
Libre Software Meeting 2012

Buildroot Workshop

Thomas Petazzoni
Bootlin
thomas.petazzoni@bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/43

Thomas Petazzoni

I Embedded Linux engineer and trainer at Bootlin since 2008
I Embedded Linux development: kernel and driver development,

system integration, boot time and power consumption
optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://www.bootlin.com

I Major contributor to Buildroot, an open-source, simple and
fast embedded Linux build system

I Speaker at Embedded Linux Conference, Embedded Linux
Conference Europe, FOSDEM, Libre Software Meeting, etc.

I Living in Toulouse, south west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/43

http://www.bootlin.com

Agenda

I Install necessary tools and packages

I Get Buildroot

I Build a minimal system, and boot it on the target

I Customize the system

I Create new packages, one library, one application

I Generate an UBIFS image, and flash the system in NAND
flash

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/43

Workshop elements

You will find the slides and other files needed for this workshop at:

http://bootlin.com/~thomas/lsm-tutorial/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/43

http://bootlin.com/~thomas/lsm-tutorial/

Our target platform

I IGEPv2 from ISEE

I DM3730 (ARM
OMAP3) at 1 GHz

I 512 MB of RAM, 512
MB of flash

I microSD, HDMI,
audio, Ethernet,
Bluetooth, Wifi

http://igep.es/products/processor-boards/igepv2-board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/43

http://igep.es/products/processor-boards/igepv2-board

Tools to interact with the target

We’ll need:

I A terminal emulator program to interact with the target
over the serial port

apt-get install picocom

I A TFTP server to transfer the kernel image to the target

apt-get install tftpd-hpa

I A NFS server to mount the root filesystem over the network

apt-get install nfs-kernel-server

Of course, adapt those instructions if you’re not using a
Debian-derived distribution.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/43

Buildroot dependencies

Even though Buildroot builds most of the tools it needs, it still
requires a few dependencies on the build system:

apt-get install \

build-essential gawk bison flex gettext \

texinfo patch gzip bzip2 perl tar wget \

cpio python unzip rsync

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/43

Getting Buildroot

I Tarballs are available for major versions, but since one
generally needs to make changes to Buildroot, using Git is
recommended

I Clone the repository

git clone git://git.busybox.net/buildroot

I Create a branch starting from a stable release

git branch workshop 2012.05

I Switch to this branch

git checkout workshop

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/43

Initial configuration

Run make menuconfig

I Target architecture: ARM Little Endian

I Target architecture variant: Cortex-A8
I Toolchain

I Toolchain type: External toolchain
I Toolchain: CodeSourcery 2011.09

I System configuration
I /dev management: Dynamic using devtmpfs only
I Port to run a getty on: ttyO2

I Package selection for the target
I Only Busybox is selected. This is fine for now.

I Kernel
I Kernel version: Custom version
I Kernel version: 3.2
I Custom kernel patches:

board/lsm/demo/linux-3.2-patches/
I Defconfig name: omap2plus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/43

Kernel patches

For this board to work with kernel 3.2, we need two patches to
enable NAND support.

mkdir -p board/lsm/demo/linux-3.2-patches/

cd board/lsm/demo/linux-3.2-patches/

wget http://bootlin.com/~thomas/lsm-tutorial/

linux-3.2-arm-omap3-igep0020-add-support-for-micron-nand-flash.patch

wget http://bootlin.com/~thomas/lsm-tutorial/

linux-3.2-omap2-make-board-onenand-init-visible-to-board-code.patch

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/43

Running the build

Let’s run the build, and keep a log from it:

make 2>&1 | tee logfile

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/43

Build results

In the output directory, we have:

I build, with one subdirectory per package that has been built.
The source code of the packages is extracted here, and they
are compiled here.

I host, where host tools are installed. The external toolchain
has been extracted in host/opt, in host/usr/bin, you have
a few host tools, and in
host/usr/arm-unknown-linux-gnueabi/sysroot you
have the sysroot

I staging, symbolic link to the sysroot
I target, where the target libraries and applications are

installed.
I toolchain, empty because we’re using an external toolchain
I images, which contains the root filesystem as a tarball, and

the kernel image. Look at the root filesystem size (it is
uncompressed!)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/43

A look at the dependencies

rootfs-tar

host-makedevs host-fakeroot host-module-init-tools

host-libtool

host-automake

host-autoconf

host-m4

linux

host-uboot-tools

ALL

busybox

Generated with:
./support/scripts/graph-depends > deps.dot

dot -Tpdf -o deps.pdf deps.dot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/43

Preparing to boot

1. Extract the root filesystem:

mkdir /tmp/rootfs/

sudo tar -C /tmp/rootfs/ -xf output/images/rootfs.tar

2. Export it over NFS, add the following line to /etc/exports:

/tmp/rootfs/ 192.168.42.2(rw,no_root_squash,no_subtree_check)

3. And restart the NFS server:

sudo /etc/init.d/nfs-kernel-server restart

4. Copy the kernel image to the TFTP exported directory:

sudo cp output/images/uImage /var/lib/tftpboot/

5. Configure your system to assign the 192.168.42.1 static IP
address to the USB-Ethernet interface (using Network
Manager or ifconfig)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/43

Connecting the serial cable to the board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/43

Preparing to boot, on the board

1. Start a serial emulator program:

picocom -b 115200 /dev/ttyUSB0

2. When the board boots, interrupt in U-Boot during
Hit any key to stop autoboot: by pressing a key, and
enter the following commands:

setenv ipaddr 192.168.42.2

setenv serverip 192.168.42.1

setenv bootcmd ’tftp 80000000 uImage; bootm’

setenv bootargs ’console=ttyO2,115200 root=/dev/nfs ip=192.168.42.2 \

nfsroot=192.168.42.1:/tmp/rootfs’

saveenv

reset

3. The system should boot automatically.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/43

The system

I Login as root, no password will be prompted.
I Explore the system. You’ll see that it is fairly minimal. We

have:
I Busybox installed (in /bin, /sbin, /usr/bin, /usr/sbin)
I The C library in /lib
I A bunch of configuration files and init scripts in /etc/
I /proc and /sys mounted

I In the running processes, we only have the usual kernel
threads, the init process, a shell, and the syslogd/klogd
daemons for login

I For Buildroot, it is important that the default is small

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/43

Customize the kernel configuration

Let’s learn now how to customize the kernel configuration from
Buildroot.

1. Run make linux-menuconfig

2. In Device Drivers → LED Support, enable as static
options (with a *, not a M):
I LED Class support
I LED Support for GPIO connected LEDs
I LED Trigger support
I LED Timer trigger
I LED heartbeat trigger

3. Rebuild by running make

4. Copy your kernel image to the TFTP directory:

sudo cp output/images/uImage /var/lib/tftpboot/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/43

Test the LEDs

Reboot your system, and try the following commands:

cd /sys/class/leds/gpio-led:green:d0

echo 255 > brightness

echo 0 > brightness

echo timer > trigger

echo heartbeat > trigger

echo none > trigger

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/43

Saving the kernel configuration

Our kernel configuration change has only been made to
output/build/linux-3.2/.config, which will be removed if we
do a make clean, so let’s save our kernel configuration changes.

1. Generate a minimal defconfig for our kernel configuration:

make linux-savedefconfig

2. Store in our project-specific directory

mv output/build/linux-3.2/defconfig board/lsm/demo/linux-3.2.config

3. Adjust the Buildroot configuration:

make menuconfig

I Linux Kernel → Kernel configuration →
Using a custom configuration file

I Configuration file path:
board/lsm/demo/linux-3.2.config

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/43

Enabling a new package: Dropbear

Let’s enable a new package, the lightweight SSH client/server
Dropbear.

make menuconfig

Package selection for the target

-> Networking applications

-> dropbear

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/43

Set root password

1. Create board/lsm/demo/post-build.sh with:

#!/bin/sh

TARGETDIR=$1

Set the root password to ’demo’

sed -i ’s%^root::%root:pT41pCOBIPj3Q:%’ $TARGETDIR/etc/shadow

Disable login with the ’default’ user

sed -i ’s/^default::/default:*:/’ $TARGETDIR/etc/shadow

2. Add executable permissions to the script

3. In make menuconfig, System configuration → Custom

script to run before creating filesystem images

set board/lsm/demo/post-build.sh.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/43

Testing SSH

1. Run make to rebuild your system

2. Re-extract the root filesystem tarball

sudo tar -C /tmp/rootfs/ output/images/rootfs.tar

3. Boot your system, you should see Dropbear being started

4. From your machine, log into your board through SSH:

ssh root@192.168.42.2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/43

Adding new packages

We’ll now see how to add new packages, by taking the example of
two dummy packages:

I libfoo, a dummy library that implements just a
int foo_add(int a, int b); function.
Available at http://bootlin.com/~thomas/lsm-
tutorial/libfoo-0.1.tar.gz

I foo, a dummy application that uses libfoo
Available at http://bootlin.com/~thomas/lsm-
tutorial/foo-0.1.tar.gz

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/43

http://bootlin.com/~thomas/lsm-tutorial/libfoo-0.1.tar.gz
http://bootlin.com/~thomas/lsm-tutorial/libfoo-0.1.tar.gz
http://bootlin.com/~thomas/lsm-tutorial/foo-0.1.tar.gz
http://bootlin.com/~thomas/lsm-tutorial/foo-0.1.tar.gz

libfoo: Config.in

Create the package/libfoo directory, and edit
package/libfoo/Config.in:

config BR2_PACKAGE_LIBFOO

bool "libfoo"

help

libfoo is a wonderful package.

http://bootlin.com/~thomas/lsm-tutorial/

Then, edit package/Config.in, and under Libraries → Other,
add:

source "package/libfoo/Config.in"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/43

libfoo: package/libfoo/libfoo.mk

Download the package tarball, and quickly study its build system.
It uses the traditional ./configure; make; make install

mechanism, using the autotools. We’ll use the AUTOTARGETS

infrastructure for our package.

LIBFOO_VERSION = 0.1

LIBFOO_SITE = http://bootlin.com/~thomas/lsm-tutorial/

$(eval $(call AUTOTARGETS))

LIBFOO_SOURCE could be defined to
libfoo-$(LIBFOO_VERSION).tar.gz, but since this is the
default, there’s no need to mention it.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/43

libfoo: first test

1. Enable your package in make menuconfig

2. Run make

3. Your library is correctly present in
output/target/usr/lib/libfoo.so.0.1

4. But the header files, and other developments files, are not
present in output/staging/usr/include/libfoo

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/43

libfoo: installation to staging

For libraries, we need to explicitly tell Buildroot to install them to
the staging directory.

LIBFOO_VERSION = 0.1

LIBFOO_SITE = http://bootlin.com/~thomas/lsm-tutorial/

LIBFOO_INSTALL_STAGING = YES

$(eval $(call AUTOTARGETS))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/43

libfoo: second testing

1. make libfoo-dirclean

2. make

3. Check in output/staging/usr/include/libfoo that the
header file is installed.

4. You should also have the static version of the library in
output/staging/usr/lib/ and the pkgconfig file foo.pc in
output/staging/usr/lib/pkgconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/43

libfoo: adding a configuration option (1/2)

Our wonderful libfoo library supports one ./configure option:
--enable-debug. Let’s add a new Buildroot option for it. In
package/libfoo/Config.in, add:

config BR2_PACKAGE_LIBFOO_DEBUG

bool "Enable debugging support"

depends on BR2_PACKAGE_LIBFOO

help

Enable debugging support in libfoo.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/43

libfoo: adding a configuration option (2/2)

In the package/libfoo/libfoo.mk:

ifeq ($(BR2_PACKAGE_LIBFOO_DEBUG),y)

LIBFOO_CONF_OPT += --enable-debug

endif

I In menuconfig, enable your new option

I Run make libfoo-dirclean to clean the package and force
its rebuild

I Run make

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/43

foo: package/foo/Config.in

Now, let’s create a package for the application. First the
package/foo/Config.in file:

config BR2_PACKAGE_FOO

bool "foo"

select BR2_PACKAGE_LIBFOO

help

Wonderful foo application

http://bootlin.com/~thomas/lsm-tutorial/

And source it from the Miscellaneous section of package/Config.in:

source "package/foo/Config.in"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/43

foo: package/foo/foo.mk

Before writing the foo.mk, let’s download http:

//bootlin.com/~thomas/lsm-tutorial/foo-0.1.tar.gz and
look at its build system:

I It is based on a manual Makefile, so we will have to use the
GENTARGETS infrastructure and not the AUTOTARGETS one

I It uses pkg-config to find the library foo. So we will have to
depend on libfoo and host-pkg-config

I For the build, we will have to pass CC, CFLAGS, LDFLAGS, etc.
with appropriate values. To do this, we’ll use the Buildroot
variable TARGET_CONFIGURE_OPTS

I For the installation, we’ll have to pass value for the DESTDIR

and prefix variables

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/43

http://bootlin.com/~thomas/lsm-tutorial/foo-0.1.tar.gz
http://bootlin.com/~thomas/lsm-tutorial/foo-0.1.tar.gz

foo: package/foo/foo.mk

FOO_VERSION = 0.1

FOO_SITE = http://bootlin.com/~thomas/lsm-tutorial/

FOO_DEPENDENCIES += libfoo host-pkg-config

define FOO_BUILD_CMDS

$(MAKE) $(TARGET_CONFIGURE_OPTS) -C $(@D)

endef

define FOO_INSTALL_TARGET_CMDS

$(MAKE) $(TARGET_CONFIGURE_OPTS) \

DESTDIR=$(TARGET_DIR) \

prefix=/usr \

install -C $(@D)

endef

$(eval $(call GENTARGETS))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/43

Test foo

I Enable the foo package in menuconfig

I Build your system with make

I Re-extract the root filesystem tarball to /tmp/rootfs/

I Reboot your system, and test the new foo application

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/43

Save our configuration

In order to make our configuration usable by others, we’ll create a
defconfig from it:

make savedefconfig

mv defconfig configs/lsm_demo_defconfig

Now, users of your Buildroot can simply do:

make lsm_demo_defconfig

make

To rebuild an identical environment from scratch.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/43

Booting from flash

We know want to store the kernel and root filesystem in NAND
flash. To do this, we will:

1. Add a custom /etc/network/interfaces file to the
filesystem in order to not depend on the ip= kernel parameter

2. Configure Buildroot to generate an UBIFS/UBI image for the
root filesystem

3. Adjust the U-Boot configuration and kernel arguments to
boot from NAND flash.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/43

Custom /etc/network/interfaces

1. Create the board/lsm/demo/rootfs-additions directory,
which will be an overlay of our filesystem

2. In our post-build.sh script, add:

Copy the rootfs additions

cp -a board/lsm/demo/rootfs-additions/* $TARGETDIR/

3. Create the board/lsm/demo/rootfs-

additions/etc/network/interfaces file, with:

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static

address 192.168.42.2

netmask 255.255.255.0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/43

Generate an UBIFS/UBI image

In menuconfig

1. Go in the Filesystem images menu

2. Enable ubifs root filesystem

3. Enable Embed into an UBI image

Then, rebuild with make, and copy output/images/rootfs.ubi

to /var/lib/tftpboot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/43

Adjust U-Boot configuration

We will adjust the U-Boot environment variables.

I Kernel command line

setenv bootargs ’console=ttyO2,115200

mtdparts=omap2-nand.0:512k(xloader),1536k(uboot),512k(env),4m(kernel),16m(rootfs)

ubi.mtd=4 root=ubi0:rootfs rootfstype=ubifs’

I At boot time, load the kernel from NAND

setenv bootcmd ’nboot 80000000 0 280000; bootm’

I Helper script to flash the kernel in NAND

setenv flashkernel ’tftp 80000000 uImage;

nand erase 0x280000 0x400000;

nand write 0x80000000 0x280000 0x400000’

I Helper script to flash the rootfs in NAND

setenv flashrootfs ’tftp 80000000 rootfs.ubi;

nand erase 0x680000 0x1000000;

nand write 0x80000000 0x680000 ${filesize}’

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/43

Adjust U-Boot configuration

We will adjust the U-Boot environment variables.

I Helper script to flash the kernel and rootfs

setenv flashall ’run flashkernel; run flashrootfs’

I Reflash

run flashall

I And reboot to test the system

reset

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/43

A final look at the dependencies

rootfs-ubi

host-fakeroot

rootfs-ubifs

host-makedevs

host-module-init-tools

host-libtool

host-automake

host-autoconf

host-mtd

host-zlib host-e2fsprogshost-lzo

ALL

busybox

linux

foo

rootfs-tar

dropbear

libfoo

host-uboot-tools host-pkg-config

host-m4

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/43

Thanks for attending, have fun
with Buildroot!

Thomas Petazzoni

thomas.petazzoni@bootlin.com

Slides under CC-BY-SA 3.0. PDF and sources will be available on
http://bootlin.com/pub/conferences/2012/lsm/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/43

http://bootlin.com/pub/conferences/2012/lsm/

