
Embedded Linux Conference 2014

Update on boot time
reduction techniques,
with figures

Michael Opdenacker
Bootlin
michael.opdenacker@bootlin.com

Clipart: http://openclipart.org/detail/46075/stop-watch-by-klaasvangend

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/60

http://openclipart.org/detail/46075/stop-watch-by-klaasvangend

Michael Opdenacker

I CEO and Embedded Linux engineer at Bootlin
I Embedded Linux development: kernel and driver

development, system integration, boot time and power
consumption optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://bootlin.com

I Conducted several boot time reduction projects,
and preparing a workshop on the topic.

I Living in Orange, south of France.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/60

http://bootlin.com

About this presentation

I It is based on our new Linux boot time training materials:
http://bootlin.com/doc/training/boot-time.

I That’s where you will find extensive details about Linux boot
time reduction methodology and resources.

I Here, we are focusing on
I New resources
I Techniques that we hadn’t documented yet,

and that we used in recent projects.
I Benchmarks made recently
I Details that you may have missed

I Thanks to
I Alexandre Belloni, co-author of this document.
I Atmel Corporation, for funding the development of the first

version of these materials, and for providing boards.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/60

http://bootlin.com/doc/training/boot-time

Why reduce boot time?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/60

To make a fortune

I Hi California startup creators!
I Here is an opportunity to make millions and change people’s

lives:
I During the BA flight to San Franciso yesterday, they had to

reboot the ”Highlife Entertainment System”. The lady warned
that it could take up to 20 minutes.

I It took 16 minutes to start showing ”System being reset,
please wait”.

I It was up and running in about 18 minutes.
I The lady warned: ”Please don’t touch the screen during the

reboot process.”

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/60

Because you don’t want to let...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/60

Because you don’t want to let...

Chuck Norris reduce boot time for you!

Image credits: http://commons.wikimedia.org/wiki/File:Guns_%26_Ammo_4.jpg

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/60

http://commons.wikimedia.org/wiki/File:Guns_%26_Ammo_4.jpg

Boot time reduction methodology

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/60

Boot time components

Generic boot sequence

We are focusing on reducing cold boot time, from power on to the
critical application.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/60

What to optimize first

Start by optimizing the last steps of the boot process!

I Don’t start by optimizing things that will reduce your ability
to make measurements and implement other optimizations.

I Start by optimizing your applications and startup scripts first.

I You can then simplify BusyBox, reducing the number of
available commands.

I The next thing to do is simplify and optimize the kernel. This
will make you lose debugging and development capabilities,
but this is fine as userspace has already been simplified.

I The last thing to do is implement bootloader optimizations,
when kernel optimizations are over and when the kernel
command line is frozen.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/60

Measuring

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/60

grabserial

I From Tim Bird: http://elinux.org/Grabserial (Hi Tim!)

I A Python script to add timestamps to messages coming from
a serial console.

I Key advantage: starts counting very early (bootstrap and
bootloader).

I Another advantage: no overhead on the target, because run
on the host machine.

I Drawbacks: may not be precise enough.
Can’t measure power-up time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/60

http://elinux.org/Grabserial

Using grabserial

Caution: grabserial shows the arrival time of the first character of a

line. This doesn’t mean that the entire line was received at that time.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/60

Filesystem optimizations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/60

Filesystem impact on performance

Tuning the filesystem is usually one of the first things we work on
in boot time projects.

I Different filesystems can have different initialization and
mount times. In particular, the type of filesystem for the root
filesystem directly impacts boot time.

I Different filesystems can exhibit different read, write and
access time performance, according to the type of filesystem
activity and to the type of files in the system.

I Fortunately, changing filesystem types is quite cheap, and
completely transparent for applications. Just try several
filesystem options, as see which one works best for you!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/60

Block filesystems

For block storage (media cards, eMMC...)

I ext4: best for rather big partitions, good read and write
performance.

I xfs, jfs, reiserfs: can be good in some read or write scenarii as
well.

I btrfs, f2fs: can achieve best read and write performance,
taking advantage of the characteristics of flash-based block
devices.

I SquashFS: best mount time and read performance, for
read-only partitions. Great for root filesystems which can be
read-only.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/60

Block filesystem boot benchmarks

Measured on the Atmel SAMA5D3 Xplained board (ARM),
Linux 3.10

ext3 ext4 btrfs f2fs

Start init 7.878 s 8.039s 7.907s 8.817s

Note that the rootfstype kernel command line option also helps.
It saves 10 ms for ext3 on the same board and kernel (can be
even worse if the static kernel supports more filesystems).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/60

Flash filesystems

For raw flash storage

I JFFS2: bad read, write and mount performance. Needs
CONFIG_JFFS2_SUMMARY to avoid huge mount time.

I YAFFS2: good read, write and mount performance, but no
compression. Not in mainline.

I UBIFS: good read and write performance. Good mount
performance, but requires UBI Fastmap (need Linux 3.7 or
later).

I See our flash filesystem benchmarks:
http://elinux.org/Flash_Filesystem_Benchmarks.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/60

http://elinux.org/Flash_Filesystem_Benchmarks

Using UBI Fastmap

I Compile your kernel with CONFIG_UBI_FASTMAP

I Boot your system at least once with the
ubi.fm_autoconvert=1 kernel parameter.

I Reboot your system in a clean way

I You can now remove ubi.fm_autoconvert=1

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/60

UBI Fastmap benchmark

I Measured on the Atmel SAMA5D3 Xplained board (ARM),
Linux 3.10

I UBI space: 216 MB

I Root filesystem: 80 MB used (Yocto)

I Average results:

Attach time Diff Total time

Without UBI Fastmap 968 ms
With UBI Fastmap 238 ms -731 ms -665 ms

I Expect to save more with bigger UBI spaces!

Note: total boot time reduction a bit lower probably because of
other kernel threads executing during the attach process.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/60

ubiblock + SquashFS

For raw flash storage

I ubiblock: read-only block device on top of UBI
(CONFIG_MTD_UBI_BLOCK). Available in Linux 3.15
(developed on his spare time by Ezequiel Garcia, a Bootlin
contractor).

I Allows to put SquashFS on a UBI volume.

I Expecting great boot time and read performance. Great for
read-only root filesystems.

I Benchmarks not available yet.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/60

Init scripts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/60

Measuring - bootchart

If you want to have a more detailed look at the userland boot
sequence than with grabserial, you can use bootchart.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/60

Measuring - bootchart

I You can use bootchartd from busybox

(CONFIG_BOOTCHARTD=y)

I Boot your board passing init=/sbin/bootchartd on your
kernel command line

I Copy /var/log/bootlog.tgz from your target to your host

I Generate the timechart:

cd bootchart-<version>

java -jar bootchart.jar bootlog.tgz

bootchart is available at http://www.bootchart.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/60

http://www.bootchart.org

Measuring - systemd

If you are using systemd as your init program, you can use
systemd-analyze. See http://www.freedesktop.org/

software/systemd/man/systemd-analyze.html.

$ systemd-analyze blame

6207ms udev-settle.service

735ms NetworkManager.service

642ms avahi-daemon.service

600ms abrtd.service

517ms rtkit-daemon.service

396ms dbus.service

390ms rpcidmapd.service

346ms systemd-tmpfiles-setup.service

316ms cups.service

310ms console-kit-log-system-start.service

309ms libvirtd.service

303ms rpcbind.service

298ms ksmtuned.service

281ms rpcgssd.service

277ms sshd.service

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/60

http://www.freedesktop.org/software/systemd/man/systemd-analyze.html
http://www.freedesktop.org/software/systemd/man/systemd-analyze.html

Optimizing init scripts

I Start all your services directly from a single startup script (e.g.
/etc/init.d/rcS). This eliminates multiple calls to
/bin/sh.

I If you need udev to manage hotplug events, replace udev

with BusyBox mdev. It is not running as a daemon. It will
only be run when hotplug events happen.

I If you just need udev to create device files, remove it and use
devtmpfs (CONFIG_DEVTMPFS) instead, automatically
managed by the kernel, and cheaper.

I Results: Atmel SAMA5D3x evaluation kit, video player demo:
1.015 s saved by replacing udev by devtmpfs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/60

Reduce forking (1)

I fork/exec system calls are very expensive. Because of this,
calls to executables from shells are slow.

I Even an echo in a BusyBox shell results in a fork syscall!

I Select Shells -> Standalone shell in BusyBox
configuration to make the shell call applets whenever possible.

I Pipes and back-quotes are also implemented by fork/exec.
You can reduce their usage in scripts. Example:

cat /proc/cpuinfo | grep model

Replace it with:

grep model /proc/cpuinfo

See http://elinux.org/Optimize_RC_Scripts
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/60

http://elinux.org/Optimize_RC_Scripts

Reduce forking (2)

Replaced:

if [$(expr match "$(cat /proc/cmdline)" '.* debug.*')\

-ne 0 -o -f /root/debug]; then

DEBUG=1

By a much cheaper command running only one process:

res=`grep " debug" /proc/cmdline`

if ["$res" -o -f /root/debug]; then

DEBUG=1

This only optimization allowed to save 87 ms on an ARM
AT91SAM9263 system (200 MHz)!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/60

Do not compress your initramfs (1)

I If you ship your initramfs inside a compressed kernel image,
don’t compress it
(enable CONFIG_INITRAMFS_COMPRESSION_NONE).

I Otherwise, your initramfs data will be compressed twice, and
the kernel will be slightly bigger and will take a little more
time to uncompress.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/60

Do not compress your initramfs (2)

Tests on Linux 3.13-rc4, measuring the penalty of having a gzip

compressed initramfs in a gzip compressed kernel.

Beagle Bone Black (ARM, TI AM3359, 1 GHz)
Mode Size Copy Uncompress Total Diff
No initramfs compression 4308200 451 ms 945 ms 5.516 s
Initramfs compression 4309112 455 ms 947 ms 5.527 s + 11 ms

CALAO USB-A9263 (ARM, Atmel AT91SAM9263, 200 MHz)
Mode Size Copy Uncompress Total Diff
No initramfs compression 3016192 4.1047 s 1.737 s 8.795 s
Initramfs compression 3016928 4.1050 s 1.760 s 8.813 s + 18 ms

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/60

Quick splashscreen display (1)

Often the first sign of life that you are showing!

I You could use the fbv program
(http://freecode.com/projects/fbv)
to display your splashscreen.

I On armel, you can just use our statically compiled binary:
http://git.bootlin.com/users/michael-opdenacker/static-binaries/tree/fbv

I However, this is slow:
878 ms on an Atmel AT91SAM9263 system!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/60

http://freecode.com/projects/fbv
http://git.bootlin.com/users/michael-opdenacker/static-binaries/tree/fbv

Quick splashscreen display (2)

I To do it faster, you can dump the framebuffer contents:

fbv -d 1 /root/logo.bmp

cp /dev/fb0 /root/logo.fb

lzop -9 /root/logo.fb

I And then copy it back as early as possible in an initramfs:

lzopcat /root/logo.fb.lzo > /dev/fb0

Results on an Atmel AT91SAM9263 system:
fbv plain copy (dd) lzopcat

Time 878 ms 54 ms 52.5 ms

http://bootlin.com/blog/super-fast-linux-splashscreen/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/60

http://bootlin.com/blog/super-fast-linux-splashscreen/

Applications

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/60

Tracing applications

You need ways of tracing your application,
and understand where time is spent:

I strace

I oprofile

I perf

See usage details on our slides:
http://bootlin.com/doc/training/boot-time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/60

http://bootlin.com/doc/training/boot-time

Kernel optimizations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/60

Measure - Kernel initialization functions

To find out which kernel initialization functions are the longest to
execute, add initcall_debug to the kernel command line. Here’s
what you get on the kernel log:

...

[3.750000] calling ov2640_i2c_driver_init+0x0/0x10 @ 1

[3.760000] initcall ov2640_i2c_driver_init+0x0/0x10 returned 0 after 544 usecs

[3.760000] calling at91sam9x5_video_init+0x0/0x14 @ 1

[3.760000] at91sam9x5-video f0030340.lcdheo1: video device registered @ 0xe0d3e340, irq = 24

[3.770000] initcall at91sam9x5_video_init+0x0/0x14 returned 0 after 10388 usecs

[3.770000] calling gspca_init+0x0/0x18 @ 1

[3.770000] gspca_main: v2.14.0 registered

[3.770000] initcall gspca_init+0x0/0x18 returned 0 after 3966 usecs

...

It is probably a good idea to increase the log buffer size with
CONFIG_LOG_BUF_SHIFT in your kernel configuration. You will
also need CONFIG_PRINTK_TIME and CONFIG_KALLSYMS.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/60

Kernel boot graph

With initcall_debug, you can generate a boot graph making it
easy to see which kernel initialization functions take most time to
execute.

I Copy and paste the console output or the output of the dmesg

command to a file (let’s call it boot.log)

I On your workstation, run the scripts/bootgraph.pl script
in the kernel sources:
perl scripts/bootgraph.pl boot.log > boot.svg

I You can now open the boot graph with a vector graphics
editor such as inkscape:

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/60

Using the kernel boot graph (1)

Start working on the functions consuming most time first. For
each function:

I Look for its definition in the kernel source code. You can use
LXR (for example http://lxr.bootlin.com).

I Remove unnecessary functionality:
I Look for kernel parameters in C sources and Makefiles, starting

with CONFIG_. Some settings for such parameters could help
to remove code complexity or remove unnecessary features.

I Find which module (if any) it belongs to. Loading this module
could be deferred.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/60

http://lxr.bootlin.com

Using the kernel boot graph (2)

I Postpone:
I Find which module (if any) the function belongs to. Load this

module later if possible.

I Optimize necessary functionality:
I Look for parameters which could be used to reduce probe

time, looking for the module_param macro.
I Look for delay loops and calls to functions containing delay in

their name, which could take more time than needed. You
could reduce such delays, and see whether the code still works
or not.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/60

Reduce kernel size

To let the kernel load and initialize faster
I Compile everything that is not needed at boot time as a

module
I Results: Atmel SAMA5D3x evaluation kit, video player demo:

950 ms saved by using modules.

I Remove features not needed in your system: features, drivers,
and also debugging functionality.

I Kernel compression: will be done after bootloader
optimizations.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/60

Turning off console output

I Console output is actually taking a lot of time (very slow
device). Probably not needed in production. Disable it by
passing the quiet argument on the kernel command line.

I You will still be able to use dmesg to get the kernel messages.

I Time between starting the kernel and starting the init

program, on Atmel SAMA5D3 Xplained (ARM), Linux 3.10:

Time Diff

Without quiet 2.352 s
With quiet 1.285 s -1.067 s

I Less time will be saved on a reduced kernel, of course.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/60

Preset loops per jiffy

I At each boot, the Linux kernel calibrates a delay loop (for the
udelay function). This measures a number of loops per jiffy
(lpj) value. You just need to measure this once! Find the lpj

value in the kernel boot messages:

Calibrating delay loop... 262.96 BogoMIPS (lpj=1314816)

I Now, you can add lpj=<value> to the kernel command line:

Calibrating delay loop (skipped) preset value.. 262.96 BogoMIPS (lpj=1314816)

I Tests on Atmel SAMA5D3 Xplained (ARM), Linux 3.10:

Time Diff

Without lpj 71 ms
With lpj 8 ms -63 ms

I This calculation was longer before 2.6.39 (about 200 ms).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/60

Bootloader optimizations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/60

U-Boot - Remove unnecessary functionality

Recompile U-Boot to remove features not needed in production

I Disable as many features as possible in
include/configs/<soc>-<board>.h

I Examples: MMC, USB, Ethernet, dhcp, ping, command line
edition, command completion...

I A smaller and simpler U-Boot is faster to load and faster to
initialize.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/60

U-Boot - Remove the boot delay

I Remove the boot delay:
setenv bootdelay 0

I This usually saves several seconds!

I Before you do that, recompile U-Boot with
CONFIG_ZERO_BOOTDELAY_CHECK, documented in
doc/README.autoboot. It allows to stop the autoboot
process by hitting a key even if the boot delay is set to 0.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/60

U-Boot - Simplify scripts

Some boards have over complicated scripts:

bootcmd=run bootf0

bootf0=run ${args0}; setenv bootargs ${bootargs} \

maximasp.kernel=maximasp_nand.0:kernel0; nboot 0x70007fc0 kernel0

Let’s replace this by:

setenv bootargs 'mem=128M console=tty0 consoleblank=0 console=ttyS0,57600 \

mtdparts=maximasp_nand.0:2M(u-boot)ro,512k(env0)ro,512k(env1)ro,\

4M(kernel0),4M(kernel1),5M(kernel2),100M(root0),100M(root1),-(other)\

rw ubi.mtd=root0 root=ubi0:rootfs rootfstype=ubifs earlyprintk debug \

user_debug=28 maximasp.board=EEKv1.3.x \

maximasp.kernel=maximasp_nand.0:kernel0'

setenv bootcmd 'nboot 0x70007fc0 kernel0'

This saved 56 ms on this ARM9 system (400 MHz)!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/60

Bootloader: copy the exact kernel size

I When copying the kernel from flash to RAM, we still see
many systems that copy too many bytes, not taking the exact
kernel size into account.

I In U-Boot, use the nboot command:
nboot ramaddr 0 nandoffset

I U-Boot using the kernel size information stored in the uImage

header to know how many bytes to copy.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/60

U-Boot - Optimize kernel loading

I After copying the kernel uImage to RAM, U-Boot always
moves it to the load address specified in the uImage header.

I A CRC check is also performed.

[16.590578 0.003404] ## Booting kernel from Legacy Image at 21000000 ...
[16.595204 0.004626] Image Name: Linux-3.10.0+
[16.597986 0.002782] Image Type: ARM Linux Kernel Image (uncompressed)
[16.602881 0.004895] Data Size: 3464112 Bytes = 3.3 MiB
[16.606542 0.003661] Load Address: 20008000
[16.608903 0.002361] Entry Point: 20008000
[16.611256 0.002353] Verifying Checksum ... OK
[17.134317 0.523061] ## Flattened Device Tree blob at 22000000
[17.137695 0.003378] Booting using the fdt blob at 0x22000000
[17.141707 0.004012] Loading Kernel Image ... OK
[18.005814 0.864107] Loading Device Tree to 2bb12000, end 2bb1a0b6 ... OK

Kernel CRC check time
Kernel memmove time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/60

U-Boot - Remove unnecessary memmove (1)

I You can make U-Boot skip the memmove operation by directly
loading the uImage at the right address.

I Compute this address:
Addr = Load Address - uImage header size

Addr = Load Address - (size(uImage) - size(zImage))

Addr = 0x20008000 - 0x40 = 0x20007fc0

[16.590927 0.003407] ## Booting kernel from Legacy Image at 20007fc0 ...
[16.595547 0.004620] Image Name: Linux-3.10.0+
[16.598351 0.002804] Image Type: ARM Linux Kernel Image (uncompressed)
[16.603228 0.004877] Data Size: 3464112 Bytes = 3.3 MiB
[16.606907 0.003679] Load Address: 20008000
[16.609256 0.002349] Entry Point: 20008000
[16.611619 0.002363] Verifying Checksum ... OK
[17.135046 0.523427] ## Flattened Device Tree blob at 22000000
[17.138589 0.003543] Booting using the fdt blob at 0x22000000
[17.142575 0.003986] XIP Kernel Image ... OK
[17.156358 0.013783] Loading Device Tree to 2bb12000, end 2bb1a0b6 ... OK

Kernel CRC check time
Kernel memmove time (skipped)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/60

U-Boot - Remove unnecessary memmove (2)

Results on Atmel SAMA5D3 Xplained (ARM), Linux 3.10:

Time Diff

Default 1.433 s
Optimum load address 0.583 s -0.85 s

Measured between Booting kernel and Starting kernel ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/60

U-Boot - Remove kernel CRC check

I Fine in production when you never have data corruption
copying the kernel to RAM.

I Disable CRC checking with a U-boot environment variable:
setenv verify no

Results on Atmel SAMA5D3 Xplained (ARM), Linux 3.10:

Time Diff

With CRC check 583 ms
Without CRC check 60 ms -523 ms

Measured between Booting kernel and Starting kernel ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/60

Further U-Boot optimizations

I Silence U-Boot console output. You will need to compile
U-Boot with CONFIG_SILENT_CONSOLE and
setenv silent yes.
See doc/README.silent for details.

I Ultimate solution: use U-Boot’s Falcon mode.
U-Boot is split in two parts: the SPL (Secondary Program
Loader) and the U-Boot image. U-Boot can then configure
the SPL to load the Linux kernel directly, instead of the
U-Boot image.
See doc/README.falcon for details.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/60

Kernel compression and size optimizations

After optimizing the time to load the kernel in the bootloader, we
are ready to experiment with kernel options impacting size:

I Kernel compression options

I Optimizing kernel code for size

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/60

Kernel compression options

Results on TI AM335x (ARM), 1 GHz, Linux 3.13-rc4
Timestamp gzip lzma xz lzo lz4 uncompressed
Size 4308200 3177528 3021928 4747560 5133224 8991104
Copy 0.451 s 0.332 s 0.315 s 0.499 s 0.526 s 0.914 s
Uncompress 0.945 s 2.329 s 2.056 s 0.861 s 0.851 s 0.687 s
Total 5.516 s 6.066 s 5.678 s 5.759 s 6.017 s 8.683 s

Results on Atmel AT91SAM9263 (ARM), 200 MHz, Linux 3.13-rc4
Timestamp gzip lzma xz lzo lz4 uncompressed
Size 3016192 2270064 2186056 3292528 3541040 5775472
Copy 4.105 s 3.095 s 2.981 s 4.478 s 4.814 7.836 s
Uncompress 1.737 s 8.691 s 6.531 s 1.073 s 1.225 s N/A
Total 8.795 s 14.200 s 11.865 s 8.700 s 9.368 s N/A

Results indeed depend on I/O and CPU performance!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/60

Optimize kernel for size

I CONFIG_CC_OPTIMIZE_FOR_SIZE: possibility to compile the
kernel with gcc -Os instead of gcc -O2.

I Such optimizations give priority to code size at the expense of
code speed.

I Results: the initial boot time is better (smaller size), but the
slower kernel code quickly offsets the benefits. Your system
will run slower!

Results on Atmel SAMA5D3 Xplained (ARM), Linux 3.10, gzip
compression:

Timestamp O2 Os Diff

Starting kernel 4.307 s 4.213 s -94 ms
Starting init 5.593 s 5.549 s -44 ms
Login prompt 21.085 s 22.900 s + 1.815 s

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/60

Replacing U-Boot by Barebox

I We saved time by replacing U-Boot by Barebox.

I Barebox can be made very small too, and loads the Linux
kernel with the CPU caches on. This significantly reduces
kernel decompression time!

I At this stage, we can’t share our benchmarks yet. They are
not fair for U-Boot, as we did optimize Barebox further than
we did with U-Boot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/60

Removing the bootloader (1)

Principle: instead of loading the bootloader and then the kernel,
load the kernel right away!

Using AT91bootstrap to boot the Linux kernel:

http://bootlin.com/blog/starting-linux-directly-from-

at91bootstrap3/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/60

http://bootlin.com/blog/starting-linux-directly-from-at91bootstrap3/
http://bootlin.com/blog/starting-linux-directly-from-at91bootstrap3/

Removing the bootloader (2)

I In our particular case, though, we can see that we are losing
the main advantages of Barebox: it uses the CPU caches
while loading the kernel.

I Skipping the bootloader is not always the best choice!

http://bootlin.com/blog/starting-linux-directly-from-

at91bootstrap3/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/60

http://bootlin.com/blog/starting-linux-directly-from-at91bootstrap3/
http://bootlin.com/blog/starting-linux-directly-from-at91bootstrap3/

Questions?

Michael Opdenacker

michael.opdenacker@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2014/elc/opdenacker-boot-time/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/60

http://bootlin.com/pub/conferences/2014/elc/opdenacker-boot-time/

	Why reduce boot time?

