Buildroot: a nice,
simple and efficient

embedded Linux build -
system pkug@gt

Thomas Petazzoni
Bootlin
thomas.petazzoni@bootlin.com

» Embedded Linux engineer and trainer at Bootlin since 2008

» Embedded Linux development: kernel and driver
development, system integration, boot time and power
consumption optimization, consulting, etc.

> Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

» https://www.bootlin.com

» Major contributor to Buildroot, an open-source, simple and
fast embedded Linux build system

> Speaker at Embedded Linux Conference, Embedded Linux
Conference Europe, FOSDEM, Libre Software Meeting, etc.

» Living in Toulouse, south west of France

https://www.bootlin.com

To create an embedded Linux system, one has multiple choices:
1. Use a pre-built binary distribution such as Debian, Ubuntu
or Fedora

» Quick to set up, but not very flexible: support for only a few
architectures, no flexibility on package configuration, no easy
way to rebuild the entire system automatically.

2. Build all system components manually
» Highly flexible, but painful and inefficient: need to handle
complex cross-compilation issues, understand inter-package
dependencies, not reproducible.
3. Use an automated build system, that builds the entire
system from source
» Automated, flexible, handle most cross-compilation issues
» Examples: Buildroot, OpenWRT, PTXdist, OpenBricks,
OpenEmbedded, Yocto, etc.

> Based on well-known technologies: kconfig for the
configuration interface and language, make for the build logic.
These technologies are familiar to all embedded Linux
developers.

» Very simple to use, and easily hackable code base. The
core infrastructure is a few hundred lines of make code.

> Fast. It does really build only what's necessary. The base
system, composed only of BusyBox, takes less than 3 minutes
to build with an external toolchain.

» Designed for small to medium sized embedded systems.
There is no runtime package management system (dpkg,
rpm). Complete rebuilds are often required. Well-suited for
systems with a limited number of components.

9

Root filesystem generator Distribution generator
Buildroot
L L L L
T T
;_ 1'0 100 1000 Number of software
components
A » < »
Y L) »
No runtime package management needed. Runtime package management needed.
Upgrades are done system-wide. Upgrades are done per-package.
Fixed-functionality systems, like Systems on which functionality needs to be
industrial systems. dynamically added (apps, etc.)

December 2001

Buildroot is created by uClibc developers as a way of building small
embedded Linux systems to test uClibc

Starting around 2005

Buildroot really starts to be used as an embedded Linux build
system for production devices.

The number of developers increases with everybody having
write-access to the repository, and the maintainer is no longer

active. No stable releases, no design.

The code slowly gets crappier over the years.

January 2009

Peter Korsgaard becomes the new maintainer. Start of a new
period for the project:

> Stable releases every three months. First release 2009.02,
2012.08 due at the end of august.

» Huge cleanup effort: code base reduction from 5.2 MB to 2.2
MB, while many packages are added, updated and many new
features are added.

» Increase in the number of contributors and users. Regular
Buildroot Developer Days.

» Linux model: only the maintainer has write-access. Allows to
keep a very good consistency in the design decisions.

Jd
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Number of commits per month

01.01.07 01.01.08 01.01.09

Number of e-mails per day

After three years of major changes in Buildroot, it's
a good time to have a fresh look at it.

Buildroot

root filesystem
image

Makefiles
build
rocedures

Config.in
configuration
options

.config
your configuration

kernel image

bootloader
image(s)

A 4

toolchain

9

$ wget http://buildroot.org/downloads/buildroot-2012.05.tar.bz2
$ tar xjf buildroot-2012.05.tar.bz2
$ cd buildroot-2012.05

$ make [menul|x|nlglconfig

» No need to run as root. Ever.
» No need to symlink /bin/sh to bash

» Very limited set of dependencies: a native compiler, and basic
utilities like awk, bison, patch, gzip, tar, wget, etc.

» Qut-of-tree build is possible using 0=, exactly like the Linux
kernel.

@ Buildroot menuconfig
od)

/home/thomas/projets/buildroot/.config - Buildroot 2012.02-git-00398-ga42ba26 (|

Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> selectes a feature,
while <N> will exclude a feature. Press <Esc><Esc> to exit, <?> for
Help, </> for Search.

Legend: [*] feature is selected

[1 feature is

I Target Architecture (arm) ---

larget Architecture Variant (cortex-A8) --->
farget ABI (EABI) --->

juild options --->

roolchain ---»

ystem configuration --->
ackage Selection for the target
Host utilities --->

ilesystem images --->
iootloaders --->

ernel --->

———n

Load an Alternate Configuration File
ave an Alternate Configuration File

< Exit > < Help >

bootiin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

13/50

Allows you to define:

» The target architecture, i.e ARM, x86, PowerPC, MIPS.
Buildroot supports non-MMU architectures such as Blackfin
or soon Microblaze, thanks to its uClibc support.

> The target architecture variant, such as ARM926 or
Cortex-A8 on ARM. Allows to automatically add the
appropriate -mcpu, -march, -mtune arguments to gcc.

> Target architecture ABI

» The download directory, where tarballs are saved for future
builds. Defaults to $(TOPDIR)/d1l. Can also be overridden
using the BUILDROOT_DL_DIR environment variable.

> The host directory, where all host utilities are installed,
including the toolchain and its sysroot. Defaults to
$(0) /host, but can be changed to generate an SDK in a
different directory.

> The number of jobs. Buildroot build the different
components sequentially, but uses make -j to compile the
individual components.

» Use of ccache

» Other build options: build with debugging symbols, install
documentation on target, install development files on target,
etc.

Buildroot provides three toolchain back-ends:

» An internal Buildroot toolchain back-end, which has been
available since Buildroot's creation. Buildroot will directly
build a uClibc toolchain and use it for cross-compiling all
packages.

> An external toolchain back-end, which allows use existing
pre-built uClibc, glibc or eglibc toolchains, such as Sourcery
CodeBench toolchains, Linaro toolchains, or toolchains that
have previously been built using Crosstool-NG or Buildroot.
Using an external toolchain removes the toolchain build time.
» A Crosstool-NG back-end, which tells Buildroot to build a
cross-compiling toolchain with Crosstool-NG. This allows to
benefit from all Crosstool-NG advantages, such as support for
glibc or eglibc.
— Buildroot often had the reputation of being limited to uClibc,
but it is no longer the case, for several years now.
*bootin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1550

Allows the definition of various system-wide parameters:
» The /dev management solution:
P static, where device nodes are created statically at build time
according to a device table
» devtmpfs
» devtmpfs + BusyBox' mdev
» devtmpfs + udev

» The serial port for the console

» Location of a post-build script that gets run after all packages
have been built, but before the filesystem images are created.

» Some various other parameters (hostname, etc.)

Packages

/home/thomas/projets/buildroot/.config - Buildroot 2012.02-git-00398-ga42ba26 Config

Arrow keys navigate the menu. <Enter> selects submenus --->.
letters are hotkeys. Pressing <Y> selectes a feature, while <N> will
exclude a feature. Press <Esc><Esc> to exit, <?> for Help, </> for Search.

Legend: [*] feature is selected [] feature is excluded

n BusyBox

ustomize

udio and video libraries and applications --->
ompressors and decompressors --->

ebugging, profiling and benchmark --->
evelopment tools --->

ames --->

raphic libraries and applications (graphic/text)
Hardware handling --->

nterpreter languages and scripting --->
ibraries --->
Miscellaneous --->
Networking applications --->

ackage managers --->

eal-Time --->

hell and utilities --->

ystem tools --->

ext editors and viewers --->

< Exit > < Help >

bootiin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

18/50

A selection of more than 750 open-source components typically
used in embedded systems:

» Audio and multimedia: gstreamer, mplayer, pulseaudio, many
codec libraries, alsa, etc.

» Graphics: full X.org stack, Gtk, Qt, EFL, DirectFB, SDL, etc.

> System tools, filesystem utilities, hardware utilities and
libraries

» Networking applications: dropbear, avahi, bluez, samba, pppd,
connman, etc.

» Development, debugging: oprofile, Ittng, etc.
» Interpreters: Python, PHP, Ruby, Perl

Buildroot can generate filesystem images in multiple formats:
> tar

cpio

ext2

jffs2

ubi/ubifs

cramfs

cloop

1509660

squashfs

vVvyVvyVvvVvyVvYVYyYVYyy

initramfs built into the kernel

» Automates the Linux kernel build process. Builds the kernel
using a defconfig or a specified configuration file. Takes care
of installing the kernel modules into the root filesystem. It is
also capable of patching the kernel for real-time extensions
like Xenomai or RTAI.

» Includes support for the most popular bootloaders: U-Boot,
Barebox, Grub, syslinux, but also architecture-specific
bootloaders: AT91Bootstrap, X-Loader, Ipc32xxcdl, etc.

Once the configuration is defined and saved in .config, the
compilation is triggered using:

$ make

$ 1s output/images/
dataflash_at91sam9m10g45ek.bin rootfs.tar

rootfs.ubi rootfs.ubifs
u-boot.bin u-boot-env.bin
ulmage

Buildroot will automatically download, extract, patch, configure,
compile and install the selected components, taking care of
following the necessary dependencies.

In the output directory (by default, output/, but can be changed
using out-of-tree build), Buildroot generates:

» build, with one sub-directory per component built. This is
where Buildroot extracts and builds the various components
of the system.

> host, with a typical Unix organization, in which Buildroot
installs all utilities compiled for the host, including the
cross-compiler. It also contains, in
host/usr/<tuple>/sysroot the toolchain sysroot, with all
the headers and libraries built for the target.

> images, with the final images (root filesystem, kernel,
bootloaders)

» stamps, a few stamp files used internally by Buildroot to keep
track of what has been built

> target, the target root filesystem (but with an empty /dev
and invalid permissions, those are fixed using fakeroot in the
final image)

» toolchain, where the different toolchain components are built
in the case of the internal back-end. Otherwise unused.

» Building a simple ARM system with simply BusyBox, using an
already extracted CodeSourcery glibc toolchain, and
generating a .tar filesystem image takes 39 seconds. The
target system size is 4.2 MB.

» Building a simple ARM system with simply BusyBox, using a
tarball CodeSourcery glibc toolchain, and generating an

UBIFS filesystem image takes 2 minutes 57 seconds.
Identical system size.

» Building the same simple ARM system, using an internal
Buildroot toolchain (with largefile, locales, C++ support),

takes 9 minutes 59 seconds. The target system size is 2.2
MB.

Note: durations measured with the real output of the time command. Download
times are excluded.

» The

device is an ARM AT91-based platform with GPS, RFID

readers, GSM modem, Ethernet and USB.

» The

VVYVVYYVYYVYY

>
>

Buildroot configuration:

CodeSourcery ARM glibc toolchain

Linux kernel

BusyBox for the basic system

Dropbear for SSH access (debugging)

Qt with only QtCore, QtNetwork and QtXml, no GUI
QExtSerialPort

zlib, libxml2, logrotate, pppd, strace, a special RFID library,
popt library

The Qt application

JFFS2 root filesystem

» Filesystem size: 11 MB. Could be reduced by using uClibc.

» Build time: 10 minutes on a fast build server (quad-core 7,
12 GB of RAM)

> An x86-based system, with an OpenGL application for vehicle
navigation system.

>

| 4
| 4
| 4
>

vy

>

External glibc toolchain generated with crosstool-NG

The Grub bootloader

Linux kernel, of course

BusyBox

A large part of the X.org stack (the server, a few drivers, and
some client libraries), including libdrm, Mesa

The fglrx ATI proprietary OpenGL driver

ALSA utils, ALSA library, VAL library, Flashrom, LM Sensors,
Lua, Dropbear, Ethtool

The OpenGL application and its data

» Filesystem size: 95 MB, with 10 MB of application (binary +
data) and 45 MB (!) of fglrx driver.

» Build time: 27 minutes on a fast build server (quad-core 7,
12 GB of RAM)

xlib_libXrandr

— — =
host-libxml-parser-per| host-python host-libxmi2
- 1
—= host-module-init-tools hoﬂ.exm\
~ T

Just a small part of it...

Buildroot starts by:

» Creating all output directories

» Copying the target root filesystem skeleton, located in
fs/skeleton in the source tree, into the target/ output
directory. This skeleton contains the basic directories and
configuration files for the target system.
One can specify a different skeleton through a configuration
option.

Buildroot continues by building the toolchain:

» For internal toolchains, it extracts and builds the different
elements (binutils, gcc, uClibe, etc.) in the toolchain
directory, with stamp files to keep track of what has already
been done. It installs the results in the host/usr/ directory
(for binaries) and host/usr/<tuple>/sysroot directory (for
libraries and headers)

» For external toolchains, Buildroot copies the original
toolchain sysroot to the host/usr/<tuple>/sysroot
directory and creates wrappers for the toolchain binaries in
host/usr/bin

» For Crosstool-NG toolchains, Buildroot installs
Crosstool-NG in host/, and then uses it to generate a
toolchain with binaries in host/usr/bin and sysroot in
host/usr/<tuple>/sysroot.

» Buildroot continues by building the packages. Packages
encapsulate the build procedure of userspace libraries and
programs but also the Linux kernel or bootloaders build
procedures.

» The build method of each package is described using an
infrastructure: AUTOTARGETS for autotools-based
packages, CMAKETARGETS for CMake-based packages
and GENTARGETS for other packages.

» Buildroot follows the dependencies expressed in the package
recipes, and triggers the configuration, compilation and
installation steps as described in the recipes.

> ...

» The package source code is extracted in
build/<pkg>-<version>/, and stamp files are created after
each step to let Buildroot know of what has already been
done. Commands like make <foo>-reconfigure and
make <foo>-rebuild allow to restart the build of a package
if needed.

» Host packages are installed in host/, while target packages
are installed in target/ (usually stripped, no headers).
Target libraries are also installed in
host/usr/<tuple>/sysroot so that they are found by the
cross-compiler (unstripped, with headers and static libraries)

Finally, Buildroot generates the root filesystem image(s):
> It uses fakeroot to generate this root filesystem image without
having to be root
> A makedevs utility is used to adjust the file permissions and
ownership, and to create device files if a static /dev was
chosen.

» board, board-specific
patches and configuration
files

» boot, bootloaders recipes
» configs, default
configuration files for various

platforms. Same concept as
kernel defconfigs

v

docs

» fs, recipes for generating
root filesystem images in
various formats, and also
root filesystem skeleton in
fs/skeleton

package, all user-space
packages (for the host and
the target)

support, misc scripts and
tools

target, legacy, almost
empty directory

toolchain, toolchain
handling code (build recipes
for internal and
Crosstool-NG back-ends,
integration recipes for
external toolchains)

» Each package has its own directory in package/. Let's say
package/foo for our package.

» A package/foo/Config.in file needs to be created to
declare at least one configuration option for the package. The
syntax is identical to the kconfig syntax:

config BR2_PACKAGE_F00

bool "foo"
select BR2_PACKAGE_ZLIB
help

This is package foo

http://foo-project.org

» This package/foo/Config.in file must be included from
package/Config.in:

source "package/foo/Config.in" J

» The recipe must be written in the package/foo/foo.mk file
» It consists of
» Variable declarations to define the package location, version,
and the steps to be done to build the package.
» A call to one of the AUTOTARGETS, GENTARGETS or
CMAKETARGETS macro to expand the package recipe

Basic recipe for autotools based package

FOO_VERSION = 1.3

FOO_SOURCE = foo-$(FOO_VERSION) .tar.bz2
FOO_SITE = http://foo-project.org/downloads
FOO_DEPENDENCIES = zlib host-pkg-config

$(eval $(call AUTOTARGETS))

The AUTOTARGETS infrastructure:
» knows how to configure, build and install the package

» handles the common cross-compilation issues with autotools based
packages (libtool problems, passing the right arguments and
environment variables to ./configure, etc.).

From Git
FOO_VERSION = this-branch
FOO_SITE = git://git.foo-project.org/foo.git

From Subversion

FOO_VERSION = 12345

FOO_SITE = http://foo-project.org/svn/foo/trunk/
FOO_SITE_METHOD = svn

From a local directory

FOO_SITE = /home/thomas/projects/foo/
FOO_SITE_METHOD = local

And also from Mercurial, from Bazaar, etc.

9

For packages that use a special build system (not autotools, not

CMake).

FOO_VERSION = 1.3

FOO_SOURCE = foo-$(FOO_VERSION).tar.bz2
FOO_SITE = http://foo-project.org/downloads
FOO_DEPENDENCIES = zlib

define FOO_CONFIGURE_CMDS
echo "HAS_ZLIB=YES" >> $(@D)/config
endef

define FOO_BUILD_CMDS
$(MAKE) -C $(@D) \
CC="$ (TARGET_CC)" CFLAGS="$(TARGET_CFLAGS)" \
all
endef

define FOO_INSTALL_TARGET_CMDS
$(INSTALL) -D -m 0755 $(@D)/foo $(TARGET_DIR)/usr/bin
endef

$(eval $(call GENTARGETS))

» Patches in the package/foo directory are automatically
applied if they are named <number>-<something>.patch or
<version>/<number>-<something>.patch

» Need to set FOO_INSTALL_STAGING = YES for packages
that install libraries, so that headers and static library are
installed in the toolchain sysroot

» Can add hooks to execute custom actions before/after the
different steps, especially for AUTOTARGETS packages

» Can set FOO_AUTORECONF = YES for autotools-based package
to autoreconfigure them, useful when the configure.ac or
Makefile.am files are patched.

» The documentation contains tutorials and a reference with
all details about the package infrastructure
docs/manual /manual . pdf

> After a configuration modification, Buildroot does not even
try to apply the configuration changes during the next
make invocation.

» Tracking the consequences of configuration modifications is
very complicated (when a toolchain setting is changed
everything need to be rebuilt; when a library is removed, all
reverse dependencies needs to be rebuilt)

» Buildroot remains simple: it simply executes the build
procedure of the selected packages, and does not try to
track the files installed by each package.

» Relies on the user’s knowledge about the configuration
change to know what needs to be done. Since building is very
fast, full rebuilds are not problematic.

» This focus on simplicity is a very strong design decision of
Buildroot. Some features, such as binary packages generation,
are not implemented in order to keep the build system simple.

Buildroot offers multiple mechanisms to handle all the
particularities of a given project:

» A board/<company>/<project> directory to store all
project-specific files: kernel and bootloaders patches, scripts
and configuration files, etc.

> Storage of the project configuration as a minimal defconfig
file in the configs/ directory.

> A hookable post-build script that gets called after all
packages are installed but before the root filesystem image is
created.

» The possibility of easily adding packages for custom
software, including software coming from local repositories or
directories.

See the slides of the Using Buildroot for real projects talk given at
the Embedded Linux Conference Europe 2011.

» Buildroot provides more than 2000 config options, which
creates a huge number of possible configurations.

» We are running 24/24 random configuration builds on 4
different machines, targeting 404 combinations of
architectures/toolchains configurations.

» Results visible live at http://autobuild.buildroot.org

» Daily summary sent to the Buildroot mailing list

Date

Status Commit ID

Buildroot build tests

Submitter

Failure reason

2012-07-07 14:35:31

2012-07-07 14:25:14

2012-07-07 14:08:40

2012-07-07 13:59:31

OK

OK

OK

OK

37aa01f2

37aa01f2

37aa01f2

37aa01f2

Thomas Petazzoni

(Free Electrons build server) none
Peter (ggl;ﬁaard 686 none
Peter (gI;n{sgaard powerpc none

Thomas Petazzoni

(Free Electrons build server) none

dir, end log, full log, config, defeonfig
dir, end log, full log, config, defconfig
dir, end log, full log, config, defeonfig

dir, end log, full log, config, defeonfig

2012-07-07 13:20:53

2012-07-07 13:14:37

2012-07-07 13:07:48

2012-07-07 13:07:32

2012-07-07 12:53:53

2012-07-07 12:42:59

OK

OK

OK

37aa01f2
37aa01f2
37aa01f2
37aa01f2
37aa01f2

37aa01f2

e e o) none
Peter(gKmn{‘s)gaard powerpe none
Peter@gﬁﬁaard 1686 none
Peter Korsgaard arm none

mi";’h";?i,ﬂifﬁfm [IOWETTE Tone

Thomas Petazzoni mips none

(Free Electrons build server)

dir, end log, full log, config, defconfig
dir, end log, full log, config, defeonfig
dir, end log, full log, config, defeonfig
dir, end log, full log, config, defeonfig
dir, end log, full log, config, defconfig
dir, end log, full log, config, defconfig

» Implement a mechanism for automatic generation of a
licensing report, detailing all components used in the system
and their license

» Add more packages for SoC-specific software (hardware
codecs, 3D acceleration, special bootloaders)

» Improve the documentation with more tutorials

» Finalize the cleanup effort in the remaining areas

» Website: http://buildroot.org

» Mailing-list: buildroot@uclibc.org
http://buildroot.org/lists.html

» [IRC channel: #buildroot on Freenode
» Bug tracker: https://bugs.uclibc.org

http://buildroot.org
http://buildroot.org/lists.html
https://bugs.uclibc.org

» Discover Buildroot by practice during this
Libre Software Meeting!

» Half-day tutorial organized on
Thursday 12th July, from 14:00 to
17:00, in room 2150

» Creating a first project configuration
(BusyBox+kernel), creating additional
packages, and more if time permits.

» Tutorial takes place on IGEPv2 boards,
based on OMAP3 ARM processors

» Participants need to come with their own
laptop, equipped with any reasonably
recent GNU/Linux distribution.

» Nice : uses well-known technologies and languages, kconfig
and make. Active community.

» Simple : only a few hundreds lines of code to understand the
core infrastructure. Easy to get started, and easy to fully
understand the internal mechanisms.

> Efficient : very reasonable build times, only what's necessary
gets built.

Of course, Buildroot is not suitable for all embedded Linux
projects, but it is well adapted to industrial-like projects which have
a limited number of software components and fixed functionality.

Questions?

Thomas Petazzoni

thomas.petazzoni@bootlin.com

S||des under CC— BY—SA 30 PDF and sources will be available on

https://bootlin.com/pub/conferences/2012/1sm/

https://bootlin.com/pub/conferences/2012/lsm/

