Buildroot Workshop

Thomas Petazzoni
Bootlin
thomas.petazzoni@bootlin.com

» Embedded Linux engineer and trainer at Bootlin since 2008

» Embedded Linux development: kernel and driver development,
system integration, boot time and power consumption
optimization, consulting, etc.

» Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

> http://www.bootlin.com

» Major contributor to Buildroot, an open-source, simple and
fast embedded Linux build system

» Speaker at Embedded Linux Conference, Embedded Linux
Conference Europe, FOSDEM, Libre Software Meeting, etc.

» Living in Toulouse, south west of France

http://www.bootlin.com

» Install necessary tools and packages

> Get Buildroot

» Build a minimal system, and boot it on the target
» Customize the system

» Create new packages, one library, one application

» Generate an UBIFS image, and flash the system in NAND
flash

You will find the slides and other files needed for this workshop at:

http://bootlin.com/~thomas/lsm-tutorial/

http://bootlin.com/~thomas/lsm-tutorial/

IGEPv2 from ISEE

» DM3730 (ARM
OMAP3) at 1 GHz

» 512 MB of RAM, 512
MB of flash

» microSD, HDMI,

audio, Ethernet,
Bluetooth, Wifi

v

http://igep.es/products/processor-boards/igepv2-board

http://igep.es/products/processor-boards/igepv2-board

We'll need:

> A terminal emulator program to interact with the target
over the serial port

apt—-get install picocom J

> A TFTP server to transfer the kernel image to the target

apt-get install tftpd-hpa J

> A NFS server to mount the root filesystem over the network

apt-get install nfs-kernel-server J

Of course, adapt those instructions if you're not using a
Debian-derived distribution.

Even though Buildroot builds most of the tools it needs, it still
requires a few dependencies on the build system:

apt-get install \
build-essential gawk bison flex gettext \
texinfo patch gzip bzip2 perl tar wget \
cpio python unzip rsync

» Tarballs are available for major versions, but since one

generally needs to make changes to Buildroot, using Git is
recommended

» Clone the repository

git clone git://git.busybox.net/buildroot]

» Create a branch starting from a stable release

git branch workshop 2012.05 J

» Switch to this branch

git checkout workshop J|

Run make menuconfig
> Target architecture: ARM Little Endian
> Target architecture variant: Cortex-A8

» Toolchain
» Toolchain type: External toolchain
» Toolchain: CodeSourcery 2011.09
> System configuration
» /dev management: Dynamic using devtmpfs only
» Port to run a getty on: ttyO2
> Package selection for the target
» Only Busybox is selected. This is fine for now.
» Kernel
» Kernel version: Custom version
» Kernel version: 3.2
» Custom kernel patches:
board/1lsm/demo/linux-3.2-patches/
» Defconfig name: omap2plus

@

For this board to work with kernel 3.2, we need two patches to
enable NAND support.

mkdir -p board/lsm/demo/linux-3.2-patches/
cd board/lsm/demo/linux-3.2-patches/

wget http://bootlin.com/ thomas/lsm-tutorial/
linux-3.2-arm-omap3-igep0020-add-support-for-micron-nand-flash.patch

wget http://bootlin.com/ thomas/lsm-tutorial/
linux-3.2-omap2-make-board-onenand-init-visible-to-board-code.patch

Let’s run the build, and keep a log from it:

make 2>&1 | tee logfile J

In the output directory, we have:

» build, with one subdirectory per package that has been built.
The source code of the packages is extracted here, and they
are compiled here.

> host, where host tools are installed. The external toolchain
has been extracted in host/opt, in host/usr/bin, you have
a few host tools, and in
host/usr/arm-unknown-1linux-gnueabi/sysroot you
have the sysroot

> staging, symbolic link to the sysroot

> target, where the target libraries and applications are
installed.

> toolchain, empty because we're using an external toolchain

» images, which contains the root filesystem as a tarball, and
the kernel image. Look at the root filesystem size (it is
uncompressed!)

Generated with:

1. Extract the root filesystem:

mkdir /tmp/rootfs/
sudo tar -C /tmp/rootfs/ -xf output/images/rootfs.tar

2. Export it over NFS, add the following line to /etc/exports:

/tmp/rootfs/ 192.168.42.2(rw,no_root_squash,no_subtree_check) J

3. And restart the NFS server:

sudo /etc/init.d/nfs-kernel-server restart J

4. Copy the kernel image to the TFTP exported directory:

sudo cp output/images/ulmage /var/lib/tftpboot/ J

5. Configure your system to assign the 192.168.42.1 static IP
address to the USB-Ethernet interface (using Network
Manager or ifconfig)

9

1. Start a serial emulator program:

picocom -b 115200 /dev/ttyUSBO J

2. When the board boots, interrupt in U-Boot during
Hit any key to stop autoboot: by pressing a key, and
enter the following commands:

setenv ipaddr 192.168.42.2

setenv serverip 192.168.42.1

setenv bootcmd ’tftp 80000000 ulmage; bootm’

setenv bootargs ’console=tty02,115200 root=/dev/nfs ip=192.168.42.2 \
nfsroot=192.168.42.1:/tmp/rootfs’

saveenv

reset

3. The system should boot automatically.

> Login as root, no password will be prompted.
» Explore the system. You'll see that it is fairly minimal. We
have:
» Busybox installed (in /bin, /sbin, /usr/bin, /usr/sbin)
» The C library in /1ib
» A bunch of configuration files and init scripts in /etc/
» /proc and /sys mounted
» In the running processes, we only have the usual kernel
threads, the init process, a shell, and the syslogd/klogd
daemons for login

» For Buildroot, it is important that the default is small

Let's learn now how to customize the kernel configuration from
Buildroot.
1. Run make linux-menuconfig
2. In Device Drivers — LED Support, enable as static
options (with a *, not a 1):
» LED Class support
» LED Support for GPIO connected LEDs
» LED Trigger support
» LED Timer trigger
» LED heartbeat trigger

3. Rebuild by running make
4. Copy your kernel image to the TFTP directory:

sudo cp output/images/ulmage /var/lib/tftpboot/)|

Reboot your system, and try the following commands:

cd /sys/class/leds/gpio-led:green:d0
echo 255 > brightness

echo 0 > brightness

echo timer > trigger

echo heartbeat > trigger

echo none > trigger

9

Our kernel configuration change has only been made to
output/build/linux-3.2/.config, which will be removed if we
do a make clean, so let's save our kernel configuration changes.

1. Generate a minimal defconfig for our kernel configuration:

make linux-savedefconfig }

2. Store in our project-specific directory

mv output/build/linux-3.2/defconfig board/lsm/demo/linux-3.2.config J

3. Adjust the Buildroot configuration:

make menuconfig J

» Linux Kernel — Kernel configuration —
Using a custom configuration file

» Configuration file path:
board/lsm/demo/linux-3.2.config

Let's enable a new package, the lightweight SSH client/server
Dropbear.

make menuconfig)

Package selection for the target
-> Networking applications
-> dropbear

@

1. Create board/lsm/demo/post-build.sh with:

#!/bin/sh
TARGETDIR=$1

Set the root password to ’demo’
sed -i ’sY"root::%root:pT41pCOBIPj3Q:%’ $TARGETDIR/etc/shadow

Disable login with the ’default’ user
sed -i ’s/"default::/default:*:/’ $TARGETDIR/etc/shadow

2. Add executable permissions to the script

3. In make menuconfig, System configuration — Custom
script to run before creating filesystem images
set board/lsm/demo/post-build. sh.

1. Run make to rebuild your system

2. Re-extract the root filesystem tarball

sudo tar -C /tmp/rootfs/ output/images/rootfs.tar J

3. Boot your system, you should see Dropbear being started

4. From your machine, log into your board through SSH:

ssh root@192.168.42.2 }

We'll now see how to add new packages, by taking the example of
two dummy packages:
» libfoo, a dummy library that implements just a
int foo_add(int a, int b); function.
Available at http://bootlin.com/~thomas/lsm-
tutorial/libfoo-0.1.tar.gz

» foo, a dummy application that uses libfoo
Available at http://bootlin.com/~thomas/lsm-
tutorial/foo-0.1.tar.gz

http://bootlin.com/~thomas/lsm-tutorial/libfoo-0.1.tar.gz
http://bootlin.com/~thomas/lsm-tutorial/libfoo-0.1.tar.gz
http://bootlin.com/~thomas/lsm-tutorial/foo-0.1.tar.gz
http://bootlin.com/~thomas/lsm-tutorial/foo-0.1.tar.gz

Create the package/libfoo directory, and edit
package/libfoo/Config.in:
config BR2_PACKAGE_LIBFOO

bool "libfoo"

help
libfoo is a wonderful package.

http://bootlin.com/ thomas/lsm-tutorial/

Then, edit package/Config.in, and under Libraries — Other,
add:

source "package/libfoo/Config.in" J

Download the package tarball, and quickly study its build system.
It uses the traditional . /configure; make; make install
mechanism, using the autotools. We'll use the AUTOTARGETS
infrastructure for our package.

0.1
http://bootlin.com/ thomas/lsm-tutorial/

LIBFOO_VERSION
LIBFOO_SITE

$(eval $(call AUTOTARGETS))

LIBFOO_SOURCE could be defined to
libfoo-$(LIBFOO_VERSION) .tar.gz, but since this is the
default, there's no need to mention it.

1. Enable your package in make menuconfig
2. Run make

3. Your library is correctly present in
output/target/usr/lib/libfoo.s0.0.1

4. But the header files, and other developments files, are not
present in output/staging/usr/include/libfoo

@

For libraries, we need to explicitly tell Buildroot to install them to
the staging directory.

LIBFOO_VERSION 0.1
LIBFOO_SITE = http://bootlin.com/ thomas/lsm-tutorial/

LIBFOO_INSTALL_STAGING = YES

$(eval $(call AUTOTARGETS))

1. make libfoo-dirclean

2. make

3. Check in output/staging/usr/include/libfoo that the
header file is installed.

4. You should also have the static version of the library in
output/staging/usr/1lib/ and the pkgconfig file foo.pc in
output/staging/usr/lib/pkgconfig

Our wonderful libfoo library supports one ./configure option:
--enable-debug. Let's add a new Buildroot option for it. In
package/libfoo/Config.in, add:

config BR2_PACKAGE_LIBFOO_DEBUG
bool "Enable debugging support"
depends on BR2_PACKAGE_LIBFOO
help
Enable debugging support in libfoo.

In the package/libfoo/libfoo.mk:

ifeq ($(BR2_PACKAGE_LIBFOO_DEBUG),y)
LIBFOO_CONF_OPT += --enable-debug
endif

» In menuconfig, enable your new option

» Run make libfoo-dirclean to clean the package and force
its rebuild

» Run make

Now, let's create a package for the application. First the
package/foo/Config.in file:

config BR2_PACKAGE_FOO

bool "foo"
select BR2_PACKAGE_LIBFOO
help

Wonderful foo application

http://bootlin.com/ thomas/lsm-tutorial/

And source it from the Miscellaneous section of package/Config.in:

source "package/foo/Config.in" J

Before writing the foo.mk, let's download http:
//bootlin.com/~thomas/lsm-tutorial/foo-0.1.tar.gz and
look at its build system:

> |t is based on a manual Makefile, so we will have to use the
GENTARGETS infrastructure and not the AUTOTARGETS one

» |t uses pkg-config to find the library foo. So we will have to
depend on libfoo and host-pkg-config

» For the build, we will have to pass CC, CFLAGS, LDFLAGS, etc.
with appropriate values. To do this, we'll use the Buildroot
variable TARGET _CONFIGURE_OPTS

» For the installation, we'll have to pass value for the DESTDIR
and prefix variables

http://bootlin.com/~thomas/lsm-tutorial/foo-0.1.tar.gz
http://bootlin.com/~thomas/lsm-tutorial/foo-0.1.tar.gz

9

FOO_VERSION

0.1
FOO_SITE = http://bootlin.com/ thomas/lsm-tutorial/

FOO_DEPENDENCIES += libfoo host-pkg-config

define FOO_BUILD_CMDS
$(MAKE) $(TARGET_CONFIGURE_OPTS) -C $(@D)
endef

define FOO_INSTALL_TARGET_CMDS
$ (MAKE) $(TARGET_CONFIGURE_OPTS) \
DESTDIR=$ (TARGET_DIR) \
prefix=/usr \
install -C $(@D)
endef

$(eval $(call GENTARGETS))

» Enable the foo package in menuconfig
» Build your system with make
> Re-extract the root filesystem tarball to /tmp/rootfs/

P> Reboot your system, and test the new foo application

In order to make our configuration usable by others, we'll create a
defconfig from it:

make savedefconfig
mv defconfig configs/lsm_demo_defconfig

Now, users of your Buildroot can simply do:

make lsm_demo_defconfig
make

To rebuild an identical environment from scratch.

We know want to store the kernel and root filesystem in NAND
flash. To do this, we will:

1. Add a custom /etc/network/interfaces file to the
filesystem in order to not depend on the ip= kernel parameter

2. Configure Buildroot to generate an UBIFS/UBI image for the
root filesystem

3. Adjust the U-Boot configuration and kernel arguments to
boot from NAND flash.

1. Create the board/lsm/demo/rootfs-additions directory,
which will be an overlay of our filesystem

2. In our post-build.sh script, add:

Copy the rootfs additions
cp -a board/lsm/demo/rootfs-additions/* $TARGETDIR/ J

3. Create the board/lsm/demo/rootfs—
additions/etc/network/interfaces file, with:

auto lo
iface lo inet loopback

auto ethO

iface ethO inet static
address 192.168.42.2
netmask 255.255.255.0

In menuconfig
1. Go in the Filesystem images menu
2. Enable ubifs root filesystem
3. Enable Embed into an UBI image

Then, rebuild with make, and copy output/images/rootfs.ubi
to /var/lib/tftpboot.

@

We will adjust the U-Boot environment variables.

» Kernel command line

mtdparts=omap2-nand.0:512k(x1loader) , 1536k (uboot) ,512k (env) ,4m(kernel) ,16m(rootfs)

setenv bootargs ’console=tty02,115200
ubi.mtd=4 root=ubil:rootfs rootfstype=ubifs’ <J

» At boot time, load the kernel from NAND

setenv bootcmd ’nboot 80000000 O 280000; bootm’ J

» Helper script to flash the kernel in NAND

setenv flashkernel ’tftp 80000000 ulmage;
nand erase 0x280000 0x400000;
nand write 0x80000000 0x280000 0x400000°’

» Helper script to flash the rootfs in NAND

setenv flashrootfs ’tftp 80000000 rootfs.ubi;
nand erase 0x680000 0x1000000;
nand write 0x80000000 0x680000 ${filesizel}’

We will adjust the U-Boot environment variables.

» Helper script to flash the kernel and rootfs

setenv flashall ’run flashkernel; run flashrootfs’ J
» Reflash
run flashall]

» And reboot to test the system

reset J

Thanks for attending, have fun
with Buildroot!

Thomas Petazzoni

thomas.petazzoni@bootlin.com

S|Id€5 Under CC-BY-SA 30 PDF and sources will be available on

http://bootlin.com/pub/conferences/2012/1sm/

ivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

43/43

http://bootlin.com/pub/conferences/2012/lsm/

