3

NPCS0
NPCS1
NPCS2
NPCS3

MISO
MOSI
SPCK

MCDB0-MCDB3

HDMA

HDPB

HDPA

HDMB

DRXD

DTXD

Ethernet MAC 10/100

ETXCK-ERXCK-EREFCK
ETXEN-ETXER
ECRS-ECOL
ERXER-ERXDV
ERX0-ERX3
ETX0-ETX3
EMDC

SDRAM
Controller

Burst
Flash

Controller

Static
Memory

Controller

PI
O

Instruction Cache
16K bytes

Data Cache
16K bytesMMU

EMDIO

DMA FIFO

DMA FIFO

USB HostFIFO

USB Device

Tr
an

sc
ei

ve
r

PI
O

PI
O

PI
O

Reset
and
Test

TST0-TST1

NRST

APB

Fast ROM
128K bytes

BMS

NCS2

A25/CFRNW

NCS4/CFCS

Misalignment
Detector

Address
Decoder

Abort
Status

NCS6/CFCE2

Tr
an

sc
ei

ve
r

NCS7

Memory
Controller

Bus
Arbiter

Peripheral
Bridge

Peripheral
DMA

Controller

EF100

ETM

TSYNC
TCLK
TPS0 - TPS2

TPK0 - TPK15

CompactFlash
NAND Flash
SmartMedia

PDC

PDC

PDC

PDC

PDC

PDC

PDC

PDCPDCPDC

PDC

PDC

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/220

ARM cores

The Linux kernel supports a wide range of ARM based architectures, starting with
ARMv4T:

ARM family ARM architecture ARM Core
ARM7T ARMv4T ARM7TDMI ARM720T ARM740T
ARM9T ARMv4T ARM9TDMI ARM920T ARM922T

ARM925T ARM926T ARM940T
ARM9E ARMv5TE ARM946E-S
ARM10E ARMv5TE ARM1020T ARM1020E ARM1022E

ARMv5TEJ ARM1026EJ-S
ARM11 ARMv6Z ARM1176JZF-S

ARMv6K ARM11MPCore
Cortex-M ARMv7-M Cortex-M3, Cortex-M4, Cortex-M7
Cortex-A (32-bit) ARMv7-A Cortex-A5, Cortex-A7

Cortex-A8, Cortex-A9, Cortex-A12,
Cortex-A15, Cortex-A17

Cortex-A (64-bit) ARMv8-A Cortex-A53, Cortex-A57, Cortex-A72

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/220

ARM cores

Third parties can also license the instruction set and create their own cores:

ARM ISA Third party core
ARMv4 Faraday FA256, StrongARM SA-110, SA-1100
ARMv5TE Xscale
ARMv5 Marvell PJ1, Feroceon
ARMv7-A Broadcom Brahma-B15, Marvell PJ4, PJ4B,

Qualcomm Krait, Scorpion
ARMv8-A Cavium Thunder, Nvidia Denver, Qualcomm Kryo

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/220

ARM SoCs

To create an SoC, the silicon vendor integrates:
▶ one or multiple ARM cores (not necessarily homogeneous, big.LITTLE

configurations exist)
▶ its own peripherals
▶ third party peripherals (usually from DesignWare, Cadence, PowerVR, Vivante, ...)
▶ ROM and ROM code
▶ sometimes one or multiple DSP, FPGA, micro-controller cores

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/220

ARM SoCs vendors

ARM SoC vendors with good mainline kernel support include:
▶ Allwinner
▶ Atmel
▶ Freescale
▶ Marvell
▶ Rockchip
▶ Samsung
▶ ST Micro
▶ TI (sitara and OMAP families)
▶ Xilinx

However, be careful when needing certain features like GPU acceleration.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/220

ARM SoMs

System on Module manufacturer then create modules integrating:
▶ an SoC
▶ RAM
▶ Storage
▶ sometimes the PHYs for some interfaces like Ethernet, HDMI,...
▶ a connector for the baseboard

They also often manufacture Single-board computers (SBC) based on those SoM.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/220

ARM SoMs manufacturers

▶ ACME
▶ Boundary Devices
▶ Congatec
▶ DataModul
▶ Olimex
▶ Phytec
▶ Seco
▶ Toradex
▶ Variscite

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/220

Community boards

A good way to create a prototype is to use a community board which is usually
inexpensive and has expansion headers:

Examples include:
▶ BeagleBone Black
▶ Sama5dx Xplained
▶ OLinuXino boards

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/220

Captronic

Choices
Bootlin
info@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/220

Choices

Hardware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/220

Choosing the right hardware parts

When choosing the hardware, existing software support should be considered.
▶ A driver exists in the mainline project

▶ Does it support all the needed features?
▶ A driver is provided by the vendor:

▶ What version is it compatible with and how difficult is it to port it to another
version?

▶ Does it use the proper frameworks?
▶ No driver available:

▶ How complex is the hardware?
▶ How complex is the framework?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/220

Choices

Software

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/220

Choosing the right version

Usually, the bootoaders and the Linux kernel are available from the following sources:
▶ SoM manufacturer
▶ SoC vendor
▶ Mainline

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/220

Choosing the right version

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/220

SoC/SoM vendor fork

▶ Supports most of the Soc features
▶ May differ significantly from the mainline
▶ Usually, only a few (1-3) kernel versions are supported for each SoC

▶ No security updates
▶ No new drivers
▶ Version may be ancient and have issues (example: DM368 has 2.6.32.17, from

August 2010)
▶ May not support all the peripherals present on your board.

The SoM manufacturer usually base its BSP on that tree.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/220

Mainline kernel

▶ Easier to update and benefit from security fixes, bug fixes, new drivers and new
features

▶ Main drawback may be the lack of particular drivers like display, GPU, VPU.
▶ Maintenance and support from the community

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/220

Captronic

Bootloaders
Bootlin
info@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/220

Bootloaders

Boot Sequence

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/220

Bootloaders

▶ The bootloader is a piece of code responsible for
▶ Basic hardware initialization
▶ Loading of an application binary, usually an operating system kernel, from flash

storage, from the network, or from another type of non-volatile storage.
▶ Possibly decompression of the application binary
▶ Execution of the application

▶ Besides these basic functions, most bootloaders provide a shell with various
commands implementing different operations.
▶ Loading of data from storage or network, memory inspection, hardware diagnostics

and testing, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/220

Booting on embedded CPUs: case 1

▶ When powered, the CPU starts executing code at a fixed address
▶ There is no other booting mechanism provided by the CPU
▶ The hardware design must ensure that a NOR flash chip is wired

so that it is accessible at the address at which the CPU starts
executing instructions

▶ The first stage bootloader must be programmed at this address
in the NOR

▶ NOR is mandatory, because it allows random access, which
NAND doesn’t allow

▶ Not very common anymore (unpractical, and requires NOR
flash)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/220

Booting on embedded CPUs: case 2

▶ The CPU has an integrated boot code in ROM
▶ BootROM on AT91 CPUs, “ROM code” on OMAP, etc.
▶ Exact details are CPU-dependent

▶ This boot code is able to load a first stage bootloader from a storage device into
an internal SRAM (DRAM not initialized yet)
▶ Storage device can typically be: MMC, NAND, SPI flash, UART (transmitting data

over the serial line), etc.
▶ The first stage bootloader is

▶ Limited in size due to hardware constraints (SRAM size)
▶ Provided either by the CPU vendor or through community projects

▶ This first stage bootloader must initialize DRAM and other hardware devices and
load a second stage bootloader into RAM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/220

Booting on ARM Atmel AT91

▶ RomBoot: tries to find a valid bootstrap image from various
storage sources, and load it into SRAM (DRAM not initialized
yet). Size limited to 4 KB. No user interaction possible in
standard boot mode.

▶ AT91Bootstrap: runs from SRAM. Initializes the DRAM, the
NAND or SPI controller, and loads the secondary bootloader into
RAM and starts it. No user interaction possible.

▶ U-Boot: runs from RAM. Initializes some other hardware devices
(network, USB, etc.). Loads the kernel image from storage or
network to RAM and starts it. Shell with commands provided.

▶ Linux Kernel: runs from RAM. Takes over the system completely
(bootloaders no longer exists).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/220

Booting on ARM TI OMAP3

▶ ROM Code: tries to find a valid bootstrap image from various
storage sources, and load it into SRAM or RAM (RAM can be
initialized by ROM code through a configuration header). Size
limited to <64 KB. No user interaction possible.

▶ X-Loader or U-Boot: runs from SRAM. Initializes the DRAM,
the NAND or MMC controller, and loads the secondary
bootloader into RAM and starts it. No user interaction possible.
File called MLO.

▶ U-Boot: runs from RAM. Initializes some other hardware devices
(network, USB, etc.). Loads the kernel image from storage or
network to RAM and starts it. Shell with commands provided.
File called u-boot.bin or u-boot.img.

▶ Linux Kernel: runs from RAM. Takes over the system completely
(bootloaders no longer exists).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/220

Booting on Marvell SoC

▶ ROM Code: tries to find a valid bootstrap image from various
storage sources, and load it into RAM. The RAM configuration is
described in a CPU-specific header, prepended to the bootloader
image.

▶ U-Boot: runs from RAM. Initializes some other hardware devices
(network, USB, etc.). Loads the kernel image from storage or
network to RAM and starts it. Shell with commands provided.
File called u-boot.kwb.

▶ Linux Kernel: runs from RAM. Takes over the system completely
(bootloaders no longer exists).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/220

Generic bootloaders for embedded CPUs

▶ We will focus on the generic part, the main bootloader, offering the most
important features.

▶ There are several open-source generic bootloaders.
Here are the most popular ones:
▶ U-Boot, the universal bootloader by Denx

The most used on ARM, also used on PPC, MIPS, x86, m68k, NIOS, etc. The
de-facto standard nowadays. We will study it in detail.
http://www.denx.de/wiki/U-Boot

▶ Barebox, a new architecture-neutral bootloader, written as a successor of U-Boot.
Better design, better code, active development, but doesn’t yet have as much
hardware support as U-Boot.
http://www.barebox.org

▶ There are also a lot of other open-source or proprietary bootloaders, often
architecture-specific
▶ RedBoot, Yaboot, PMON, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/220

http://www.denx.de/wiki/U-Boot
http://www.barebox.org

Bootloaders

Porting the Bootloader

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/220

1st stage

The main goal of the first stage bootloader is to configure the RAM controller. Then it
needs to be able to load the second stage bootloader from storage (NAND flash, SPI
flash, NOR flash, MMC/eMMC) to RAM. The main porting steps are:
▶ Finding the proper RAM timings and settings them from the first stage.
▶ Configuring the storage IP
▶ Copying the second stage to RAM

Usually, the driver for the storage IP is already present in your first stage bootloader.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/220

2nd stage

▶ The second stage bootloader has to load the Linux kernel from storage to RAM.
▶ Depending on the kernel version, it will also set the ATAGS or load the Device Tree.
▶ It may also load an initramfs to be used as the root filesystem.
▶ That is also a good place to implement base board or board variant detection if

necessary.
▶ During development, the second stage bootloader also provides more debugging

utilities like reading and writing to memory or Ethernet access.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/220

2nd stage

The main porting steps are:
▶ Configuring the storage IP
▶ Copying the Linux kernel from storage to RAM
▶ Optional: copying the Device Tree to RAM
▶ Optional: implement boot scripts
▶ Optional: implement base board/board variant detection
▶ Optional: implement debug tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/220

Bootloaders

Bootloader selection

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/220

Bootloaders

Two components to select: 1st stage and 2nd stage. However, it is usually easier to
reduce the code base:
▶ Less code to understand
▶ Fewer upstream projects to follow
▶ Reduced maintenance

So, when available, use only one project for the first and the second stage. Example:
for OMAP/Sitara, drop X-loader and use u-boot SPL.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/220

Bootloaders

Example: at91bootstrap

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/220

New board definition

▶ create a new board directory in board
▶ create Config.in.board and reference it from board/Config.in
▶ create board.mk and add the proper section to include/board.h
▶ create board_name.h and board_name.c
▶ Optional: create a defconfig
▶ Optional: Config.in.linux_arg when loading Linux directly from

at91bootstrap.
Note: there will be a new contrib directory for non Atmel boards.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/220

Config.in.board
config CONFIG_SAMA5D3_XPLAINED

bool "sama5d3_xplained"
select SAMA5D3X
select CONFIG_DDRC
select ALLOW_NANDFLASH
select ALLOW_SDCARD
select ALLOW_CPU_CLK_266MHZ
select ALLOW_CPU_CLK_332MHZ
select ALLOW_CPU_CLK_396MHZ
select ALLOW_CPU_CLK_498MHZ
select ALLOW_CPU_CLK_528MHZ
select ALLOW_CRYSTAL_12_000MHZ
select CONFIG_SUPPORT_PM
select CONFIG_HAS_EHT0_PHY
select CONFIG_HAS_EHT1_PHY
select CONFIG_HAS_PMIC_ACT8865
select SUPPORT_BUS_SPEED_133MHZ
select SUPPORT_BUS_SPEED_166MHZ
help

Use the SAMA5D3 Xplained development board

board/Config.in
source "board/sama5d3xek/Config.in.board"
source "board/sama5d3_xplained/Config.in.board"
source "board/sama5d3x_cmp/Config.in.board"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/220

board.mk
CPPFLAGS += -DCONFIG_SAMA5D3_XPLAINED
ASFLAGS += -DCONFIG_SAMA5D3_XPLAINED

include/board.h
#ifdef CONFIG_SAMA5D3XEK
#include "sama5d3xek.h"
#endif

#ifdef CONFIG_SAMA5D3_XPLAINED
#include "sama5d3_xplained.h"
#endif

#ifdef CONFIG_SAMA5D3X_CMP
#include "sama5d3x_cmp.h"
#endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/220

sama5d3_xplained.c
static void ddramc_reg_config(struct ddramc_register *ddramc_config)
{

ddramc_config->mdr = (AT91C_DDRC2_DBW_32_BITS
| AT91C_DDRC2_MD_DDR2_SDRAM);

ddramc_config->cr = (AT91C_DDRC2_NC_DDR10_SDR9
| AT91C_DDRC2_NR_13
| AT91C_DDRC2_CAS_3
| AT91C_DDRC2_DLL_RESET_DISABLED
| AT91C_DDRC2_DIS_DLL_DISABLED
| AT91C_DDRC2_ENRDM_ENABLE
| AT91C_DDRC2_NB_BANKS_8
| AT91C_DDRC2_NDQS_DISABLED
| AT91C_DDRC2_DECOD_INTERLEAVED
| AT91C_DDRC2_UNAL_SUPPORTED);

#if defined(CONFIG_BUS_SPEED_133MHZ)
/*
* The DDR2-SDRAM device requires a refresh every 15.625 us or 7.81 us.
* With a 133 MHz frequency, the refresh timer count register must to be
* set with (15.625 x 133 MHz) ~ 2084 i.e. 0x824
* or (7.81 x 133 MHz) ~ 1039 i.e. 0x40F.
*/
ddramc_config->rtr = 0x40F; /* Refresh timer: 7.812us */

/* One clock cycle @ 133 MHz = 7.5 ns */
ddramc_config->t0pr = (AT91C_DDRC2_TRAS_(6) /* 6 * 7.5 = 45 ns */

| AT91C_DDRC2_TRCD_(2) /* 2 * 7.5 = 22.5 ns */
| AT91C_DDRC2_TWR_(2) /* 2 * 7.5 = 15 ns */
| AT91C_DDRC2_TRC_(8) /* 8 * 7.5 = 75 ns */
| AT91C_DDRC2_TRP_(2) /* 2 * 7.5 = 15 ns */
| AT91C_DDRC2_TRRD_(2) /* 2 * 7.5 = 15 ns */
| AT91C_DDRC2_TWTR_(2) /* 2 clock cycles min */
| AT91C_DDRC2_TMRD_(2)); /* 2 clock cycles */

ddramc_config->t1pr = (AT91C_DDRC2_TXP_(2) /* 2 clock cycles */
| AT91C_DDRC2_TXSRD_(200) /* 200 clock cycles */
| AT91C_DDRC2_TXSNR_(19) /* 19 * 7.5 = 142.5 ns */
| AT91C_DDRC2_TRFC_(17)); /* 17 * 7.5 = 127.5 ns */

ddramc_config->t2pr = (AT91C_DDRC2_TFAW_(6) /* 6 * 7.5 = 45 ns */
| AT91C_DDRC2_TRTP_(2) /* 2 clock cycles min */
| AT91C_DDRC2_TRPA_(2) /* 2 * 7.5 = 15 ns */
| AT91C_DDRC2_TXARDS_(8) /* = TXARD */
| AT91C_DDRC2_TXARD_(8)); /* MR12 = 1 */

[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/220

static void ddramc_init(void)
{

struct ddramc_register ddramc_reg;
unsigned int reg;

ddramc_reg_config(&ddramc_reg);

/* enable ddr2 clock */
pmc_enable_periph_clock(AT91C_ID_MPDDRC);
pmc_enable_system_clock(AT91C_PMC_DDR);

/* Init the special register for sama5d3x */
/* MPDDRC DLL Slave Offset Register: DDR2 configuration */
reg = AT91C_MPDDRC_S0OFF_1

| AT91C_MPDDRC_S2OFF_1
| AT91C_MPDDRC_S3OFF_1;

writel(reg, (AT91C_BASE_MPDDRC + MPDDRC_DLL_SOR));

/* MPDDRC DLL Master Offset Register */
/* write master + clk90 offset */
reg = AT91C_MPDDRC_MOFF_7

| AT91C_MPDDRC_CLK90OFF_31
| AT91C_MPDDRC_SELOFF_ENABLED | AT91C_MPDDRC_KEY;

writel(reg, (AT91C_BASE_MPDDRC + MPDDRC_DLL_MOR));

/* MPDDRC I/O Calibration Register */
/* DDR2 RZQ = 50 Ohm */
/* TZQIO = 4 */
reg = AT91C_MPDDRC_RDIV_DDR2_RZQ_50

| AT91C_MPDDRC_TZQIO_4;
writel(reg, (AT91C_BASE_MPDDRC + MPDDRC_IO_CALIBR));

/* DDRAM2 Controller initialize */
ddram_initialize(AT91C_BASE_MPDDRC, AT91C_BASE_DDRCS, &ddramc_reg);

}- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/220

Bootloaders

The U-boot bootloader

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/220

U-Boot

U-Boot is a typical free software project
▶ License: GPLv2 (same as Linux)
▶ Freely available at http://www.denx.de/wiki/U-Boot
▶ Documentation available at

http://www.denx.de/wiki/U-Boot/Documentation
▶ The latest development source code is available in a Git repository:

http://git.denx.de/?p=u-boot.git;a=summary
▶ Development and discussions happen around an open mailing-list

http://lists.denx.de/pipermail/u-boot/
▶ Since the end of 2008, it follows a fixed-interval release schedule. Every three

months, a new version is released. Versions are named YYYY.MM.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/220

http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot/Documentation
http://git.denx.de/?p=u-boot.git;a=summary
http://lists.denx.de/pipermail/u-boot/

U-Boot configuration

▶ Get the source code from the website, and uncompress it
▶ The include/configs/ directory contains one configuration file for each

supported board
▶ It defines the CPU type, the peripherals and their configuration, the memory

mapping, the U-Boot features that should be compiled in, etc.
▶ It is a simple .h file that sets C pre-processor constants. See the README file for the

documentation of these constants. This file can also be adjusted to add or remove
features from U-Boot (commands, etc.).

▶ Assuming that your board is already supported by U-Boot, there should be one
entry corresponding to your board in the boards.cfg file.
▶ Run ./tools/genboardscfg.py to generate it.
▶ Or just look in the configs/ directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/220

U-Boot configuration file excerpt

/* CPU configuration */
#define CONFIG_ARMV7 1
#define CONFIG_OMAP 1
#define CONFIG_OMAP34XX 1
#define CONFIG_OMAP3430 1
#define CONFIG_OMAP3_IGEP0020 1
[...]
/* Memory configuration */
#define CONFIG_NR_DRAM_BANKS 2
#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0
#define PHYS_SDRAM_1_SIZE (32 << 20)
#define PHYS_SDRAM_2 OMAP34XX_SDRC_CS1
[...]
/* USB configuration */
#define CONFIG_MUSB_UDC 1
#define CONFIG_USB_OMAP3 1
#define CONFIG_TWL4030_USB 1
[...]

/* Available commands and features */
#define CONFIG_CMD_CACHE
#define CONFIG_CMD_EXT2
#define CONFIG_CMD_FAT
#define CONFIG_CMD_I2C
#define CONFIG_CMD_MMC
#define CONFIG_CMD_NAND
#define CONFIG_CMD_NET
#define CONFIG_CMD_DHCP
#define CONFIG_CMD_PING
#define CONFIG_CMD_NFS
#define CONFIG_CMD_MTDPARTS
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/220

Configuring and compiling U-Boot

▶ U-Boot must be configured before being compiled
▶ make BOARDNAME_config
▶ Where BOARDNAME is the name of the board, as visible in the boards.cfg file (first

column).
▶ New: you can now run make menuconfig to further edit U-Boot’s configuration!

▶ Make sure that the cross-compiler is available in PATH
▶ Compile U-Boot, by specifying the cross-compiler prefix.

Example, if your cross-compiler executable is arm-linux-gcc:
make CROSS_COMPILE=arm-linux-

▶ The main result is a u-boot.bin file, which is the U-Boot image. Depending on
your specific platform, there may be other specialized images: u-boot.img,
u-boot.kwb, MLO, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/220

Installing U-Boot

▶ U-Boot must usually be installed in flash memory to be executed by the hardware.
Depending on the hardware, the installation of U-Boot is done in a different way:
▶ The CPU provides some kind of specific boot monitor with which you can

communicate through serial port or USB using a specific protocol
▶ The CPU boots first on removable media (MMC) before booting from fixed media

(NAND). In this case, boot from MMC to reflash a new version
▶ U-Boot is already installed, and can be used to flash a new version of U-Boot.

However, be careful: if the new version of U-Boot doesn’t work, the board is
unusable

▶ The board provides a JTAG interface, which allows to write to the flash memory
remotely, without any system running on the board. It also allows to rescue a board
if the bootloader doesn’t work.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/220

U-boot prompt

▶ Connect the target to the host through a serial console
▶ Power-up the board. On the serial console, you will see something like:

U-Boot 2013.04 (May 29 2013 - 10:30:21)

OMAP36XX/37XX-GP ES1.2, CPU-OPP2, L3-165MHz, Max CPU Clock 1 Ghz
IGEPv2 + LPDDR/NAND
I2C: ready
DRAM: 512 MiB
NAND: 512 MiB
MMC: OMAP SD/MMC: 0

Die ID #255000029ff800000168580212029011
Net: smc911x-0
U-Boot #

▶ The U-Boot shell offers a set of commands. We will study the most important
ones, see the documentation for a complete reference or the help command.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/220

Information commands
Flash information (NOR and SPI flash)

U-Boot> flinfo
DataFlash:AT45DB021
Nb pages: 1024
Page Size: 264
Size= 270336 bytes
Logical address: 0xC0000000
Area 0: C0000000 to C0001FFF (RO) Bootstrap
Area 1: C0002000 to C0003FFF Environment
Area 2: C0004000 to C0041FFF (RO) U-Boot

NAND flash information

U-Boot> nand info
Device 0: nand0, sector size 128 KiB

Page size 2048 b
OOB size 64 b
Erase size 131072 b

Version details

U-Boot> version
U-Boot 2013.04 (May 29 2013 - 10:30:21)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/220

Important commands (1)

▶ The exact set of commands depends on the U-Boot configuration
▶ help and help command
▶ boot, runs the default boot command, stored in bootcmd
▶ bootz <address>, starts a kernel image loaded at the given address in RAM
▶ ext2load, loads a file from an ext2 filesystem to RAM

▶ And also ext2ls to list files, ext2info for information
▶ fatload, loads a file from a FAT filesystem to RAM

▶ And also fatls and fatinfo
▶ tftp, loads a file from the network to RAM
▶ ping, to test the network

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/220

Important commands (2)

▶ loadb, loads, loady, load a file from the serial line to RAM
▶ usb, to initialize and control the USB subsystem, mainly used for USB storage

devices such as USB keys
▶ mmc, to initialize and control the MMC subsystem, used for SD and microSD cards
▶ nand, to erase, read and write contents to NAND flash
▶ erase, protect, cp, to erase, modify protection and write to NOR flash
▶ md, displays memory contents. Can be useful to check the contents loaded in

memory, or to look at hardware registers.
▶ mm, modifies memory contents. Can be useful to modify directly hardware

registers, for testing purposes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/220

Environment variables commands (1)

▶ U-Boot can be configured through environment variables, which affect the
behavior of the different commands.

▶ Environment variables are loaded from flash to RAM at U-Boot startup, can be
modified and saved back to flash for persistence

▶ There is a dedicated location in flash (or in MMC storage) to store the U-Boot
environment, defined in the board configuration file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/220

Environment variables commands (2)

Commands to manipulate environment variables:
▶ printenv

Shows all variables
▶ printenv <variable-name>

Shows the value of a variable
▶ setenv <variable-name> <variable-value>

Changes the value of a variable, only in RAM
▶ editenv <variable-name>

Edits the value of a variable, only in RAM
▶ saveenv

Saves the current state of the environment to flash

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/220

Environment variables commands - Example

u-boot # printenv
baudrate=19200
ethaddr=00:40:95:36:35:33
netmask=255.255.255.0
ipaddr=10.0.0.11
serverip=10.0.0.1
stdin=serial
stdout=serial
stderr=serial
u-boot # printenv serverip
serverip=10.0.0.1
u-boot # setenv serverip 10.0.0.100
u-boot # saveenv

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/220

Important U-Boot env variables

▶ bootcmd, contains the command that U-Boot will automatically execute at boot
time after a configurable delay (bootdelay), if the process is not interrupted

▶ bootargs, contains the arguments passed to the Linux kernel, covered later
▶ serverip, the IP address of the server that U-Boot will contact for network

related commands
▶ ipaddr, the IP address that U-Boot will use
▶ netmask, the network mask to contact the server
▶ ethaddr, the MAC address, can only be set once
▶ autostart, if yes, U-Boot starts automatically an image that has been loaded

into memory
▶ filesize, the size of the latest copy to memory (from tftp, fat load,

nand read...)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/220

Scripts in environment variables

▶ Environment variables can contain small scripts, to execute several commands and
test the results of commands.
▶ Useful to automate booting or upgrade processes
▶ Several commands can be chained using the ; operator
▶ Tests can be done using if command ; then ... ; else ... ; fi
▶ Scripts are executed using run <variable-name>
▶ You can reference other variables using ${variable-name}

▶ Example
▶ setenv mmc-boot 'if fatload mmc 0 80000000 boot.ini; then source;

else if fatload mmc 0 80000000 zImage; then run mmc-boot; fi; fi'

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/220

Transferring files to the target

▶ U-Boot is mostly used to load and boot a kernel image, but it also allows to
change the kernel image and the root filesystem stored in flash.

▶ Files must be exchanged between the target and the development workstation.
This is possible:
▶ Through the network if the target has an Ethernet connection, and U-Boot contains

a driver for the Ethernet chip. This is the fastest and most efficient solution.
▶ Through a USB key, if U-Boot supports the USB controller of your platform
▶ Through a SD or microSD card, if U-Boot supports the MMC controller of your

platform
▶ Through the serial port

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/220

TFTP

▶ Network transfer from the development workstation to U-Boot on the target takes
place through TFTP
▶ Trivial File Transfer Protocol
▶ Somewhat similar to FTP, but without authentication and over UDP

▶ A TFTP server is needed on the development workstation
▶ sudo apt-get install tftpd-hpa
▶ All files in /var/lib/tftpboot are then visible through TFTP
▶ A TFTP client is available in the tftp-hpa package, for testing

▶ A TFTP client is integrated into U-Boot
▶ Configure the ipaddr and serverip environment variables
▶ Use tftp <address> <filename> to load a file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/220

Bootloaders

Porting u-boot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/220

Adding a new board

▶ Create a new board directory in board/vendor
▶ Write your board specific code. It can be split across multiple headers and C files.
▶ Create a Makefile referencing your code.
▶ Create a configuration header file
▶ Create a Kconfig file defining at least SYS_BOARD, SYS_VENDOR and

SYS_CONFIG_NAME
▶ Add a target option for your board and source your Kconfig either from

arch/arm/<soc>/Kconfig or arch/arm/Kconfig
▶ Optional: create a defconfig
▶ Optional: create a MAINTAINERS file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/220

board/ti/am335x/
board.c
board.h
Kconfig
MAINTAINERS
Makefile
mux.c
README
u-boot.lds

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/220

board/ti/am335x/Makefile
#
Makefile
#
Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
#
SPDX-License-Identifier: GPL-2.0+
#

ifeq ($(CONFIG_SKIP_LOWLEVEL_INIT),)
obj-y := mux.o
endif

obj-y += board.o

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/220

board/ti/am335x/Kconfig
if TARGET_AM335X_EVM

config SYS_BOARD
default "am335x"

config SYS_VENDOR
default "ti"

config SYS_SOC
default "am33xx"

config SYS_CONFIG_NAME
default "am335x_evm"

config CONS_INDEX
int "UART used for console"
range 1 6
default 1
help

The AM335x SoC has a total of 6 UARTs (UART0 to UART5 as referenced
in documentation, etc) available to it. Depending on your specific
board you may want something other than UART0 as for example the IDK
uses UART3 so enter 4 here.

[...]
endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/220

arch/arm/Kconfig
[...]
config TARGET_AM335X_EVM

bool "Support am335x_evm"
select CPU_V7
select SUPPORT_SPL
select DM
select DM_SERIAL
select DM_GPIO

[...]
source "board/ti/am335x/Kconfig"
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/220

include/configs/am335x_evm.h
#ifndef __CONFIG_AM335X_EVM_H
#define __CONFIG_AM335X_EVM_H

#include <configs/ti_am335x_common.h>

/* Don't override the distro default bootdelay */
#undef CONFIG_BOOTDELAY
#include <config_distro_defaults.h>

#ifndef CONFIG_SPL_BUILD
#ifndef CONFIG_FIT
define CONFIG_FIT
#endif
define CONFIG_TIMESTAMP
define CONFIG_LZO
#endif

[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/220

include/configs/ti_am335x_common.h
#ifndef __CONFIG_TI_AM335X_COMMON_H__
#define __CONFIG_TI_AM335X_COMMON_H__

#define CONFIG_AM33XX
#define CONFIG_ARCH_CPU_INIT
#define CONFIG_SYS_CACHELINE_SIZE 64
#define CONFIG_MAX_RAM_BANK_SIZE (1024 << 20) /* 1GB */
#define CONFIG_SYS_TIMERBASE 0x48040000 /* Use Timer2 */
#define CONFIG_SPL_AM33XX_ENABLE_RTC32K_OSC

#include <asm/arch/omap.h>

/* NS16550 Configuration */
#ifdef CONFIG_SPL_BUILD
#define CONFIG_SYS_NS16550_SERIAL
#define CONFIG_SYS_NS16550_REG_SIZE (-4)
#endif
#define CONFIG_SYS_NS16550_CLK 48000000
[...]
/*
* SPL related defines. The Public RAM memory map the ROM defines the
* area between 0x402F0400 and 0x4030B800 as a download area and
* 0x4030B800 to 0x4030CE00 as a public stack area. The ROM also
* supports X-MODEM loading via UART, and we leverage this and then use
* Y-MODEM to load u-boot.img, when booted over UART.
*/

#define CONFIG_SPL_TEXT_BASE 0x402F0400
#define CONFIG_SPL_MAX_SIZE (0x4030B800 - CONFIG_SPL_TEXT_BASE)
#define CONFIG_SYS_SPL_ARGS_ADDR (CONFIG_SYS_SDRAM_BASE + \

(128 << 20))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/220

include/configs/ti_am335x_common.h
/* Enable the watchdog inside of SPL */
#define CONFIG_SPL_WATCHDOG_SUPPORT

/*
* Since SPL did pll and ddr initialization for us,
* we don't need to do it twice.
*/

#if !defined(CONFIG_SPL_BUILD) && !defined(CONFIG_NOR_BOOT)
#define CONFIG_SKIP_LOWLEVEL_INIT
#endif

/*
* When building U-Boot such that there is no previous loader
* we need to call board_early_init_f. This is taken care of in
* s_init when we have SPL used.
*/

#if !defined(CONFIG_SKIP_LOWLEVEL_INIT) && !defined(CONFIG_SPL)
#define CONFIG_BOARD_EARLY_INIT_F
#endif
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/220

board/ti/am335x/board.c
[...]
#ifndef CONFIG_SKIP_LOWLEVEL_INIT
[...]
static const struct ddr_data ddr3_beagleblack_data = {

.datardsratio0 = MT41K256M16HA125E_RD_DQS,

.datawdsratio0 = MT41K256M16HA125E_WR_DQS,

.datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,

.datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
};
[...]
static const struct cmd_control ddr3_beagleblack_cmd_ctrl_data = {

.cmd0csratio = MT41K256M16HA125E_RATIO,

.cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,

.cmd1csratio = MT41K256M16HA125E_RATIO,

.cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,

.cmd2csratio = MT41K256M16HA125E_RATIO,

.cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
};
[...]
static struct emif_regs ddr3_beagleblack_emif_reg_data = {

.sdram_config = MT41K256M16HA125E_EMIF_SDCFG,

.ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,

.sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,

.sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,

.sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,

.zq_config = MT41K256M16HA125E_ZQ_CFG,

.emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY,
};
[...]
#endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/220

void sdram_init(void)
{

__maybe_unused struct am335x_baseboard_id header;

if (read_eeprom(&header) < 0)
puts("Could not get board ID.\n");

if (board_is_evm_sk(&header)) {
/*
* EVM SK 1.2A and later use gpio0_7 to enable DDR3.
* This is safe enough to do on older revs.
*/
gpio_request(GPIO_DDR_VTT_EN, "ddr_vtt_en");
gpio_direction_output(GPIO_DDR_VTT_EN, 1);

}

if (board_is_evm_sk(&header))
config_ddr(303, &ioregs_evmsk, &ddr3_data,

&ddr3_cmd_ctrl_data, &ddr3_emif_reg_data, 0);
else if (board_is_bone_lt(&header))

config_ddr(400, &ioregs_bonelt,
&ddr3_beagleblack_data,
&ddr3_beagleblack_cmd_ctrl_data,
&ddr3_beagleblack_emif_reg_data, 0);

else if (board_is_evm_15_or_later(&header))
config_ddr(303, &ioregs_evm15, &ddr3_evm_data,

&ddr3_evm_cmd_ctrl_data, &ddr3_evm_emif_reg_data, 0);
else

config_ddr(266, &ioregs, &ddr2_data,
&ddr2_cmd_ctrl_data, &ddr2_emif_reg_data, 0);

}
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/220

/*
* Basic board specific setup. Pinmux has been handled already.
*/

int board_init(void)
{
#if defined(CONFIG_HW_WATCHDOG)

hw_watchdog_init();
#endif

gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
#if defined(CONFIG_NOR) || defined(CONFIG_NAND)

gpmc_init();
#endif

return 0;
}

#ifdef CONFIG_BOARD_LATE_INIT
int board_late_init(void)
{
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG

char safe_string[HDR_NAME_LEN + 1];
struct am335x_baseboard_id header;

if (read_eeprom(&header) < 0)
puts("Could not get board ID.\n");

/* Now set variables based on the header. */
strncpy(safe_string, (char *)header.name, sizeof(header.name));
safe_string[sizeof(header.name)] = 0;
setenv("board_name", safe_string);

/* BeagleBone Green eeprom, board_rev: 0x1a 0x00 0x00 0x00 */
if ((header.version[0] == 0x1a) && (header.version[1] == 0x00) &&

(header.version[2] == 0x00) && (header.version[3] == 0x00)) {
setenv("board_rev", "BBG1");

} else {
strncpy(safe_string, (char *)header.version, sizeof(header.version));
safe_string[sizeof(header.version)] = 0;
setenv("board_rev", safe_string);

}
#endif

return 0;
}
#endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/220

arch/arm/cpu/armv7/am33xx/board.c
[...]
#ifdef CONFIG_SPL_BUILD
void board_init_f(ulong dummy)
{

board_early_init_f();
sdram_init();

}
#endif

void s_init(void)
{

/*
* The ROM will only have set up sufficient pinmux to allow for the
* first 4KiB NOR to be read, we must finish doing what we know of
* the NOR mux in this space in order to continue.
*/

#ifdef CONFIG_NOR_BOOT
enable_norboot_pin_mux();

#endif
watchdog_disable();
set_uart_mux_conf();
setup_clocks_for_console();
uart_soft_reset();

#if defined(CONFIG_SPL_AM33XX_ENABLE_RTC32K_OSC)
/* Enable RTC32K clock */
rtc32k_enable();

#endif
}
#endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/220

Captronic

Linux kernel
Bootlin
info@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/220

Linux kernel

Linux versioning scheme and development
process

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/220

Until 2.6 (1)

▶ One stable major branch every 2 or 3 years
▶ Identified by an even middle number
▶ Examples: 1.0.x, 2.0.x, 2.2.x, 2.4.x

▶ One development branch to integrate new functionalities and major changes
▶ Identified by an odd middle number
▶ Examples: 2.1.x, 2.3.x, 2.5.x
▶ After some time, a development version becomes the new base version for the stable

branch
▶ Minor releases once in while: 2.2.23, 2.5.12, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/220

Until 2.6 (2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/220

Changes since Linux 2.6

▶ Since 2.6.0, kernel developers have been able to introduce lots of new features
one by one on a steady pace, without having to make disruptive changes to
existing subsystems.

▶ Since then, there has been no need to create a new development branch massively
breaking compatibility with the stable branch.

▶ Thanks to this, more features are released to users at a faster pace.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/220

3.x stable branch

▶ From 2003 to 2011, the official kernel versions were named 2.6.x.
▶ Linux 3.0 was released in July 2011
▶ This is only a change to the numbering scheme

▶ Official kernel versions are now named 3.x (3.0, 3.1, 3.2, etc.)
▶ Stabilized versions are named 3.x.y (3.0.2, 3.4.3, etc.)
▶ It effectively only removes a digit compared to the previous numbering scheme

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/220

New development model

Using merge and bug fixing windows

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/220

New development model - Details

▶ After the release of a 3.x version (for example), a two-weeks merge window
opens, during which major additions are merged.

▶ The merge window is closed by the release of test version 3.(x+1)-rc1
▶ The bug fixing period opens, for 6 to 10 weeks.
▶ At regular intervals during the bug fixing period, 3.(x+1)-rcY test versions are

released.
▶ When considered sufficiently stable, kernel 3.(x+1) is released, and the process

starts again.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/220

More stability for the kernel source tree

▶ Issue: bug and security fixes only released for most recent
stable kernel versions.

▶ Some people need to have a recent kernel, but with long
term support for security updates.

▶ You could get long term support from a commercial
embedded Linux provider.

▶ You could reuse sources for the kernel used in Ubuntu Long
Term Support releases (5 years of free security updates).

▶ The http://kernel.org front page shows which versions
will be supported for some time (up to 2 or 3 years), and
which ones won’t be supported any more (”EOL: End Of
Life”)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/220

http://kernel.org

What’s new in each Linux release?
▶ The official list of changes for each Linux release is just a huge list of individual

patches!
commit aa6e52a35d388e730f4df0ec2ec48294590cc459
Author: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
Date: Wed Jul 13 11:29:17 2011 +0200

at91: at91-ohci: support overcurrent notification

Several USB power switches (AIC1526 or MIC2026) have a digital output
that is used to notify that an overcurrent situation is taking
place. This digital outputs are typically connected to GPIO inputs of
the processor and can be used to be notified of these overcurrent
situations.

Therefore, we add a new overcurrent_pin[] array in the at91_usbh_data
structure so that boards can tell the AT91 OHCI driver which pins are
used for the overcurrent notification, and an overcurrent_supported
boolean to tell the driver whether overcurrent is supported or not.

The code has been largely borrowed from ohci-da8xx.c and
ohci-s3c2410.c.

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>

▶ Very difficult to find out the key changes and to get the global picture out of
individual changes.

▶ Fortunately, there are some useful resources available
▶ http://wiki.kernelnewbies.org/LinuxChanges
▶ http://lwn.net
▶ http://linuxfr.org, for French readers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/220

http://wiki.kernelnewbies.org/LinuxChanges
http://lwn.net
http://linuxfr.org

Linux kernel

Porting

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/220

Porting

Porting the kernel involves:
▶ Adding support for the CPU core
▶ Writing drivers for the SoC peripherals and SoC specific features (SMP, power

management)
▶ Writing drivers for the board peripherals
▶ Integrating all the drivers and describing how the peripherals are connected on the

board.
Hopefully, only the last step is needed.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/220

Captronic

Board support
Bootlin
info@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/220

Discoverable vs. non-discoverable hardware

▶ Certain busses have dynamic discoverability features
▶ USB, PCI
▶ Allow to enumerate devices on the bus, query their characteristics, at runtime.
▶ No need to know in advance what’s on the bus

▶ But many busses do not have such features
▶ Memory-mapped devices inside SoC, I2C, SPI, SDIO, etc.
▶ The system has to know in advance “where” the different devices are located, and

their characteristics
▶ Such devices, instead of being dynamically detected, must be statically described in

either:
▶ The kernel source code
▶ The Device Tree, a hardware description file used on some architectures.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/220

ARM code organization in the Linux kernel

▶ arch/arm/{kernel,mm,lib,boot}/
The core ARM kernel. Contains the code related to the ARM core itself (MMU,
interrupts, caches, etc.). Relatively small compared to the SoC-specific code.

▶ arch/arm/mach-<foo>/
The SoC-specific code, and board-specific code, for a given SoC family (clocks,
pinmux, power management, SMP, and more.)
▶ arch/arm/mach-<foo>/board-<bar>.c.

The board-specific code.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/220

Board support

Platform drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/220

Platform devices

▶ Amongst the non-discoverable devices, a huge family are the devices that are
directly part of a system-on-chip: UART controllers, Ethernet controllers, SPI or
I2C controllers, graphic or audio devices, etc.

▶ In the Linux kernel, a special bus, called the platform bus has been created to
handle such devices.

▶ It supports platform drivers that handle platform devices.
▶ It works like any other bus (USB, PCI), except that devices are enumerated

statically instead of being discovered dynamically.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/220

Implementation of a Platform Driver

▶ The driver implements a struct platform_driver structure (example taken
from drivers/serial/imx.c)

static struct platform_driver serial_imx_driver = {
.probe = serial_imx_probe,
.remove = serial_imx_remove,
.driver = {

.name = "imx-uart",

.owner = THIS_MODULE,
},

};

▶ And registers its driver to the platform driver infrastructure
static int __init imx_serial_init(void) {

ret = platform_driver_register(&serial_imx_driver);
}

static void __exit imx_serial_cleanup(void) {
platform_driver_unregister(&serial_imx_driver);

}
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/220

https://elixir.bootlin.com/linux/latest/ident/platform_driver
https://elixir.bootlin.com/linux/latest/source/drivers/serial/imx.c

Platform Device Instantiation: old style (1/2)

▶ As platform devices cannot be detected dynamically, they are defined statically
▶ By direct instantiation of struct platform_device structures, as done on some

ARM platforms. Definition done in the board-specific or SoC specific code.
▶ By using a device tree, as done on Power PC (and on some ARM platforms) from

which struct platform_device structures are created
▶ Example on ARM, where the instantiation is done in

arch/arm/mach-imx/mx1ads.c

static struct platform_device imx_uart1_device = {
.name = "imx-uart",
.id = 0,
.num_resources = ARRAY_SIZE(imx_uart1_resources),
.resource = imx_uart1_resources,
.dev = {

.platform_data = &uart_pdata,
}

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/220

https://elixir.bootlin.com/linux/latest/ident/platform_device
https://elixir.bootlin.com/linux/latest/ident/platform_device
https://elixir.bootlin.com/linux/latest/source/arch/arm/mach-imx/mx1ads.c

Platform device instantiation: old style (2/2)

▶ The device is part of a list

static struct platform_device *devices[] __initdata = {
&cs89x0_device,
&imx_uart1_device,
&imx_uart2_device,

};

▶ And the list of devices is added to the system during board initialization

static void __init mx1ads_init(void)
{

[...]
platform_add_devices(devices, ARRAY_SIZE(devices));

}

MACHINE_START(MX1ADS, "Freescale MX1ADS")
[...]
.init_machine = mx1ads_init,

MACHINE_END

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/220

The Resource Mechanism

▶ Each device managed by a particular driver typically uses different hardware
resources: addresses for the I/O registers, DMA channels, IRQ lines, etc.

▶ Such information can be represented using struct resource, and an array of
struct resource is associated to a struct platform_device

▶ Allows a driver to be instantiated for multiple devices functioning similarly, but
with different addresses, IRQs, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/220

https://elixir.bootlin.com/linux/latest/ident/resource
https://elixir.bootlin.com/linux/latest/ident/resource
https://elixir.bootlin.com/linux/latest/ident/platform_device

Declaring resources

static struct resource imx_uart1_resources[] = {
[0] = {

.start = 0x00206000,

.end = 0x002060FF,

.flags = IORESOURCE_MEM,
},
[1] = {

.start = (UART1_MINT_RX),

.end = (UART1_MINT_RX),

.flags = IORESOURCE_IRQ,
},

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/220

Using Resources

▶ When a struct platform_device is added to the system using
platform_add_device(), the probe() method of the platform driver gets called

▶ This method is responsible for initializing the hardware, registering the device to
the proper framework (in our case, the serial driver framework)

▶ The platform driver has access to the I/O resources:

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = ioremap(res->start, PAGE_SIZE);
sport->rxirq = platform_get_irq(pdev, 0);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/220

https://elixir.bootlin.com/linux/latest/ident/platform_device
https://elixir.bootlin.com/linux/latest/ident/platform_add_device

platform_data Mechanism

▶ In addition to the well-defined resources, many drivers require driver-specific
information for each platform device

▶ Such information can be passed using the platform_data field of
struct device (from which struct platform_device inherits)

▶ As it is a void * pointer, it can be used to pass any type of information.
▶ Typically, each driver defines a structure to pass information through

struct platform_data

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/220

https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/platform_device
https://elixir.bootlin.com/linux/latest/ident/platform_data

platform_data example 1/2

▶ The i.MX serial port driver defines the following structure to be passed through
struct platform_data

struct imxuart_platform_data {
int (*init)(struct platform_device *pdev);
void (*exit)(struct platform_device *pdev);
unsigned int flags;
void (*irda_enable)(int enable);
unsigned int irda_inv_rx:1;
unsigned int irda_inv_tx:1;
unsigned short transceiver_delay;

};

▶ The MX1ADS board code instantiates such a structure
static struct imxuart_platform_data uart1_pdata = {

.flags = IMXUART_HAVE_RTSCTS,
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/220

https://elixir.bootlin.com/linux/latest/ident/platform_data

platform_data Example 2/2

▶ The uart_pdata structure is associated to the struct platform_device
structure in the MX1ADS board file (the real code is slightly more complicated)

struct platform_device mx1ads_uart1 = {
.name = "imx-uart",
.dev {

.platform_data = &uart1_pdata,
},
.resource = imx_uart1_resources,
[...]

};

▶ The driver can access the platform data:
static int serial_imx_probe(struct platform_device *pdev)
{

struct imxuart_platform_data *pdata;
pdata = pdev->dev.platform_data;
if (pdata && (pdata->flags & IMXUART_HAVE_RTSCTS))

sport->have_rtscts = 1;
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/220

https://elixir.bootlin.com/linux/latest/ident/platform_device

Booting

▶ The kernel contains the entire description of the hardware.
▶ The bootloader loads a single binary, the kernel image, and executes it.

▶ uImage or zImage
▶ The bootloader prepares some additional information, called ATAGS, which address

is passed to the kernel through register r2
▶ Contains information such as memory size and location, kernel command line, etc.

▶ The bootloader tells the kernel on which board it is being booted through a
machine type integer, passed in register r1.

▶ U-Boot command: bootm <kernel img addr>
▶ Barebox variable: bootm.image

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/220

Before the Device Tree

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/220

Board file

▶ The machine type is matched with the ones defined using struct machine_desc
▶ Those definitions are done using the MACHINE_START and MACHINE_END macros.

MACHINE_START(MX1ADS, "Motorola MX1ADS")
/* Maintainer: Sascha Hauer, Pengutronix */
.phys_io = 0x00200000,
.io_pg_offst = ((0xe0000000) >> 18) & 0xfffc,
.boot_params = 0x08000100,
.map_io = mx1ads_map_io,
.init_irq = imx_init_irq,
.timer = &imx_timer,
.init_machine = mx1ads_init,

MACHINE_END

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/220

Board support

Device Tree

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/220

Device Tree

▶ On many embedded architectures, manual instantiation of platform devices was
considered to be too verbose and not easily maintainable.

▶ Such architectures are moving, or have moved, to use the Device Tree.
▶ It is a tree of nodes that models the hierarchy of devices in the system, from the

devices inside the processor to the devices on the board.
▶ Each node can have a number of properties describing various properties of the

devices: addresses, interrupts, clocks, etc.
▶ At boot time, the kernel is given a compiled version, the Device Tree Blob,

which is parsed to instantiate all the devices described in the DT.
▶ On ARM, they are located in arch/arm/boot/dts/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/220

https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/

What is the Device Tree ?

▶ Quoted from the Power.org Standard for Embedded Power Architecture Platform
Requirements (ePAPR)
▶ The ePAPR specifies a concept called a device tree to describe system hardware. A

boot program loads a device tree into a client program’s memory and passes a
pointer to the device tree to the client.

▶ A device tree is a tree data structure with nodes that describe the physical devices in
a system.

▶ An ePAPR-compliant device tree describes device information in a system that
cannot be dynamically detected by a client program.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/220

Booting

▶ The kernel no longer contains the description of the hardware, it is located in a
separate binary: the device tree blob

▶ The bootloader loads two binaries: the kernel image and the DTB
▶ Kernel image remains uImage or zImage
▶ DTB located in arch/arm/boot/dts, one per board

▶ The bootloader passes the DTB address through r2. It is supposed to adjust the
DTB with memory information, kernel command line, and potentially other info.

▶ No more machine type.
▶ U-Boot command: boot[mz] <kernel img addr> - <dtb addr>
▶ Barebox variables: bootm.image, bootm.oftree

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/220

Booting

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/220

Compatibility mode for DT booting

▶ Some bootloaders have no specific support for the Device Tree, or the version
used on a particular device is too old to have this support.

▶ To ease the transition, a compatibility mechanism was added:
CONFIG_ARM_APPENDED_DTB.
▶ It tells the kernel to look for a DTB right after the kernel image.
▶ There is no built-in Makefile rule to produce such kernel, so one must manually do:

cat arch/arm/boot/zImage arch/arm/boot/dts/myboard.dtb > my-zImage
mkimage ... -d my-zImage my-uImage

▶ In addition, the additional option CONFIG_ARM_ATAG_DTB_COMPAT tells the kernel
to read the ATAGS information from the bootloader, and update the DT using
them.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/220

Basic Device Tree syntax

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/220

From source to binary

▶ On ARM, all Device Tree Source files (DTS) are for now located in
arch/arm/boot/dts
▶ .dts files for board-level definitions
▶ .dtsi files for included files, generally containing SoC-level definitions

▶ A tool, the Device Tree Compiler compiles the source into a binary form.
▶ Source code located in scripts/dtc

▶ The Device Tree Blob is produced by the compiler, and is the binary that gets
loaded by the bootloader and parsed by the kernel at boot time.

▶ arch/arm/boot/dts/Makefile lists which DTBs should be generated at build
time.

dtb-$(CONFIG_ARCH_MVEBU) += armada-370-db.dtb \
armada-370-mirabox.dtb \

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/220

Exploring the DT on the target

▶ In /sys/firmware/devicetree/base, there is a directory/file representation of
the Device Tree contents

ls -l /sys/firmware/devicetree/base/
total 0
-r--r--r-- 1 root root 4 Jan 1 00:00 #address-cells
-r--r--r-- 1 root root 4 Jan 1 00:00 #size-cells
drwxr-xr-x 2 root root 0 Jan 1 00:00 chosen
drwxr-xr-x 3 root root 0 Jan 1 00:00 clocks
-r--r--r-- 1 root root 34 Jan 1 00:00 compatible
[...]
-r--r--r-- 1 root root 1 Jan 1 00:00 name
drwxr-xr-x 10 root root 0 Jan 1 00:00 soc

▶ If dtc is available on the target, possible to ”unpack” the Device Tree using:
dtc -I fs /sys/firmware/devicetree/base

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/220

A simple example, DT side

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/220

A simple example, driver side (1)

The compatible string used to bind a device with the driver
static struct of_device_id mxs_auart_dt_ids[] = {

{
.compatible = "fsl,imx28-auart",
.data = &mxs_auart_devtype[IMX28_AUART]

}, {
.compatible = "fsl,imx23-auart",
.data = &mxs_auart_devtype[IMX23_AUART]

}, { /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxs_auart_dt_ids);
[...]
static struct platform_driver mxs_auart_driver = {

.probe = mxs_auart_probe,

.remove = mxs_auart_remove,

.driver = {
.name = "mxs-auart",
.of_match_table = mxs_auart_dt_ids,

},
};

Code from drivers/tty/serial/mxs-auart.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/220

A simple example, driver side (2)

▶ of_match_device allows to get the matching entry in the mxs_auart_dt_ids
table.

▶ Useful to get the driver-specific data field, typically used to alter the behavior of
the driver depending on the variant of the detected device.

static int mxs_auart_probe(struct platform_device *pdev)
{

const struct of_device_id *of_id =
of_match_device(mxs_auart_dt_ids, &pdev->dev);

if (of_id) {
/* Use of_id->data here */
[...]

}
[...]

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/220

A simple example, driver side (3)

▶ Getting a reference to the clock
▶ described by the clocks property
▶ s->clk = clk_get(&pdev->dev, NULL);

▶ Getting the I/O registers resource
▶ described by the reg property
▶ r = platform_get_resource(pdev, IORESOURCE_MEM, 0);

▶ Getting the interrupt
▶ described by the interrupts property
▶ s->irq = platform_get_irq(pdev, 0);

▶ Get a DMA channel
▶ described by the dmas property
▶ s->rx_dma_chan = dma_request_slave_channel(s->dev, "rx");
▶ s->tx_dma_chan = dma_request_slave_channel(s->dev, "tx");

▶ Check some custom property
▶ struct device_node *np = pdev->dev.of_node;
▶ if (of_get_property(np, "fsl,uart-has-rtscts", NULL))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/220

Device Tree inclusion

▶ Device Tree files are not monolithic, they can be split in several files, including
each other.

▶ .dtsi files are included files, while .dts files are final Device Trees
▶ Typically, .dtsi will contain definition of SoC-level information (or sometimes

definitions common to several almost identical boards).
▶ The .dts file contains the board-level information.
▶ The inclusion works by overlaying the tree of the including file over the tree of

the included file.
▶ Inclusion using the DT operator /include/, or since a few kernel releases, the

DTS go through the C preprocessor, so #include is recommended.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/220

Device Tree inclusion example

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/220

Device Tree inclusion example (2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/220

Concept of Device Tree binding

▶ Quoting the ePAPR:
▶ This chapter contains requirements, known as bindings, for how specific types

and classes of devices are represented in the device tree.
▶ The compatible property of a device node describes the specific binding (or

bindings) to which the node complies.
▶ When creating a new device tree representation for a device, a binding should be

created that fully describes the required properties and value of the device.
This set of properties shall be sufficiently descriptive to provide device drivers with
needed attributes of the device.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/220

Documentation of Device Tree bindings

▶ All Device Tree bindings recognized by the kernel are documented in
Documentation/devicetree/bindings.

▶ Each binding documentation described which properties are accepted, with which
values, which properties are mandatory vs. optional, etc.

▶ All new Device Tree bindings must be reviewed by the Device Tree maintainers, by
being posted to devicetree@vger.kernel.org. This ensures correctness and
consistency across bindings.

OPEN FIRMWARE AND FLATTENED DEVICE TREE BINDINGS
M: Rob Herring <rob.herring@calxeda.com>
M: Pawel Moll <pawel.moll@arm.com>
M: Mark Rutland <mark.rutland@arm.com>
M: Stephen Warren <swarren@wwwdotorg.org>
M: Ian Campbell <ijc+devicetree@hellion.org.uk>
L: devicetree@vger.kernel.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/220

Device Tree binding documentation example

* Freescale MXS Application UART (AUART)

Required properties:
- compatible : Should be "fsl,<soc>-auart". The supported SoCs include

imx23 and imx28.
- reg : Address and length of the register set for the device
- interrupts : Should contain the auart interrupt numbers
- dmas: DMA specifier, consisting of a phandle to DMA controller node

and AUART DMA channel ID.
Refer to dma.txt and fsl-mxs-dma.txt for details.

- dma-names: "rx" for RX channel, "tx" for TX channel.

Example:
auart0: serial@8006a000 {

compatible = "fsl,imx28-auart", "fsl,imx23-auart";
reg = <0x8006a000 0x2000>;
interrupts = <112>;
dmas = <&dma_apbx 8>, <&dma_apbx 9>;
dma-names = "rx", "tx";

};

Note: Each auart port should have an alias correctly numbered in "aliases"
node.

Example:
[...]

Documentation/devicetree/bindings/tty/serial/fsl-mxs-auart.txt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/220

Device Tree organization: top-level nodes

Under the root of the Device Tree, one typically finds the following top-level nodes:
▶ A cpus node, which sub-nodes describing each CPU in the system.
▶ A memory node, which defines the location and size of the RAM.
▶ A chosen node, which defines parameters chosen or defined by the system

firmware at boot time. In practice, one of its usage is to pass the kernel command
line.

▶ A aliases node, to define shortcuts to certain nodes.
▶ One or more nodes defining the buses in the SoC.
▶ One or mode nodes defining on-board devices.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/220

Device Tree organization: imx28.dtsi

arch/arm/boot/dts/imx28.dtsi
/ {

aliases { ... };
cpus { ... };

apb@80000000 {
apbh@80000000 {

/* Some devices */
};

apbx@80040000 {
/* Some devices */

};
};

ahb@80080000 {
/* Some devices */

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/220

i.MX28 buses organization

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/220

Device Tree organization: imx28-evk.dts

arch/arm/boot/dts/imx28-evk.dts
/ {

model = "Freescale i.MX28 Evaluation Kit";
compatible = "fsl,imx28-evk", "fsl,imx28";

memory {
reg = <0x40000000 0x08000000>;

};

apb@80000000 {
apbh@80000000 { ... };
apbx@80040000 { ... };

};

ahb@80080000 { ... };

sound { ... };
leds { ... };
backlight { ... };

};
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/220

Top-level compatible property

▶ The top-level compatible property typically defines a compatible string for the
board, and then for the SoC.

▶ Values always given with the most-specific first, to least-specific last.
▶ Used to match with the dt_compat field of the DT_MACHINE structure:

static const char *mxs_dt_compat[] __initdata = {
"fsl,imx28",
"fsl,imx23",
NULL,

};

DT_MACHINE_START(MXS, "Freescale MXS (Device Tree)")
.dt_compat = mxs_dt_compat,
[...]

MACHINE_END

▶ Can also be used within code to test the machine:
if (of_machine_is_compatible("fsl,imx28-evk"))

imx28_evk_init();

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/220

Bus, address cells and size cells

Inside a bus, one typically needs to define the following properties:
▶ A compatible property, which identifies the bus controller (in case of I2C, SPI,

PCI, etc.). A special value compatible = "simple-bus" means a simple
memory-mapped bus with no specific handling or driver. Child nodes will be
registered as platform devices.

▶ The #address-cells property indicate how many cells (i.e 32 bits values) are
needed to form the base address part in the reg property.

▶ The #size-cells is the same, for the size part of the reg property.
▶ The ranges property can describe an address translation between the child bus

and the parent bus. When simply defined as ranges;, it means that the
translation is an identity translation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/220

simple-bus, address cells and size cells

apbh@80000000 {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x80000000 0x3c900>;
ranges;

[...]

hsadc: hsadc@80002000 {
reg = <0x80002000 0x2000>;
interrupts = <13>;
dmas = <&dma_apbh 12>;
dma-names = "rx";
status = "disabled";

};

[...]
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/220

I2C bus, address cells and size cells

i2c0: i2c@80058000 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,imx28-i2c";
reg = <0x80058000 0x2000>;
interrupts = <111>;
[...]

sgtl5000: codec@0a {
compatible = "fsl,sgtl5000";
reg = <0x0a>;
VDDA-supply = <®_3p3v>;
VDDIO-supply = <®_3p3v>;
clocks = <&saif0>;

};

at24@51 {
compatible = "at24,24c32";
pagesize = <32>;
reg = <0x51>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/220

Interrupt handling

▶ interrupt-controller; is a boolean property that indicates that the current
node is an interrupt controller.

▶ #interrupt-cells indicates the number of cells in the interrupts property for
the interrupts managed by the selected interrupt controller.

▶ interrupt-parent is a phandle that points to the interrupt controller for the
current node. There is generally a top-level interrupt-parent definition for the
main interrupt controller.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/220

Interrupt example: imx28.dtsi

/ {
interrupt-parent = <&icoll>;
apb@80000000 {

apbh@80000000 {
icoll: interrupt-controller@80000000 {

compatible = "fsl,imx28-icoll", "fsl,icoll";
interrupt-controller;
#interrupt-cells = <1>;
reg = <0x80000000 0x2000>;

};

ssp0: ssp@80010000 {
[...]
interrupts = <96>;

};
};

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/220

A more complicated example on Tegra 20

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/220

Interrupt example: tegra20.dtsi

/ {
interrupt-parent = <&intc>;

intc: interrupt-controller {
compatible = "arm,cortex-a9-gic";
reg = <0x50041000 0x1000 0x50040100 0x0100>;
interrupt-controller;
#interrupt-cells = <3>;

};

i2c@7000c000 {
compatible = "nvidia,tegra20-i2c";
reg = <0x7000c000 0x100>;
interrupts = <GIC_SPI 38 IRQ_TYPE_LEVEL_HIGH>;
#address-cells = <1>;
#size-cells = <0>;
[...]

};

gpio: gpio {
compatible = "nvidia,tegra20-gpio";
reg = <0x6000d000 0x1000>;
interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>, <GIC_SPI 33 IRQ_TYPE_LEVEL_HIGH>,

[...], <GIC_SPI 89 IRQ_TYPE_LEVEL_HIGH>;
#gpio-cells = <2>;
gpio-controller;
#interrupt-cells = <2>;
interrupt-controller;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/220

Interrupt example: tegra20-harmony.dts

i2c@7000c000 {
status = "okay";
clock-frequency = <400000>;

wm8903: wm8903@1a {
compatible = "wlf,wm8903";
reg = <0x1a>;
interrupt-parent = <&gpio>;
interrupts = <TEGRA_GPIO(X, 3) IRQ_TYPE_LEVEL_HIGH>;

gpio-controller;
#gpio-cells = <2>;

micdet-cfg = <0>;
micdet-delay = <100>;
gpio-cfg = <0xffffffff 0xffffffff 0 0xffffffff 0xffffffff>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/220

DT is hardware description, not configuration

▶ The Device Tree is really a hardware description language.
▶ It should describe the hardware layout, and how it works.
▶ But it should not describe which particular hardware configuration you’re

interested in.
▶ As an example:

▶ You may describe in the DT whether a particular piece of hardware supports DMA
or not.

▶ But you may not describe in the DT if you want to use DMA or not.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/220

Device Tree Resources

▶ The drivers will use the same mechanism that we saw previously to retrieve basic
information: interrupts numbers, physical addresses, etc.

▶ The available resources list will be built up by the kernel at boot time from the
device tree, so that you don’t need to make any unnecessary lookups to the DT
when loading your driver.

▶ Any additional information will be specific to a driver or the class it belongs to,
defining the bindings

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/220

sysfs

▶ The bus, device, drivers, etc. structures are internal to the kernel
▶ The sysfs virtual filesystem offers a mechanism to export such information to

user space
▶ Used for example by udev to provide automatic module loading, firmware loading,

device file creation, etc.
▶ sysfs is usually mounted in /sys

▶ /sys/bus/ contains the list of buses
▶ /sys/devices/ contains the list of devices
▶ /sys/class enumerates devices by class (net, input, block...), whatever the bus

they are connected to. Very useful!
▶ Take your time to explore /sys on your workstation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/220

References

▶ Power.orgTM Standard for Embedded Power Architecture Platform Requirements
(ePAPR), http:
//www.power.org/resources/downloads/Power_ePAPR_APPROVED_v1.0.pdf

▶ DeviceTree.org website, http://www.devicetree.org
▶ Device Tree documentation in the kernel sources, Documentation/devicetree
▶ The Device Tree kernel mailing list,

http://dir.gmane.org/gmane.linux.drivers.devicetree

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/220

http://www.power.org/resources/downloads/Power_ePAPR_APPROVED_v1.0.pdf
http://www.power.org/resources/downloads/Power_ePAPR_APPROVED_v1.0.pdf
http://www.devicetree.org

Captronic

Linux device and driver
model
Bootlin
info@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/220

Linux device and driver model

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/220

The need for a device model?

▶ The Linux kernel runs on a wide range of architectures and hardware platforms,
and therefore needs to maximize the reusability of code between platforms.

▶ For example, we want the same USB device driver to be usable on a x86 PC, or
an ARM platform, even though the USB controllers used on these platforms are
different.

▶ This requires a clean organization of the code, with the device drivers separated
from the controller drivers, the hardware description separated from the drivers
themselves, etc.

▶ This is what the Linux kernel Device Model allows, in addition to other
advantages covered in this section.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/220

Kernel and Device Drivers

In Linux, a driver is always interfacing with:

▶ a framework that allows the driver to
expose the hardware features in a
generic way.

▶ a bus infrastructure, part of the
device model, to detect/communicate
with the hardware.

This section focuses on the device model,
while kernel frameworks are covered later in
this training.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/220

Device Model data structures

▶ The device model is organized around three main data structures:
▶ The struct bus_type structure, which represent one type of bus (USB, PCI, I2C,

etc.)
▶ The struct device_driver structure, which represents one driver capable of

handling certain devices on a certain bus.
▶ The struct device structure, which represents one device connected to a bus

▶ The kernel uses inheritance to create more specialized versions of
struct device_driver and struct device for each bus subsystem.

▶ In order to explore the device model, we will
▶ First look at a popular bus that offers dynamic enumeration, the USB bus
▶ Continue by studying how buses that do not offer dynamic enumerations are handled.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/220

https://elixir.bootlin.com/linux/latest/ident/bus_type
https://elixir.bootlin.com/linux/latest/ident/device_driver
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/device_driver
https://elixir.bootlin.com/linux/latest/ident/device

Bus Drivers

▶ The first component of the device model is the bus driver
▶ One bus driver for each type of bus: USB, PCI, SPI, MMC, I2C, etc.

▶ It is responsible for
▶ Registering the bus type (struct bus_type)
▶ Allowing the registration of adapter drivers (USB controllers, I2C adapters, etc.),

able to detect the connected devices, and providing a communication mechanism
with the devices

▶ Allowing the registration of device drivers (USB devices, I2C devices, PCI devices,
etc.), managing the devices

▶ Matching the device drivers against the devices detected by the adapter drivers.
▶ Provides an API to both adapter drivers and device drivers
▶ Defining driver and device specific structures, mainly struct usb_driver and

struct usb_interface

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/220

https://elixir.bootlin.com/linux/latest/ident/bus_type
https://elixir.bootlin.com/linux/latest/ident/usb_driver
https://elixir.bootlin.com/linux/latest/ident/usb_interface

Linux device and driver model

Example of the USB bus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/220

Example: USB Bus 1/2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/220

Example: USB Bus 2/2

▶ Core infrastructure (bus driver)
▶ drivers/usb/core/
▶ struct bus_type is defined in drivers/usb/core/driver.c and registered in

drivers/usb/core/usb.c
▶ Adapter drivers

▶ drivers/usb/host/
▶ For EHCI, UHCI, OHCI, XHCI, and their implementations on various systems

(Atmel, IXP, Xilinx, OMAP, Samsung, PXA, etc.)
▶ Device drivers

▶ Everywhere in the kernel tree, classified by their type

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/220

https://elixir.bootlin.com/linux/latest/source/drivers/usb/core/
https://elixir.bootlin.com/linux/latest/ident/bus_type
https://elixir.bootlin.com/linux/latest/source/drivers/usb/core/driver.c
https://elixir.bootlin.com/linux/latest/source/drivers/usb/core/usb.c
https://elixir.bootlin.com/linux/latest/source/drivers/usb/host/

Example of Device Driver

▶ To illustrate how drivers are implemented to work with the device model, we will
study the source code of a driver for a USB network card
▶ It is USB device, so it has to be a USB device driver
▶ It is a network device, so it has to be a network device
▶ Most drivers rely on a bus infrastructure (here, USB) and register themselves in a

framework (here, network)
▶ We will only look at the device driver side, and not the adapter driver side
▶ The driver we will look at is drivers/net/usb/rtl8150.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/220

https://elixir.bootlin.com/linux/latest/source/drivers/net/usb/rtl8150.c

Device Identifiers

▶ Defines the set of devices that this driver can manage, so that the USB core
knows for which devices this driver should be used

▶ The MODULE_DEVICE_TABLE() macro allows depmod to extract at compile time
the relation between device identifiers and drivers, so that drivers can be loaded
automatically by udev. See
/lib/modules/$(uname -r)/modules.{alias,usbmap}

static struct usb_device_id rtl8150_table[] = {
{ USB_DEVICE(VENDOR_ID_REALTEK, PRODUCT_ID_RTL8150) },
{ USB_DEVICE(VENDOR_ID_MELCO, PRODUCT_ID_LUAKTX) },
{ USB_DEVICE(VENDOR_ID_MICRONET, PRODUCT_ID_SP128AR) },
{ USB_DEVICE(VENDOR_ID_LONGSHINE, PRODUCT_ID_LCS8138TX) },
[...]
{}

};
MODULE_DEVICE_TABLE(usb, rtl8150_table);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/220

https://elixir.bootlin.com/linux/latest/ident/MODULE_DEVICE_TABLE

Instantiation of usb_driver

▶ struct usb_driver is a structure defined by the USB core. Each USB device
driver must instantiate it, and register itself to the USB core using this structure

▶ This structure inherits from struct device_driver, which is defined by the
device model.

static struct usb_driver rtl8150_driver = {
.name = "rtl8150",
.probe = rtl8150_probe,
.disconnect = rtl8150_disconnect,
.id_table = rtl8150_table,
.suspend = rtl8150_suspend,
.resume = rtl8150_resume

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/220

https://elixir.bootlin.com/linux/latest/ident/usb_driver
https://elixir.bootlin.com/linux/latest/ident/device_driver

Driver (Un)Registration

▶ When the driver is loaded or unloaded, it must register or unregister itself from
the USB core

▶ Done using usb_register() and usb_deregister(), provided by the USB core.

static int __init usb_rtl8150_init(void)
{

return usb_register(&rtl8150_driver);
}

static void __exit usb_rtl8150_exit(void)
{

usb_deregister(&rtl8150_driver);
}

module_init(usb_rtl8150_init);
module_exit(usb_rtl8150_exit);

▶ Note: this code has now been replaced by a shorter module_usb_driver()
macro call.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/220

https://elixir.bootlin.com/linux/latest/ident/usb_register
https://elixir.bootlin.com/linux/latest/ident/usb_deregister
https://elixir.bootlin.com/linux/latest/ident/module_usb_driver

At Initialization

▶ The USB adapter driver that corresponds to the USB controller of the system
registers itself to the USB core

▶ The rtl8150 USB device driver registers itself to the USB core

▶ The USB core now knows the association between the vendor/product IDs of
rtl8150 and the struct usb_driver structure of this driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/220

https://elixir.bootlin.com/linux/latest/ident/rtl8150
https://elixir.bootlin.com/linux/latest/ident/rtl8150
https://elixir.bootlin.com/linux/latest/ident/usb_driver

When a Device is Detected

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/220

Probe Method

▶ The probe() method receives as argument a structure describing the device,
usually specialized by the bus infrastructure (struct pci_dev,
struct usb_interface, etc.)

▶ This function is responsible for
▶ Initializing the device, mapping I/O memory, registering the interrupt handlers. The

bus infrastructure provides methods to get the addresses, interrupt numbers and
other device-specific information.

▶ Registering the device to the proper kernel framework, for example the network
infrastructure.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/220

https://elixir.bootlin.com/linux/latest/ident/pci_dev
https://elixir.bootlin.com/linux/latest/ident/usb_interface

Probe Method Example

static int rtl8150_probe(struct usb_interface *intf,
const struct usb_device_id *id)

{
rtl8150_t *dev;
struct net_device *netdev;

netdev = alloc_etherdev(sizeof(rtl8150_t));
[...]
dev = netdev_priv(netdev);
tasklet_init(&dev->tl, rx_fixup, (unsigned long)dev);
spin_lock_init(&dev->rx_pool_lock);
[...]
netdev->netdev_ops = &rtl8150_netdev_ops;
alloc_all_urbs(dev);
[...]
usb_set_intfdata(intf, dev);
SET_NETDEV_DEV(netdev, &intf->dev);
register_netdev(netdev);

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/220

The Model is Recursive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/220

Captronic

Introduction to the I2C
subsystem
Bootlin
info@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/220

What is I2C?

▶ A very commonly used low-speed bus to connect on-board devices to the
processor.

▶ Uses only two wires: SDA for the data, SCL for the clock.
▶ It is a master/slave bus: only the master can initiate transactions, and slaves can

only reply to transactions initiated by masters.
▶ In a Linux system, the I2C controller embedded in the processor is typically the

master, controlling the bus.
▶ Each slave device is identified by a unique I2C address. Each transaction initiated

by the master contains this address, which allows the relevant slave to recognize
that it should reply to this particular transaction.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/220

An I2C bus example

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/220

The I2C subsystem

▶ Like all bus subsystems, the I2C subsystem is responsible for:
▶ Providing an API to implement I2C controller drivers
▶ Providing an API to implement I2C device drivers, in kernel space
▶ Providing an API to implement I2C device drivers, in user space

▶ The core of the I2C subsystem is located in drivers/i2c/.
▶ The I2C controller drivers are located in drivers/i2c/busses/.
▶ The I2C device drivers are located throughout drivers//, depending on the type

of device (ex: drivers/input/ for input devices).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/220

https://elixir.bootlin.com/linux/latest/source/drivers/i2c/
https://elixir.bootlin.com/linux/latest/source/drivers/i2c/busses/
https://elixir.bootlin.com/linux/latest/source/drivers//
https://elixir.bootlin.com/linux/latest/source/drivers/input/

Registering an I2C device driver

▶ Like all bus subsystems, the I2C subsystem defines a struct i2c_driver that
inherits from struct device_driver, and which must be instantiated and
registered by each I2C device driver.
▶ As usual, this structure points to the ->probe() and ->remove() functions.
▶ It also contains an id_table field that must point to a list of device IDs (which is a

list of tuples containing a string and some private driver data). It is used for non-DT
based probing of I2C devices.

▶ The i2c_add_driver() and i2c_del_driver() functions are used to
register/unregister the driver.

▶ If the driver doesn’t do anything else in its init()/exit() functions, it is advised
to use the module_i2c_driver() macro instead.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/220

https://elixir.bootlin.com/linux/latest/ident/i2c_driver
https://elixir.bootlin.com/linux/latest/ident/device_driver
https://elixir.bootlin.com/linux/latest/ident/i2c_add_driver
https://elixir.bootlin.com/linux/latest/ident/i2c_del_driver
https://elixir.bootlin.com/linux/latest/ident/module_i2c_driver

Registering an I2C device driver: example

static const struct i2c_device_id <driver>_id[] = {
{ "<device-name>", 0 },
{ }

};
MODULE_DEVICE_TABLE(i2c, <driver>_id);

#ifdef CONFIG_OF
static const struct of_device_id <driver>_dt_ids[] = {

{ .compatible = "<vendor>,<device-name>", },
{ }

};
MODULE_DEVICE_TABLE(of, <driver>_dt_ids);
#endif

static struct i2c_driver <driver>_driver = {
.probe = <driver>_probe,
.remove = <driver>_remove,
.id_table = <driver>_id,
.driver = {

.name = "<driver-name>",

.owner = THIS_MODULE,

.of_match_table = of_match_ptr(<driver>_dt_ids),
},

};

module_i2c_driver(<driver>_driver);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/220

Registering an I2C device: non-DT

▶ On non-DT platforms, the struct i2c_board_info structure allows to describe
how an I2C device is connected to a board.

▶ Such structures are normally defined with the I2C_BOARD_INFO() helper macro.
▶ Takes as argument the device name and the slave address of the device on the bus.

▶ An array of such structures is registed on a per-bus basis using
i2c_register_board_info(), when the platform is initialized.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/220

https://elixir.bootlin.com/linux/latest/ident/i2c_board_info
https://elixir.bootlin.com/linux/latest/ident/I2C_BOARD_INFO
https://elixir.bootlin.com/linux/latest/ident/i2c_register_board_info

Registering an I2C device, non-DT example

static struct i2c_board_info <board>_i2c_devices[] __initdata = {
{

I2C_BOARD_INFO("cs42l51", 0x4a),
},

};

void board_init(void)
{

/*
* Here should be the registration of all devices, including
* the I2C controller device.
*/

i2c_register_board_info(0, <board>_i2c_devices,
ARRAY_SIZE(<board>_i2c_devices));

/* More devices registered here */
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/220

Registering an I2C device, in the DT

▶ In the Device Tree, the I2C controller device is typically defined in the .dtsi file
that describes the processor.
▶ Normally defined with status = "disabled".

▶ At the board/platform level:
▶ the I2C controller device is enabled (status = "okay")
▶ the I2C bus frequency is defined, using the clock-frequency property.
▶ the I2C devices on the bus are described as children of the I2C controller node,

where the reg property gives the I2C slave address on the bus.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/220

Registering an I2C device, DT example (1/2)

Definition of the I2C controller, .dtsi file
i2c@7000c000 {

compatible = "nvidia,tegra20-i2c";
reg = <0x7000c000 0x100>;
interrupts = <GIC_SPI 38 IRQ_TYPE_LEVEL_HIGH>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&tegra_car TEGRA20_CLK_I2C1>,

<&tegra_car TEGRA20_CLK_PLL_P_OUT3>;
clock-names = "div-clk", "fast-clk";
status = "disabled";

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 171/220

Registering an I2C device, DT example (2/2)

Definition of the I2C device, .dts file
i2c@7000c000 {

status = "okay";
clock-frequency = <400000>;

alc5632: alc5632@1e {
compatible = "realtek,alc5632";
reg = <0x1e>;
gpio-controller;
#gpio-cells = <2>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 172/220

probe() and remove()

▶ The ->probe() function is responsible for initializing the device and registering it
in the appropriate kernel framework. It receives as argument:
▶ A struct i2c_client pointer, which represents the I2C device itself. This

structure inherits from struct device.
▶ A struct i2c_device_id pointer, which points to the I2C device ID entry that

matched the device that is being probed.
▶ The ->remove() function is responsible for unregistering the device from the

kernel framework and shut it down. It receives as argument:
▶ The same struct i2c_client pointer that was passed as argument to ->probe()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/220

https://elixir.bootlin.com/linux/latest/ident/i2c_client
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/i2c_device_id
https://elixir.bootlin.com/linux/latest/ident/i2c_client

Probe/remove example

static int <driver>_probe(struct i2c_client *client,
const struct i2c_device_id *id)

{
/* initialize device */
/* register to a kernel framework */

i2c_set_clientdata(client, <private data>);
return 0;

}

static int <driver>_remove(struct i2c_client *client)
{

<private data> = i2c_get_clientdata(client);
/* unregister device from kernel framework */
/* shut down the device */
return 0;

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/220

Communicating with the I2C device: raw API

The most basic API to communicate with the I2C device provides functions to either
send or receive data:
▶ int i2c_master_send(struct i2c_client *client, const char *buf,

int count);
Sends the contents of buf to the client.

▶ int i2c_master_recv(struct i2c_client *client, char *buf, int
count);
Receives count bytes from the client, and store them into buf.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/220

Communicating with the I2C device: message transfer

The message transfer API allows to describe transfers that consists of several
messages, with each message being a transaction in one direction:
▶ int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msg,

int num);
▶ The struct i2c_adapter pointer can be found by using client->adapter
▶ The struct i2c_msg structure defines the length, location, and direction of the

message.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 176/220

https://elixir.bootlin.com/linux/latest/ident/i2c_adapter
https://elixir.bootlin.com/linux/latest/ident/i2c_msg

I2C: message transfer example

struct i2c_msg msg[2];
int error;
u8 start_reg;
u8 buf[10];

msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = &start_reg;
start_reg = 0x10;

msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].len = sizeof(buf);
msg[1].buf = buf;

error = i2c_transfer(client->adapter, msg, 2);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/220

SMBus calls

▶ SMBus is a subset of the I2C protocol.
▶ It defines a standard set of transactions, for example to read or write a register

into a device.
▶ Linux provides SMBus functions that should be used instead of the raw API, if the

I2C device supports this standard type of transactions. The driver can then be
used on both SMBus and I2C adapters (can’t use I2C commands on SMBus
adapters).

▶ Example: the i2c_smbus_read_byte_data() function allows to read one byte of
data from a device register.
▶ It does the following operations:

S Addr Wr [A] Comm [A] S Addr Rd [A] [Data] NA P
▶ Which means it first writes a one byte data command (Comm), and then reads back

one byte of data ([Data]).
▶ See Documentation/i2c/smbus-protocol for details.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 178/220

https://elixir.bootlin.com/linux/latest/ident/i2c_smbus_read_byte_data
https://kernel.org/doc/Documentation/i2c/smbus-protocol

List of SMBus functions

▶ Read/write one byte
▶ s32 i2c_smbus_read_byte(const struct i2c_client *client);
▶ s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value);

▶ Write a command byte, and read or write one byte
▶ s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command);
▶ s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command, u8 value);

▶ Write a command byte, and read or write one word
▶ s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command);
▶ s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command, u16 value);

▶ Write a command byte, and read or write a block of data (max 32 bytes)
▶ s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command, u8 *values);
▶ s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command, u8 length, const u8 *values);

▶ Write a command byte, and read or write a block of data (no limit)
▶ s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command, u8 length, u8 *values);
▶ s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command, u8 length, const u8 *values);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/220

I2C functionality

▶ Not all I2C controllers support all functionalities.
▶ The I2C controller drivers therefore tell the I2C core which functionalities they

support.
▶ An I2C device driver must check that the functionalities they need are provided by

the I2C controller in use on the system.
▶ The i2c_check_functionality() function allows to make such a check.
▶ Examples of functionalities: I2C_FUNC_I2C to be able to use the raw I2C

functions, I2C_FUNC_SMBUS_BYTE_DATA to be able to use SMBus commands to
write a command and read/write one byte of data.

▶ See include/uapi/linux/i2c.h for the full list of existing functionalities.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/220

https://elixir.bootlin.com/linux/latest/ident/i2c_check_functionality
https://elixir.bootlin.com/linux/latest/ident/I2C_FUNC_I2C
https://elixir.bootlin.com/linux/latest/ident/I2C_FUNC_SMBUS_BYTE_DATA
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/i2c.h

References

▶ http://en.wikipedia.org/wiki/I2C, general presentation of the I2C protocol
▶ Documentation/i2c/, details about the Linux support for I2C

▶ writing-clients, how to write I2C device drivers
▶ instantiating-devices, how to instantiate devices
▶ smbus-protocol, details on the SMBus functions
▶ functionality, how the functionality mechanism works
▶ and many more documentation files

▶ http://bootlin.com/pub/video/2012/elce/elce-2012-anders-board-
bringup-i2c.webm, excellent talk: You, me and I2C from David Anders at ELCE
2012.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 181/220

http://en.wikipedia.org/wiki/I2C
https://kernel.org/doc/Documentation/i2c/
http://bootlin.com/pub/video/2012/elce/elce-2012-anders-board-bringup-i2c.webm
http://bootlin.com/pub/video/2012/elce/elce-2012-anders-board-bringup-i2c.webm

Captronic

Kernel frameworks for
device drivers
Bootlin
info@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/220

Kernel and Device Drivers

In Linux, a driver is always interfacing with:

▶ a framework that allows the driver to
expose the hardware features to user
space applications.

▶ a bus infrastructure, part of the
device model, to detect/communicate
with the hardware.

This section focuses on the kernel
frameworks, while the device model was
covered earlier in this training.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/220

Kernel frameworks for device drivers

User space vision of devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/220

Types of devices

Under Linux, there are essentially three types of devices:
▶ Network devices. They are represented as network interfaces, visible in user

space using ifconfig.
▶ Block devices. They are used to provide user space applications access to raw

storage devices (hard disks, USB keys). They are visible to the applications as
device files in /dev.

▶ Character devices. They are used to provide user space applications access to all
other types of devices (input, sound, graphics, serial, etc.). They are also visible
to the applications as device files in /dev.

→ Most devices are character devices, so we will study these in more details.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/220

Major and minor numbers

▶ Within the kernel, all block and character devices are identified using a major and
a minor number.

▶ The major number typically indicates the family of the device.
▶ The minor number typically indicates the number of the device (when they are for

example several serial ports)
▶ Most major and minor numbers are statically allocated, and identical across all

Linux systems.
▶ They are defined in admin-guide/devices.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/220

https://www.kernel.org/doc/html/latest/admin-guide/devices.html

Devices: everything is a file

▶ A very important Unix design decision was to represent most of the “system
objects” as files

▶ It allows applications to manipulate all “system objects” with the normal file API
(open, read, write, close, etc.)

▶ So, devices had to be represented as files to the applications
▶ This is done through a special artifact called a device file
▶ It is a special type of file, that associates a file name visible to user space

applications to the triplet (type, major, minor) that the kernel understands
▶ All device files are by convention stored in the /dev directory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/220

Device files examples

Example of device files in a Linux system

$ ls -l /dev/ttyS0 /dev/tty1 /dev/sda1 /dev/sda2 /dev/zero
brw-rw---- 1 root disk 8, 1 2011-05-27 08:56 /dev/sda1
brw-rw---- 1 root disk 8, 2 2011-05-27 08:56 /dev/sda2
crw------- 1 root root 4, 1 2011-05-27 08:57 /dev/tty1
crw-rw---- 1 root dialout 4, 64 2011-05-27 08:56 /dev/ttyS0
crw-rw-rw- 1 root root 1, 5 2011-05-27 08:56 /dev/zero

Example C code that uses the usual file API to write data to a serial port

int fd;
fd = open("/dev/ttyS0", O_RDWR);
write(fd, "Hello", 5);
close(fd);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/220

Creating device files

▶ On a basic Linux system, the device files have to be created manually using the
mknod command
▶ mknod /dev/<device> [c|b] major minor
▶ Needs root privileges
▶ Coherency between device files and devices handled by the kernel is left to the

system developer
▶ On more elaborate Linux systems, mechanisms can be added to create/remove

them automatically when devices appear and disappear
▶ devtmpfs virtual filesystem
▶ udev daemon, solution used by desktop and server Linux systems
▶ mdev program, a lighter solution than udev

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/220

Kernel frameworks for device drivers

Character drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/220

A character driver in the kernel

▶ From the point of view of an application, a character device is essentially a file.
▶ The driver of a character device must therefore implement operations that let

applications think the device is a file: open, close, read, write, etc.
▶ In order to achieve this, a character driver must implement the operations

described in the struct file_operations structure and register them.
▶ The Linux filesystem layer will ensure that the driver’s operations are called when

a user space application makes the corresponding system call.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 191/220

https://elixir.bootlin.com/linux/latest/ident/file_operations

From user space to the kernel: character devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/220

File operations

▶ Here are the most important operations for a character driver. All of them are
optional.

#include <linux/fs.h>

struct file_operations {
ssize_t (*read) (struct file *, char __user *,

size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *,

size_t, loff_t *);
long (*unlocked_ioctl) (struct file *, unsigned int,

unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*release) (struct inode *, struct file *);

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 193/220

open() and release()

▶ int foo_open(struct inode *i, struct file *f)

▶ Called when user space opens the device file.
▶ struct inode is a structure that uniquely represents a file in the system (be it a

regular file, a directory, a symbolic link, a character or block device)
▶ struct file is a structure created every time a file is opened. Several file

structures can point to the same inode structure.
▶ Contains information like the current position, the opening mode, etc.
▶ Has a void *private_data pointer that one can freely use.
▶ A pointer to the file structure is passed to all other operations

▶ int foo_release(struct inode *i, struct file *f)

▶ Called when user space closes the file.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 194/220

https://elixir.bootlin.com/linux/latest/ident/inode
https://elixir.bootlin.com/linux/latest/ident/file
https://elixir.bootlin.com/linux/latest/ident/file

read()

▶ ssize_t foo_read(struct file *f, char __user *buf,

size_t sz, loff_t *off)

▶ Called when user space uses the read() system call on the device.
▶ Must read data from the device, write at most sz bytes in the user space buffer buf,

and update the current position in the file off. f is a pointer to the same file
structure that was passed in the open() operation

▶ Must return the number of bytes read.
▶ On UNIX, read() operations typically block when there isn’t enough data to read

from the device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/220

write()

▶ ssize_t foo_write(struct file *f,

const char __user *buf, size_t sz, loff_t *off)

▶ Called when user space uses the write() system call on the device
▶ The opposite of read, must read at most sz bytes from buf, write it to the device,

update off and return the number of bytes written.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 196/220

Exchanging data with user space 1/3

▶ Kernel code isn’t allowed to directly access user space memory, using memcpy() or
direct pointer dereferencing
▶ Doing so does not work on some architectures
▶ If the address passed by the application was invalid, the application would segfault.

▶ To keep the kernel code portable and have proper error handling, your driver must
use special kernel functions to exchange data with user space.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/220

https://elixir.bootlin.com/linux/latest/ident/memcpy

Exchanging data with user space 2/3

▶ A single value
▶ get_user(v, p);

▶ The kernel variable v gets the value pointed by the user space pointer p
▶ put_user(v, p);

▶ The value pointed by the user space pointer p is set to the contents of the kernel
variable v.

▶ A buffer
▶ unsigned long copy_to_user(void __user *to,

const void *from, unsigned long n);
▶ unsigned long copy_from_user(void *to,

const void __user *from, unsigned long n);

▶ The return value must be checked. Zero on success, non-zero on failure. If
non-zero, the convention is to return -EFAULT.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/220

https://elixir.bootlin.com/linux/latest/ident/EFAULT

Exchanging data with user space 3/3

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/220

Zero copy access to user memory

▶ Having to copy data to or from an intermediate kernel buffer can become
expensive when the amount of data to transfer is large (video).

▶ Zero copy options are possible:
▶ mmap() system call to allow user space to directly access memory mapped I/O

space. See our mmap() chapter.
▶ get_user_pages_fast() to get a mapping to user pages without having to copy

them. See http://j.mp/1sML7lP (Kernel API doc). This API is more complex to
use though.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/220

https://elixir.bootlin.com/linux/latest/ident/get_user_pages_fast
http://j.mp/1sML7lP

unlocked_ioctl()

▶ long unlocked_ioctl(struct file *f,

unsigned int cmd, unsigned long arg)

▶ Associated to the ioctl() system call.
▶ Called unlocked because it didn’t hold the Big Kernel Lock (gone now).
▶ Allows to extend the driver capabilities beyond the limited read/write API.
▶ For example: changing the speed of a serial port, setting video output format,

querying a device serial number...
▶ cmd is a number identifying the operation to perform
▶ arg is the optional argument passed as third argument of the ioctl() system call.

Can be an integer, an address, etc.
▶ The semantic of cmd and arg is driver-specific.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/220

ioctl() example: kernel side

static long phantom_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)

{
struct phm_reg r;
void __user *argp = (void __user *)arg;

switch (cmd) {
case PHN_SET_REG:

if (copy_from_user(&r, argp, sizeof(r)))
return -EFAULT;

/* Do something */
break;

case PHN_GET_REG:
if (copy_to_user(argp, &r, sizeof(r)))

return -EFAULT;
/* Do something */
break;

default:
return -ENOTTY;

}

return 0; }

Selected excerpt from drivers/misc/phantom.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/220

https://elixir.bootlin.com/linux/latest/source/drivers/misc/phantom.c

Ioctl() Example: Application Side

int main(void)
{

int fd, ret;
struct phm_reg reg;

fd = open("/dev/phantom");
assert(fd > 0);

reg.field1 = 42;
reg.field2 = 67;

ret = ioctl(fd, PHN_SET_REG, & reg);
assert(ret == 0);

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/220

Kernel frameworks for device drivers

The concept of kernel frameworks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/220

Beyond character drivers: kernel frameworks

▶ Many device drivers are not implemented directly as character drivers
▶ They are implemented under a framework, specific to a given device type

(framebuffer, V4L, serial, etc.)
▶ The framework allows to factorize the common parts of drivers for the same type of

devices
▶ From user space, they are still seen as character devices by the applications
▶ The framework allows to provide a coherent user space interface (ioctl, etc.) for

every type of device, regardless of the driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/220

Kernel Frameworks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/220

Driver-specific Data Structure

▶ Each framework defines a structure that a device driver must register to be
recognized as a device in this framework
▶ struct uart_port for serial ports, struct netdev for network devices,

struct fb_info for framebuffers, etc.
▶ In addition to this structure, the driver usually needs to store additional

information about its device
▶ This is typically done

▶ By subclassing the appropriate framework structure
▶ By storing a reference to the appropriate framework structure
▶ Or by including your information in the framework structure

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 207/220

https://elixir.bootlin.com/linux/latest/ident/uart_port
https://elixir.bootlin.com/linux/latest/ident/netdev
https://elixir.bootlin.com/linux/latest/ident/fb_info

Driver-specific Data Structure Examples 1/2

▶ i.MX serial driver: struct imx_port is a subclass of struct uart_port
struct imx_port {

struct uart_port port;
struct timer_list timer;
unsigned int old_status;
int txirq, rxirq, rtsirq;
unsigned int have_rtscts:1;
[...]

};

▶ ds1305 RTC driver: struct ds1305 has a reference to struct rtc_device
struct ds1305 {

struct spi_device *spi;
struct rtc_device *rtc;
[...]

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/220

https://elixir.bootlin.com/linux/latest/ident/imx_port
https://elixir.bootlin.com/linux/latest/ident/uart_port
https://elixir.bootlin.com/linux/latest/ident/ds1305
https://elixir.bootlin.com/linux/latest/ident/rtc_device

Driver-specific Data Structure Examples 2/2

▶ rtl8150 network driver: struct rtl8150 has a reference to struct net_device
and is allocated within that framework structure.
struct rtl8150 {

unsigned long flags;
struct usb_device *udev;
struct tasklet_struct tl;
struct net_device *netdev;
[...]

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/220

https://elixir.bootlin.com/linux/latest/ident/rtl8150
https://elixir.bootlin.com/linux/latest/ident/net_device

Link Between Structures 1/4

▶ The framework typically contains a struct device * pointer that the driver
must point to the corresponding struct device
▶ It’s the relation between the logical device (for example a network interface) and the

physical device (for example the USB network adapter)
▶ The device structure also contains a void * pointer that the driver can freely use.

▶ It’s often used to link back the device to the higher-level structure from the
framework.

▶ It allows, for example, from the struct platform_device structure, to find the
structure describing the logical device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/220

https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/platform_device

Link Between Structures 2/4

static int serial_imx_probe(struct platform_device *pdev)
{

struct imx_port *sport;
[...]
/* setup the link between uart_port and the struct
* device inside the platform_device */
sport->port.dev = &pdev->dev;
[...]
/* setup the link between the struct device inside
* the platform device to the imx_port structure */
platform_set_drvdata(pdev, sport);
[...]
uart_add_one_port(&imx_reg, &sport->port);

}

static int serial_imx_remove(struct platform_device *pdev)
{

/* retrieve the imx_port from the platform_device */
struct imx_port *sport = platform_get_drvdata(pdev);
[...]
uart_remove_one_port(&imx_reg, &sport->port);
[...]

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/220

Link Between Structures 3/4

static int ds1305_probe(struct spi_device *spi)
{

struct ds1305 *ds1305;

[...]

/* set up driver data */
ds1305 = devm_kzalloc(&spi->dev, sizeof(*ds1305), GFP_KERNEL);
if (!ds1305)

return -ENOMEM;
ds1305->spi = spi;
spi_set_drvdata(spi, ds1305);

[...]

/* register RTC ... from here on, ds1305->ctrl needs locking */
ds1305->rtc = devm_rtc_device_register(&spi->dev, "ds1305",

&ds1305_ops, THIS_MODULE);

[...]
}

static int ds1305_remove(struct spi_device *spi)
{

struct ds1305 *ds1305 = spi_get_drvdata(spi);

[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/220

Link Between Structures 4/4
static int rtl8150_probe(struct usb_interface *intf,

const struct usb_device_id *id)
{

struct usb_device *udev = interface_to_usbdev(intf);
rtl8150_t *dev;
struct net_device *netdev;

netdev = alloc_etherdev(sizeof(rtl8150_t));
dev = netdev_priv(netdev);

[...]

dev->udev = udev;
dev->netdev = netdev;

[...]

usb_set_intfdata(intf, dev);
SET_NETDEV_DEV(netdev, &intf->dev);

[...]
}

static void rtl8150_disconnect(struct usb_interface *intf)
{

rtl8150_t *dev = usb_get_intfdata(intf);

[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 213/220

Example

drivers/rtc/rtc-abx80x.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 214/220

Captronic

Board bringup tips
Bootlin
info@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/220

Useful tips

▶ Use tftp
▶ reduces the test cycle
▶ requires Ethernet support in u-boot, it can be worth it to use an USB to Ethernet

dongle.
▶ Use an initramfs

▶ the root filesystem then reside in memory
▶ it is loaded alongside the kernel by the bootloader
▶ allows to boot Linux and test devices before getting proper storage support.

▶ Use NFS once networking is available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/220

initramfs embedded in the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/220

initramfs embedded in the kernel

▶ The contents of an initramfs are defined at the kernel configuration level, with the
CONFIG_INITRAMFS_SOURCE option
▶ Can be the path to a directory containing the root filesystem contents
▶ Can be the path to a cpio archive generated by your buildsystem
▶ Can be a text file describing the contents of the initramfs

(see documentation for details)
▶ The kernel build process will automatically take the contents of the

CONFIG_INITRAMFS_SOURCE option and integrate the root filesystem into the
kernel image

▶ Details (in kernel sources):
Documentation/filesystems/ramfs-rootfs-initramfs.txt
Documentation/early-userspace/README

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/220

https://kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
https://kernel.org/doc/Documentation/early-userspace/README

standalone initramfs

▶ Use a cpio archive build using a buildsystem
▶ Load it from storage or network, like the kernel
▶ Pass the address from the boootloader to the kernel. For example using u-boot:

bootz 0x22000000 0x24000000 0x21000000

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/220

Useful tools

▶ devmem - allows to read/write memory, in particular SoC registers
▶ i2c-tools - I2C utilities to probe, read and write I2C devices
▶ evtest - input devices debugging
▶ alsa-utils - sound utilities
▶ tslib - Touchscreen utilities, calibration and debugging
▶ debugfs - sudo mount -t debugfs none /sys/kernel/debug

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 220/220

	Porting Linux on an ARM board
	Course content
	ARM Ecosystem
	ARM SoCs

	Choices
	Hardware
	Software

	Bootloaders
	Boot Sequence
	Porting the Bootloader
	Bootloader selection
	Example: at91bootstrap
	The U-boot bootloader
	Porting u-boot

	Linux kernel
	Linux versioning scheme and development process
	Porting

	Board support
	Platform drivers
	Device Tree

	Linux device and driver model
	Introduction
	Example of the USB bus

	Introduction to the I2C subsystem
	Kernel frameworks for device drivers
	User space vision of devices
	Character drivers
	The concept of kernel frameworks

	Board bringup tips

