
IIO, a new kernel
subsystem
Maxime Ripard
maxime.ripard@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/34

Outline

What is IIO ?
Definition
Current state in the kernel

Getting started
IIO device
IIO channels

Going further : Hardware triggers and buffers
Hardware Triggers
Buffers

Useful Resources

Conclusion

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/34

Maxime Ripard

I Embedded Linux engineer and trainer at Bootlin since 2011
I Embedded Linux development: kernel and driver development, system integration,

boot time and power consumption optimization, etc.
I Embedded Linux, Embedded Android and driver development training, with

materials freely available under a Creative Commons license.
I https://bootlin.com

I Contributor to Buildroot, a simple open-source embedded build system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/34

https://bootlin.com

What is IIO ?
Maxime Ripard
maxime.ripard@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/34

What is IIO ?

Definition

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/34

IIO

I A subsystem for Analog to Digital Converters (ADCs) and related hardwares
(accelerometers, light sensors, gyroscopes), but also DACs

I Can be used on ADCs ranging from a SoC ADC to 100M samples/sec industrial
ADCs

I Until recently, mostly focused on user-space abstraction with no in-kernel API for
other drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/34

What is IIO ?

Current state in the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/34

Current state in the kernel

I Developed since 2009 by Jonathan Cameron
I Being developed in the staging/ directory until it comes to an high quality code

and a mature API
I It is now moving out of staging, one step at a time: first, basic features, then the

support for advanced IIO features.
I Already has a lot of different hardware supports and drivers for them, mostly from

Analog Devices Inc, but also drivers for Texas Instruments, Atmel, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/34

Getting started
Maxime Ripard
maxime.ripard@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/34

Getting started

IIO device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/34

iio dev structure

I Main structure of all IIO drivers
I Holds informations about the device and the driver, such as :

I How much channels are available on the device ?
I What modes can the device operate in ?
I What hooks are available for this driver ?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/34

Allocate a new device

struct iio_dev *idev = iio_allocate_device)
sizeof(struct at91_adc_state));

I Allocates a struct iio dev, along with the private data of your driver
I Does all the basic initialisation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/34

Capture modes

idev->modes = INDIO_DIRECT_MODE;

Defines the mode of operations available for this device, to choose between :

INDIO DIRECT MODE the device can operate using software triggers
INDIO BUFFER TRIGGERED the device can use hardware triggers
INDIO BUFFER HARDWARE the device has a hardware buffer
INDIO ALL BUFFER MODES union of the two above

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/34

IIO infos

static const struct iio_info at91_adc_info = {
.driver_module = THIS_MODULE,
.read_raw = &at91_adc_read_raw,

};

idev->info = &at91_adc_info;

I Used to declare the hooks the core can use for this device
I Lot of hooks available corresponding to interactions the user can make through

sysfs.
I read_raw for example is called to request a value from the driver. A bitmask

allows us to know more precisely which type of value is requested, and for which
channel if needed. It can be for example either the scale used to convert value
returned to volts or the value in itself.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/34

Basic design of the driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/34

Getting started

IIO channels

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/34

iio channels declaration

struct iio_chan_spec *chan = kmalloc(sizeof(struct iio_chan_spec),
GFP_KERNEL);

chan->type = IIO_VOLTAGE;
chan->indexed = 1;
chan->channel = 1;
chan->scan_type.sign = 'u';
chan->scan_type.realbits = 10;
chan->scan_type.storagebits = 16;
chan->info_mask = IIO_CHAN_INFO_SCALE_SHARED_BIT;

idev->channels = chan;
idev->num_channels = 1;

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/34

Register the device

iio_device_register(idev);

I this is sufficient to have a basic IIO device driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/34

Userspace API

If we look at /sys/bus/iio/devices/iio:deviceX, we should have:
$ ls /sys/bus/iio/devices/iio:deviceX
in_voltage0_raw
in_voltage_scale
name
$

I reading in voltage0 raw calls the read raw hook, with the mask set to 0, and the
chan argument set with the iio chan spec structure corresponding to the the
channel 0

I reading in voltage scale calls the read raw hook, with the mask set to
IIO CHAN INFO SCALE

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/34

Going further :
Hardware triggers and
buffers
Maxime Ripard
maxime.ripard@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/34

Going further : Hardware triggers and buffers

Hardware Triggers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/34

Hardware Triggers

IIO exposes API so that we can :
I declare any given number of triggers
I choose which channels we want enabled for conversions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/34

Kernel API

static const struct iio_trigger_ops at91_adc_trigger_ops = {
.owner = THIS_MODULE,
.set_trigger_state = &at91_adc_configure_trigger,

};

struct iio_trigger *trig = iio_allocate_trigger("foo");
trig->ops = &at91_adc_trigger_ops;
iio_trigger_register(trig)

I Once again, we have hooks to declare
I These hooks are this time triggers-specific, so that we can have a function called

when the trigger state changes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/34

Poll Function

I function triggered at each conversion
I called through the functions iio_trigger_poll or iio_trigger_poll_chained
I basically, its job is to feed retrieve data from the device and feed them into the

buffer
I IIO uses the IRQ model, so the poll function has the same prototype than any

other IRQ handler.
idev->pollfunc = iio_alloc_pollfunc(&iio_pollfunc_store_time,

&at91_adc_trigger_handler,
IRQF_ONESHOT,
idev,
"foo");

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/34

Going further : Hardware triggers and buffers

Buffers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/34

Buffers

I doesn’t make much sense to have triggered captures without a buffer
I Buffers and triggers are closely tied together in IIO
I 2 types of buffers in IIO

I One relies on kfifo
I The other one is a ring buffer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/34

Allocate a buffer

I in the latest code, if you want to use the IIO ring buffer, boiler plate code has
been added so it’s pretty straightforward.
ret = iio_sw_rb_simple_setup(idev,

&iio_pollfunc_store_time,
&at91_adc_trigger_handler);

I Allocate the buffer, allocates the poll function, declares the device as supporting
triggered capture, register the buffer against the core, etc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/34

Userspace API 1/3: Set up the capture

If we look at /sys/bus/iio/devices/, we should now have in addition to
iio:deviceX:
$ ls /sys/bus/iio/devices/
iio:device0
trigger0
$ ls /sys/bus/iio/devices/iio:device0
buffer
scan_elements
trigger
$ ls /sys/bus/iio/devices/iio:device0/buffer
enabled length
$ ls /sys/bus/iio/devices/iio:device0/scan_elements
in_voltage0_en
in_voltage0_index
in_voltage0_type
$ ls /sys/bus/iio/devices/trigger0
name
$

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/34

Userspace API 2/3: Start and stop a capture

$ echo 1 > \
/sys/bus/iio/devices/iio:device0/scan_elements/in_voltage0_en

$ echo "foo" > \
/sys/bus/iio/devices/iio:device0/trigger/current_trigger

$ echo 100 > /sys/bus/iio/devices/iio:device0/buffer/length
$ echo 1 > /sys/bus/iio/devices/iio:device0/buffer/enable
$ echo 0 > /sys/bus/iio/devices/iio:device0/buffer/enable
$ echo "" > \

/sys/bus/iio/devices/iio:device0/trigger/current_trigger

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/34

Userspace API 3/3: Get the capture results

I IIO also exposes a character device to get the converted values:
/dev/iio:deviceX

I You just have to read in it to get data
I Data are organized by chunks

I Example: You have 4 channels, plus a timestamp one. All are enabled except
channel 2.

Channels Timestamp
Index 0 1 3

Size in bits 16 16 16 64
I There is a program that provides a basic implementation and a good way to test

your driver in the IIO documentation directory:
drivers/staging/iio/Documentation/generic_buffer.c
./generic-buffer -n at91_adc -t at91_adc-dev0-external

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/34

Useful Resources
Maxime Ripard
maxime.ripard@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/34

Useful Resources

I drivers/staging/iio/Documentation
I drivers/staging/iio/iio_simple_dummy.c
I http://www.ohwr.org/projects/zio/wiki/Iio
I http://www.at91.com/linux4sam/bin/view/Linux4SAM/IioAdcDriver
I linux-iio@vger.kernel.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/34

http://www.ohwr.org/projects/zio/wiki/Iio
http://www.at91.com/linux4sam/bin/view/Linux4SAM/IioAdcDriver

Conclusion
Maxime Ripard
maxime.ripard@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/34

Conclusion

I IIO is a nice subsystem to add ADCs and the like support
I Still under heavy development, but also really opens to changes and feedback
I Yet reliable enough to be used in production

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/34

