
FOSDEM 2013

ARM support in the
Linux kernel

Thomas Petazzoni
Bootlin
thomas.petazzoni@bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Thomas Petazzoni

I Embedded Linux engineer and trainer at Bootlin since 2008
I Embedded Linux development: kernel and driver

development, system integration, boot time and power
consumption optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://bootlin.com

I Contributing the kernel support for the new Armada 370
and Armada XP ARM SoCs from Marvell.

I Major contributor to Buildroot, an open-source, simple and
fast embedded Linux build system

I Living in Toulouse, south west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 

http://bootlin.com


Agenda

I Background on the ARM architecture and Linux support

I The problems

I Changes in the ARM kernel support

I Getting the support for a SoC in mainline, story of Armada
370/XP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



From the ARM architecture to a board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



From the ARM architecture to a board, examples

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



Schematic view of a board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



No standardization

I Beyond the ARM core itself, a lot of freedom is left to the
SoC vendor.

I There is no standard for the devices, the management of
clocks, pinmuxing, IRQ controllers, timers, etc.
I Note: some things like IRQ controllers and timers are now

standardized.

I There isn’t a mechanism to enumerate the devices available
inside the SoC. All devices have to be known by the kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



“Old” ARM code organization in the Linux kernel

I arch/arm/
I arch/arm/{kernel,mm,lib,boot}/

The core ARM kernel. Contains the code related to the ARM
core itself (MMU, interrupts, caches, etc.). Relatively small
compared to the SoC-specific code.

I arch/arm/mach-<foo>/
The SoC-specific code, and board-specific code, for a given
SoC family.

I arch/arm/mach-<foo>/board-<bar>.c.
The board-specific code.

I drivers/

The device drivers themselves.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 



Issue #1: too much code, lack of review

I Exploding number of ARM SoC, from different vendors

I The historical maintainer, Russell King, got overflowed by
the amount of code to review.

I Code started to flow directly from sub-architecture
maintainers directly to Linus Torvalds.

I Focus of each sub-architecture teams on their own
problems, no vision of the other sub-architectures.

I Consequences: lot of code duplication, missing common
infrastructures, maintenability problems, etc.

I Linus, March 2011: Gaah. Guys, this whole ARM thing is a
f*cking pain in the ass.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



Issue #2: the need for multiplatform kernel

I On x86 PC, one can build a single kernel image (with many
modules) that boots and work on all PCs

I Good for distributions: they can ship a single kernel image.

I On ARM, it was impossible to build a single kernel that
would boot on systems using different SoCs.

I Issue for distributions: they have to build and maintain a
kernel image almost for each ARM hardware platform they
want to support.

I Need for ARM multiplatform support in the kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



Change #1: arm-soc and maintainers

I A new maintainer team for the
ARM sub-architectures: Arnd
Bergmann (Linaro) and Olof
Johansson (Google)

I All the ARM SoC-specific code
goes through them, in a tree called
arm-soc
I They send the changes accumulated in arm-soc to Linus

Torvalds.

I Those maintainers have a cross-SoC view: detection of things
that should be factorized, consistency accross SoC-specific
code.

I Core ARM changes continue to go through Russell King.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Change #2: Device Tree

I Most devices inside an ARM SoC and on the board cannot be
dynamically enumerated: they have to be statically
described.

I The old way of doing this description was by using C code,
registering platform_device structures for each hardware
device.

I This has been replaced by a hardware description done in
structure separated from the kernel, called the Device Tree.
I Also used on PowerPC, Microblaze, ARM64, Xtensa,

OpenRisc, etc.

I The Device Tree Source, in text format, gets compiled into a
Device Tree Blob, in binary format, thanks to the Device Tree
Compiler.
I Sources are stored in arch/arm/boot/dts

I At boot time, the kernel parses the Device Tree to instantiate
the available devices.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



Change #2: Before the Device Tree...

From arch/arm/mach-at91/at91sam9263_devices.c
static struct resource udc_resources[] = {

[0] = {

.start = AT91SAM9263_BASE_UDP,

.end = AT91SAM9263_BASE_UDP + SZ_16K - 1,

.flags = IORESOURCE_MEM,

},

[1] = {

.start = NR_IRQS_LEGACY + AT91SAM9263_ID_UDP,

.end = NR_IRQS_LEGACY + AT91SAM9263_ID_UDP,

.flags = IORESOURCE_IRQ,

},

};

static struct platform_device at91_udc_device = {

.name = "at91_udc",

.id = -1,

.dev = {

.platform_data = &udc_data,

},

.resource = udc_resources,

.num_resources = ARRAY_SIZE(udc_resources),

};

some_init_code() {

platform_device_register(&at91_udc_device);

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



Change #2: SoC Device Tree example

/include/ "skeleton.dtsi"

/ {

compatible = "brcm,bcm2835";

model = "BCM2835";

interrupt-parent = <&intc>;

chosen {

bootargs = "earlyprintk console=ttyAMA0";

};

soc {

compatible = "simple-bus";

#address-cells = <1>;

#size-cells = <1>;

ranges = <0x7e000000 0x20000000 0x02000000>;

[...]

intc: interrupt-controller {

compatible = "brcm,bcm2835-armctrl-ic";

reg = <0x7e00b200 0x200>;

interrupt-controller;

#interrupt-cells = <2>;

};

uart@20201000 {

compatible = "brcm,bcm2835-pl011", "arm,pl011", "arm,primecell";

reg = <0x7e201000 0x1000>;

interrupts = <2 25>;

clock-frequency = <3000000>;

status = "disabled";

};

};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



Change #2: Board Device Tree example

/dts-v1/;

/memreserve/ 0x0c000000 0x04000000;

/include/ "bcm2835.dtsi"

/ {

compatible = "raspberrypi,model-b", "brcm,bcm2835";

model = "Raspberry Pi Model B";

memory {

reg = <0 0x10000000>;

};

soc {

uart@20201000 {

status = "okay";

};

};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



Change #2: Device Tree inheritance

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 



Change #2: Booting with a Device Tree

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



Change #3: Multiplatform kernel

I Fits the need of distributions willing to build a single kernel
image that works on many ARM platforms.

I The SoC choice now contains a Allow multiple platforms to
be selected option, and all the SoC families that are
compatible with this can be compiled together in the same
kernel.
I There is still a split between ARMv4/ARMv5 on one side, and

ARMv6/ARMv7 on the other side.

I A lot of changes have been done in the ARM kernel to make
this possible: avoid two different platforms from defining the
same symbol, from using the same header names, no more
#ifdef but runtime detection instead.

I The support for all new SoCs must use the multiplatform
mechanism.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



Change #4: Pinctrl subsystem, introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



Change #4: Pinctrl subsystem, old code

I Each ARM sub-architecture had its own pin-muxing code

I The API was specific to each sub-architecture

I A lot of similar functionality implemented in different ways

I The pin-muxing had to be done at the SoC level, and couldn’t
be requested by device drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



Change #4: Pinctrl subsystem, new subsystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 



Change #5: Clocks

I In a System-on-Chip, all peripherals are driven by one or more
clocks.

I Those clocks are organized in a tree, and often are software
configurable.

I Since quite some time, the kernel had a simple API: clk_get,
clk_enable, clk_disable, clk_put that were used by
device drivers.

I Each ARM sub-architecture had its own implementation of
this API.

I Does not work for multiplatform kernels.

I Does not allow code sharing, and common mechanisms.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 



Change #5: Common clock framework

I A proper common clock framework has been added in
kernel 3.4, released in May 2012

I This framework:
I Implements the clk_get, clk_put, clk_prepare,

clk_unprepare, clk_enable, clk_disable, clk_get_rate,
etc. API for usage by device drivers

I Implements some basic clock drivers (fixed rate, gatable,
divider, fixed factor, etc.) and allows the implementation of
custom clock drivers using struct clk_hw and
struct clk_ops

I Allows to declare the available clocks and their association to
devices in the Device Tree (preferred) or statically in the
source code (old method)

I Provides a debugfs representation of the clock tree
I Is implemented in drivers/clk

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



Change #5: Common clock framework architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

 



Change #6: More things in drivers/

I Another goal of the ARM cleanup is to have less code in
arch/arm and create proper drivers and related
infrastructures.

I For example
IRQ controller drivers drivers/irqchip/

Timer drivers drivers/clocksource/

PCI host controller drivers drivers/pci/host/

Clock drivers drivers/clk/

Pinmux drivers drivers/pinctrl/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

 



Armada 370/XP, step 1

Went into Linux 3.6, 10 patches

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

 



Armada 370/XP, step 2

Went into Linux 3.7, 35 patches

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

 



Armada 370/XP, step 3

Went into Linux 3.8, 99 patches

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

 



Armada 370/XP, step 4

Hopefully going in 3.9 :-)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

 



Getting an ARM SoC in mainline

I Throw away the vendor BSP code. Most likely it is
completely crappy. You have to start from scratch.

I Start small, and send code piece by piece. Don’t wait to
have everything fully working.

I Comply with the latest infrastructure changes: Device
Tree, clock framework, pinctrl subsystem. They are
mandatory.

I Read and post to the LAKML, Linux ARM Kernel Mailing
List

I Listen to reviews and comments, and repost updated
versions regularly.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

 



Questions?

Thomas Petazzoni

thomas.petazzoni@bootlin.com

Thanks to Gregory Clement (Bootlin, working with me on Marvell
mainlining), Lior Amsalem and Maen Suleiman (Marvell)

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2013/fosdem/arm-support-kernel/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

http://bootlin.com/pub/conferences/2013/fosdem/arm-support-kernel/

