
Captronic Seminar

Introduction to
Embedded Linux
Thomas Petazzoni
thomas.petazzoni@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/103

Thomas Petazzoni

▶ Thomas Petazzoni
▶ Embedded Linux engineer and trainer at Bootlin since January 2008
▶ Linux user and developer since 2000
▶ Given more than 120 days of embedded Linux training around the world
▶ Linux kernel development, embedded Linux system integration, boot time and power

consumption optimization, consulting, for various customers on ARM, MIPS,
Blackfin and x86 based systems

▶ Major contributor to Buildroot, an open-source, simple and fast embedded Linux
build system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/103

Bootlin

▶ Bootlin, specialized in Embedded Linux, since 2005
▶ Strong emphasis on community relation
▶ Training

▶ Embedded Linux system development
▶ Linux kernel and device driver development
▶ Upcoming public sessions in Avignon, Lyon and Toulouse, or sessions at customer

location
▶ All training materials freely available under a Creative Commons license.

▶ Development and consulting
▶ Board Support Package development or improvement
▶ Kernel and driver development
▶ Embedded Linux system integration
▶ Power-management, boot-time, performance audits and improvement
▶ Embedded Linux application development

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/103

Bootlin customers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/103

Bootlin trainings

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/103

Agenda

▶ Introduction: open-source and free software principles, advantages in the
embedded space, hardware needed for embedded Linux

▶ Open Source for embedded systems: tools, bootloaders, kernel, system
foundations, graphics and multimedia, networking, real-time, etc.

▶ Development process of an embedded Linux system
▶ Commercial support, community support
▶ Android
▶ Conclusion
▶ Q&A

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/103

About free software

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/103

Birth of free software

▶ 1983, Richard Stallman: GNU project and concept of “free software”. Start of
development of gcc, gdb, glibc, etc. developed.

▶ 1991, Linus Torvalds launches the Linux project, a Unix-like operating system
kernel. Together with GNU software and other free software components, it
creates a complete and usable operating system: GNU/Linux

▶ ≈ 1995, Linux is more and more widely used on server systems.
▶ ≈ 2000, Linux is more and more widely used in embedded systems
▶ ≈ 2005, Linux is more and more widely used in desktop systems

Free software is no longer a “new” thing, it has been well established for many years

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/103

Free software

A program is considered free when its license offers to all its users the following
freedoms:
▶ Freedom to run the software, for any purpose
▶ Freedom to study how the software works, and change it
▶ Freedom to redistribute copies
▶ Freedom to distribute copies of modified versions

These freedoms are granted for both commercial and non-commercial use, without
distinction.
Those freedoms imply that the source code is available, it can modified to
match the needs of a given product, and the result can be distributed to
customers ⇒ good match for embedded systems!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/103

Advantages of open-source in embedded
systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/103

Re-using components

▶ The key advantage when using Linux and open-source components in embedded
systems is the ability to re-use existing components.

▶ The open-source ecosystem already provides many components for standard
features, from hardware support to network protocols, going through multimedia,
graphic, cryptographic libraries, etc.

▶ As soon as a hardware device, or a protocol, or a feature is wide-spread enough,
high chance of having open-source components that support it.

▶ Allows to quickly design and develop complicated products, based on existing
components.

▶ No-one should re-develop yet another operating system kernel, TCP/IP stack,
USB stack or another graphical toolkit library.

▶ Allows to focus on the added value of your product.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/103

Low cost

▶ Free software can be duplicated on as many devices as you want, free of charge.
▶ If your embedded system uses only free software, you can reduce the cost of

software to zero. Even the development tools are free, unless you choose a
commercial embedded Linux edition.

▶ Allows to have an higher budget for the hardware or to increase the
company’s skills and knowledge

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/103

Full control

▶ With open-source, you have the source code for all components in your system
▶ Allows unlimited modifications, changes, tuning, debugging, optimization, for an

unlimited period of time
▶ Without locking or dependency from a third-party vendor
▶ To be true, non open-source components must be avoided when the system is

designed and developed
▶ Allows to have full control over the software part of your system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/103

Quality

▶ Many open-source components are widely used, on millions of systems
▶ Higher quality than what an in-house development can produce, or even

proprietary vendors
▶ Of course, not all open-source components are of good quality, but most of the

widely-used ones are.
▶ Allows to design your system with high-quality components at the

foundations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/103

Test of possible components

▶ Open-source being freely available, it is easy to get one and evaluate it
▶ Allows to easily study several options while making a choice
▶ Much easier than purchasing and demonstration procedures needed with most

proprietary products
▶ Allows to easily explore new possibilities and solutions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/103

Community support

▶ Open-source software components are developed by communities of developers
and users

▶ This community can provide a high-quality support: you can directly contact the
main developers of the component you are using

▶ Often better than traditional support, but one needs to understand how the
community works to properly use the community support possibilities

▶ Allows to speed up the resolution of problems when developing your system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/103

Taking part into the community

▶ Possibility of taking part into the development community of some of the
components used in the embedded systems: bug reporting, test of new versions or
features, patches that fix bugs or add new features, etc.

▶ Most of the time the open-source components are not the core value of the
product: it’s the interest of everybody to contribute back.

▶ For the engineers: a very motivating way of being recognized outside the
company, communication with others in the same field, opening of new
possibilities, etc.

▶ For the managers: motivation factor for engineers, allows the company to be
recognized in the open-source community and therefore get support more easily
and be more attractive to open-source developers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/103

Drawbacks

▶ Large choice: community support or commercial support? Which company for
the support? Which software solution?
▶ At the same time a strength and a drawback of free software and open source

▶ New skills needed compared to bare metal development or development with
traditional embedded operating systems.
▶ Need for training
▶ Need for recruiting new profiles

▶ Licensing fear
▶ Generally over-exaggerated

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/103

Hardware for embedded Linux

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/103

Processor architecture

▶ The Linux kernel and most other architecture-dependent component support a
wide range of 32 and 64 bits architectures
▶ x86 and x86_64, as found on PC platforms, but also embedded systems

(multimedia, industrial)
▶ ARM, with hundreds of different SoC (multimedia, industrial)
▶ PowerPC (mainly real-time, industrial applications)
▶ MIPS (mainly networking applications)
▶ SuperH (mainly set top box and multimedia applications)
▶ Blackfin (DSP architecture)
▶ Microblaze (soft-core for Xilinx FPGA)
▶ Coldfire, SCore, Tile, Xtensa, Cris, FRV, AVR32, M32R

▶ Both MMU and no-MMU architectures are supported, even though no-MMU
architectures have a few limitations.

▶ Linux is not designed for small microcontrollers.
▶ Besides the toolchain, the bootloader and the kernel, all other components are

generally architecture-independent
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/103

RAM and storage

▶ RAM: a very basic Linux system can work within 8 MB of RAM, but a more
realistic system will usually require at least 32 MB of RAM. Depends on the type
and size of applications.

▶ Storage: a very basic Linux system can work within 4 MB of storage, but usually
more is needed.
▶ flash storage is supported, both NAND and NOR flash, with specific filesystems
▶ Block storage including SD/MMC cards and eMMC is supported

▶ Not necessarily interesting to be too restrictive on the amount of RAM/storage:
having flexibility at this level allows to re-use as many existing components as
possible.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/103

Communication

▶ The Linux kernel has support for many common communication busses
▶ I2C
▶ SPI
▶ CAN
▶ 1-wire
▶ SDIO
▶ USB

▶ And also extensive networking support
▶ Ethernet, Wifi, Bluetooth, CAN, etc.
▶ IPv4, IPv6, TCP, UDP, SCTP, DCCP, etc.
▶ Firewalling, advanced routing, multicast

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/103

ARM and System-on-Chip

▶ ARM is one of the most popular architectures used in embedded Linux systems
▶ ARM designs CPU cores (instruction sets, caches, MMU, etc.) and sells the

design to licensees
▶ The licensees are founders (Texas Instruments, Freescale, ST Ericsson, Atmel,

etc.), they integrate an ARM core with many peripherals, into a chip called a
SoC, for System-on-chip

▶ Each founder provides different models of SoC, with different combination of
peripherals, power, power consumption, etc.

▶ The concept of SoC allows to reduce the number of peripherals needed on the
board, and therefore the cost of designing and building the board.

▶ Linux supports SoCs from most vendors, but not all, and not with the same
level of functionality.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/103

ARM and System-on-Chip

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/103

Atmel AT91SAM9263

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/103

Texas Instruments OMAP3430

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/103

Type of hardware platforms

▶ Evaluation platforms from the SoC vendor. Usually expensive, but many
peripherals are built-in. Generally unsuitable for real products.

▶ Component on Module, a small board with only CPU/RAM/flash and a few
other core components, with connectors to access all other peripherals. Can be
used to build end products for small to medium quantities.

▶ Community development platforms, a new trend to make a particular SoC
popular and easily available. Those are ready-to-use and low cost, but usually
have less peripherals than evaluation platforms. To some extent, can also be used
for real products.

▶ Custom platform. Schematics for evaluation boards or development platforms
are more and more commonly freely available, making it easier to develop custom
platforms.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/103

Gumstix

▶ TI OMAP3530 (600 MHz, ARM Cortex-A8,
PowerVR SGX, DSP)

▶ Component on Module
▶ 256 MB RAM
▶ 256 MB NAND (optional)
▶ Bluetooth, Wifi (optional)
▶ uSD
▶ $115-229
▶ Development boards available at $ 49-229, with many

peripherals: LCD, Ethernet, UART, SPI, I2C, etc.
▶ http://www.gumstix.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/103

http://www.gumstix.com

Armadeus

▶ Freescale i.MX 51, 800 MHz
▶ Component on Module
▶ 256/512 MB RAM
▶ 512 MB NAND
▶ FPGA Xilinx Spartan 6A
▶ 168 e
▶ Development boards available at 248 e, with

peripherals (Ethernet, serial, etc.) and access
to UART, SPI, I2C, PWM, GPIO, USB, SD,
LCD, Keypad, etc.

▶ http://www.armadeus.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/103

http://www.armadeus.com

Calao TNY A9G20

▶ Atmel AT91 9G20, 400 MHz
▶ Component on Module
▶ 64 MB RAM
▶ 256 MB NAND
▶ 152 e
▶ Many expansion boards available
▶ http://www.calao-systems.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/103

http://www.calao-systems.com

BeagleBoard XM

▶ TI OMAP DM3730 (1 GHz, cortex
A8, PowerVR GPU, DSP)

▶ Community development platform
▶ 512 MB RAM
▶ eMMC, microSD, Ethernet
▶ HDMI, S-Video, Camera, audio
▶ Expansion: USB, I2C, SPI, LCD,

UART, GPIO, etc.
▶ $ 149
▶ http://beagleboard.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/103

http://beagleboard.org

Snowball

▶ ST Ericsson AP9500 (dual cortex A9,
MALI GPU)

▶ Community development platform
▶ 1 GB RAM
▶ 4-8 GB eMMC, microSD
▶ HDMI, S-Video, audio
▶ Wifi, Bluetooth, Ethernet
▶ Accelerometer, Magnetometer,

Gyrometer, GPS
▶ Expansion: USB, I2C, SPI, LCD, UART,

GPIO, etc.
▶ 169 e to 244 e
▶ http://igloocommunity.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/103

http://igloocommunity.org

Freescale Quick Start

▶ Freescale I.MX53 (1 GHz Cortex A8)
▶ Community development platform
▶ 1 GB RAM
▶ 4-8 GB eMMC, microSD
▶ LVDS, LCD, VGA, HDMI, audio
▶ Accelerometer, SD/MMC, microSD,

SATA, Ethernet, USB
▶ Expansion: I2C, SPI, SSI, LCD, Camera
▶ 149 e

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/103

Atmel SAM9X35-EK

▶ Atmel AT91SAM9x35 (400 Mhz)
▶ Manufacturer evaluation board
▶ 128 MB RAM
▶ 256 MB NAND Flash, 4 MB flash SPI
▶ Ethernet, 2 UARTs, 2 CANs, USB

host/device
▶ uSD slot, MMC/SD/SDIO,

LCD/touchscreen
▶ Zigbee, SPI, I2C, etc.
▶ $590

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/103

Criteria for choosing the hardware

▶ Make sure the hardware you plan to use is already supported by the Linux kernel,
and has an open-source bootloader, especially the SoC you’re targeting.

▶ Having support in the official versions of the projects (kernel, bootloader) is a lot
better: quality is better, and new versions are available.

▶ Some SoC vendors and/or board vendors do not contribute their changes back to
the Linux kernel. Ask them to do so, or use another product if you can. A good
measurement is to see the delta between their kernel and the official one.

▶ Between properly supported hardware in the official Linux kernel and
poorly-supported hardware, there will be huge differences in development time and
cost.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/103

Embedded systems using Linux

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/103

Consumer device: Internet box

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/103

Consumer device: Network Attached Storage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/103

Consumer device: Television

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/103

Professional device: point of sale terminal

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/103

Industrial system: laser cutter

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/103

Industrial system: wind turbine

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/103

Industrial system: cow milking

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/103

Industrial system: snow removal equipment

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/103

Industrial system: sea pollution detection system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/103

Industrial system: viticulture machine

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/103

Open-source components for embedded
systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/103

Four major components

Every embedded Linux system needs four major components to work:
▶ Toolchain, which doesn’t run on the target platform, but allows to generate code

for the target from a development machine.
▶ Bootloader, which is responsible for the initial boot process of the system, and

for loading the kernel into memory
▶ Linux Kernel, with all the device drivers
▶ Root filesystem, which contains all the applications and libraries

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/103

Four major components

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/103

Toolchain

The toolchain is usually a cross-compilation toolchain: it runs on a development
machine and generates code for the embedded platform. It has the following
components:
▶ binutils, the binary manipulation utility including an assembler and a linker
▶ gcc, the C/C++ (and more) compiler, which is the standard in the open-source

world
▶ a C library, which offers the POSIX interface to userspace applications. Several C

libraries are available: glibc, eglibc and uClibc, with different size/features.
▶ gdb, the debugger, which allows remote debugging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/103

Getting a cross-compilation toolchain

▶ Pre-compiled toolchains are the easiest solution. The toolchains from
CodeSourcery are very popular.
http://www.codesourcery.com/

▶ Crosstool-NG is a tool that automates the process of generating the toolchain.
Allows more flexibility than pre-compiled toolchains.
http://www.crosstool-ng.org

▶ Embedded Linux build systems are also usually capable of generating their own
cross-compilation toolchain.

Make sure to get a toolchain that matches your hardware and your needs.
The toolchains provided by the hardware vendors are often old and rusty.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/103

http://www.codesourcery.com/
http://www.crosstool-ng.org

Bootloader: principle

▶ The role of the bootloader is to initialize some basic hardware peripherals, load
the Linux kernel image and run it.

▶ The boot process of most recent embedded processors is the following:
1. The processor executes code in ROM, to load a first-stage bootloader from

NAND, SPI flash, serial port or SD card
2. The first stage bootloader initializes the memory controller and a few other

peripherals, and loads a second stage bootloader. No interaction is possible with this
first stage bootloader, and it is typically provided by the CPU vendor.

3. The second stage bootloader offers more features: usually a shell, with
commands. It allows to manipulate the storage devices, the network, configure the
boot process, etc. This bootloader is typically generic and open-source.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/103

Bootloader: principle

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/103

Open-source bootloaders

▶ U-Boot is the de-facto standard in open-source bootloaders. Available on ARM,
PowerPC, MIPS, m68k, Microblaze, x86, NIOS, SuperH, Sparc. Huge hardware
support available, large number of features (networking, USB, SD, etc.)
http://www.denx.de/wiki/U-Boot

▶ Barebox, a newer open-source bootloader, with a cleaner design than U-Boot,
but less hardware support for the moment.
http://www.barebox.org

▶ GRUB, the standard for x86 PC.
http://www.gnu.org/software/grub/

Make sure your hardware comes with one of these well-known open-source bootloaders.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/103

http://www.denx.de/wiki/U-Boot
http://www.barebox.org
http://www.gnu.org/software/grub/

Linux kernel

▶ The Linux kernel is a core piece of the system. It provides the major following
features:
▶ Process management
▶ Memory management
▶ Inter-process communication, timers
▶ Device drivers for the hardware: input, sound, network, storage, graphics, data

acquisition, timers, GPIO, etc.
▶ Filesystems
▶ Networking
▶ Power management

▶ The Linux kernel has thousands of options to selectively enable or disable features
depending on the system needs.

▶ Under the GPLv2 license.
▶ http://www.kernel.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/103

http://www.kernel.org

Kernel vs. userspace

▶ The Linux kernel runs in privileged mode. It can access and control the
hardware. Its role is to multiplex the available resources, and provide coherent and
consistent interfaces to userspace.

▶ Userspace is the set of applications and libraries that run on the system. They
work in unprivileged mode. They must go through the kernel to access the system
resources, including the hardware. The kernel provides isolation between
applications.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/103

Kernel vs. userspace

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/103

The kernel for your platform

The Linux kernel is highly-portable across architectures. Therefore, the code is split
into several levels:
▶ Code generic to all architectures: ARM, x86, PowerPC, etc.
▶ Code specific to an architecture
▶ Code specific to a System-on-Chip: Atmel AT91, TI OMAP3, Freescale i.MX,

etc.
▶ Code specific to a board, which consists of a particular SoC with additional

peripherals on the board
If your SoC is well supported, the only part of the code that needs to be modified is
the part specific to the board. Except if you need additional device drivers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/103

Kernel compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/103

Kernel programming

▶ The programming environment inside the Linux kernel is very different from the
one in userspace: different API, different constraints, different mechanisms
▶ No standard C library, a specific API is available
▶ No memory protection

▶ Programming in the kernel is typically needed to
▶ adapt the kernel to a particular board
▶ write device drivers

▶ There are many resources on kernel programming:
▶ Linux Device Drivers, book from O’Reilly
▶ Essential Linux Device Drivers, book from Prentice Hall
▶ Kernel programming training materials from Bootlin

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/103

Root filesystem

▶ In a Linux system, applications, libraries, configuration and data are stored into
files in a filesystem

▶ A global single hierarchy of directories and files is used to represent all the files in
the system, regardless of their storage medium or location.

▶ A particular filesystem, called the root filesystem is mounted at the root of this
hierarchy.

▶ This root filesystem typically contains all files needed for the system to work
properly.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/103

Filesystems

The Linux kernel supports a wide-range of filesystem types:
▶ ext2, ext3, ext4 are the default filesystem types for Linux. They are usable on

block devices.
▶ jffs2, ubifs are the filesystems usable on flash devices (NAND, NOR, SPI flashes).

Note that SD/MMC cards or USB keys are not flash devices, but block devices.
▶ squashfs is a read-only highly-compressed filesystem, appropriate for all system

files that never change.
▶ vfat, nfts, the Windows-world filesystems, are also supported for compatibility
▶ nfs, cifs are the two most important network filesystems supported

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/103

Minimum contents of a root filesystem

▶ An init application, which is the first application started by the kernel when the
system boots. init is in charge of starting shells, system services and applications.

▶ A shell and associated tools, in order to interact with the system. The shell will
typically operate over a serial port.

▶ The C library, which implements the POSIX interface, used by all applications.
▶ A set of device files. Those are special files that allow applications to perform

operations on the devices managed by the kernel.
▶ A typical Unix hierarchy, with the bin, dev, lib, sbin, usr/bin, usr/lib,

usr/sbin, proc, sys
▶ The proc and sysfs virtual filesystems mounted

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/103

Busybox

▶ In a normal Linux system, all core components are spread into different projects
and not implemented with embedded constraints in mind

▶ Busybox provides a highly-configurable compilation of all the basic commands
needed in a Linux system: cp, mv, sh, wget, grep, init, modprobe, udhcpc,
httpd

▶ All those commands are compiled into a single binary, and the commands are
symbolic links to this binary. Very space-efficient on systems where static
compilation is used.

▶ Under the GPLv2 license
▶ http://www.busybox.net

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/103

http://www.busybox.net

Application development in a basic system

▶ With just Busybox and the C library, we have a fully working embedded Linux
system

▶ The C library implements the well-known POSIX interface, which provides an API
for process control, signals, file and device operations, timers, pipes, the C
standard library (string functions, etc.), memory management, semaphores, shared
memory, thread management, networking, etc.

▶ This is an already very comfortable environment to develop applications in C or
C++ that can interact with the hardware devices, do some computations, react
on hardware devices.

▶ Thanks to Busybox, you can even easily provide a Web server to monitor the
system.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/103

Interaction with the hardware

There are different ways of interacting with the hardware:
▶ The kernel has a device driver for the device, in which case it can be accessed

either through a device file in /dev with the standard file API, through a text file
in the sysfs filesystem or through the networking API.

▶ Userspace applications running as root can use the /dev/mem special device to
access directly the physical memory, or better use the UIO framework of the
kernel.

▶ For the SPI and I2C busses, there are special /dev/spidevX and /dev/i2cdevX
to send/receive messages on the bus, without having a kernel device driver. For
USB, the libusb library allows userspace USB device drivers.

The choice of one solution over another depends on the type of device, and the need of
interaction with existing kernel subsystems.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/103

Graphics

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/103

Drawing

▶ X.org, http://www.x.org
▶ A client/server approach. The server manages the hardware (graphics and input),

and provides a protocol to clients. The clients are all applications that want to draw
things and receive input events.

▶ The solution used on all desktop Linux systems, allows compatibility with existing
libraries, called graphic toolkits, to develop graphical applications.

▶ Capable of using 2D and 3D acceleration, provided hardware-specific drivers are
available.

▶ DirectFB, http://www.directfb.org
▶ A library over the kernel framebuffer driver, which allows to handle input events.
▶ More lightweight than the X Server, but without the X11 protocol compatibility, and

with a bit less features.
▶ The API can directly be used to develop applications, but toolkits can also be used

on top of it.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/103

http://www.x.org
http://www.directfb.org

Toolkits

Toolkits provide high-level API to build graphical interfaces with windows, buttons,
text inputs, drop-down lists, check boxes, canvas, etc.
▶ Qt, http://qt.nokia.com

▶ A complete development framework in C++, with event management, networking,
timers, threads, XML... and graphics

▶ Used as the foundation for the KDE desktop environment on Linux systems, but also
very popular on embedded systems.

▶ Works on X.org, on the framebuffer or on top of DirectFB
▶ Gtk, http://www.gtk.org

▶ Also a complete development framework, in C.
▶ Used as the foundation for the GNOME desktop environment on Linux systems.

Probably less popular on embedded systems.
▶ Works on X.org and on DirectFB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/103

http://qt.nokia.com
http://www.gtk.org

Sound

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/103

Sound stack

▶ ALSA is the kernel subsystem for sound devices
http://www.alsa-project.org

▶ alsa-lib is the userspace library that allows applications to use ALSA drivers. It is
a fairly low-level library.

▶ PulseAudio is a sound server. It manages multiple audio streams, can adjust
their volume independently, redirect them dynamically, etc.
http://www.pulseaudio.org

▶ GStreamer is a multimedia framework. With a collection of input, output,
decoding and encoding plugins, one can build custom pipelines, to encode, decode
and display video or audio streams
http://www.gstreamer.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/103

http://www.alsa-project.org
http://www.pulseaudio.org
http://www.gstreamer.org

Video stack

▶ X.org or the framebuffer are typically used as video-output devices
▶ The Video4Linux kernel subsystem supports video-input devices and some

video-output devices that do overlay.
▶ The GStreamer multimedia framework video decoding and encoding

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/103

Networking

Linux is well-known system its networking capabilities:
▶ Support for Ethernet, CAN, Wifi, Bluetooth devices in the kernel, and associated

userspace configuration applications
▶ Web servers: httpd in Busybox, lighttpd, boa, etc.
▶ SSH servers: Dropbear, OpenSSH
▶ Cryptography/VPN: OpenSSL, OpenVPN
▶ GPRS/Modem: pppd
▶ Firewall: Netfilter in the kernel, iptables command in userspace
▶ Industrial protocols: CAN Open, Modbus TCP, etc.
▶ And also: mail server, SNMP, NTP, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/103

Real-time

Three solutions for real-time in Linux:
▶ Use the standard kernel. It has been improved over the years for real-time

applications (kernel preemption, high-resolution timers, priority inheritance,
support for the POSIX real-time API, etc.)

▶ Use the PREEMPT_RT patches. Those are patches against the Linux kernel
that further improves its behaviour for real-time (more complete preemption,
interrupt handlers in threads, etc.)
http://rt.wiki.kernel.org

▶ Use one of the co-kernel solutions: Xenomai or RTAI. Real-time tasks are
scheduled by a dedicated real-time core, and Linux runs as a low-priority task.
http://www.xenomai.org
http://www.rtai.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/103

http://rt.wiki.kernel.org
http://www.xenomai.org
http://www.rtai.org

Example: exercise bike
System that shows the performance and progression of the bike user, with a graphical
interface and connection to the hardware.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/103

Embedded Linux development process

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/103

Three major steps

▶ Board Support Package development
▶ System integration
▶ Application development

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/103

Board Support Package (1)

▶ The BSP is the base of the system, that heavily depends on the hardware:
toolchain, bootloader and Linux kernel

▶ Important questions
▶ Are the bootloader and Linux kernel versions sufficiently recent? With too old

versions you miss features, and more importantly, you loose all community support.
▶ Is support available in the mainline official versions of the bootloader and the

kernel? This is the best solution, as it guarantees that you will benefit from updated
versions.

▶ If provided by the hardware vendor, how big is the delta with the official version?
When the delta is too large, it is hard to upgrade to newer versions → you will be
blocked.

▶ Are there binary drivers? They will prevent you to upgrade the kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/103

Board Support Package (2)

▶ The components of the board support package are critical. Don’t rely on old
versions with huge modifications from the hardware vendor.

▶ Make sure you keep separate: the official version from which the development was
started, the hardware vendor modifications, and your own modifications.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/103

System integration

▶ Integrate all the open-source components needed for your system and your custom
libraries and applications.

▶ This involves configuring and cross-compiling a lot of components, with
sometimes complex dependencies and/or non-trivial compilation mechanism,
especially in a cross-compilation context.

▶ Don’t do this by hand, and don’t re-invent the wheel by writing your own build
system.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/103

System integration: solutions

▶ Some binary distributions, such as Debian, are available for embedded
architectures (ARM, PowerPC, MIPS, etc.).
▶ Advantages: everything is already compiled, easy to add/remove components, nice

package management system.
▶ Drawbacks: not a lot of control on the component configuration, code not

necessarily optimized for your hardware platform, fairly big system that often needs
to be stripped down, no mechanism to reproduce the build.

▶ Embedded Linux build systems, that build from source all the elements of a
Linux system and generates the root filesystem image (and more)
▶ Advantages: huge control over the system and components configuration,

automated mechanism to reproduce the build, lightweight system.
▶ Drawbacks: need to learn a new tool, long compilation times.

Do not use the demonstration root filesystem of the hardware vendor as a starting
point: you have no way to reproduce the build and you don’t control its components.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/103

Embedded Linux build system: principle

Some common open-source build systems:
▶ Buildroot, http://www.buildroot.org
▶ OpenEmbedded, http://www.openembedded.org
▶ Yocto, http://www.yoctoproject.org
▶ and others: PTXdist, OpenBricks, OpenWRT, etc.
▶ Note: the hardware vendor specific build systems are usually of bad quality.

Replace it with an independent, community-driven build system.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/103

http://www.buildroot.org
http://www.openembedded.org
http://www.yoctoproject.org

Embedded Linux build system: example of Buildroot

▶ A configuration interface similar to the kernel one allows to define all aspects of
the system: CPU architecture, software components needed, filesystem type for
the root filesystem image, kernel version and configuration, bootloader version
and configuration, etc.

▶ Once the configuration is done, Buildroot takes care of all the steps:
downloading, extracting, patching, configuring, compiling and installing all
components, in the right order.

▶ More than 600 software components already available
▶ Simple to use, regular stable releases, active community
▶ Very easy to add new software components, either open-source or in-house
▶ Drawbacks: full rebuilds often needed, no package management system on the

target.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/103

Choosing open-source components

There are several criteria to look at when choosing an open-source component:
▶ Component quality. Is there sufficient documentation? Is the component widely

used (presence in embedded Linux build systems is a good indicator)
▶ Community vitality. Is the component still being developed actively? Is the

community responsive to bug reports and questions? When was the last stable
release? Is there regular activity in the revision control system?

▶ License. Does the license of the component matches the requirement of your
product?

▶ Technical requirements. Does it offer the features you need? Is it appropriate in
terms of storage, CPU and memory consumption?

→ Components already available in embedded Linux build systems are often a good
starting point.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/103

Application development

▶ Application development in embedded Linux systems is just the same as
developing applications in a normal Linux system: same development tools, same
libraries.

▶ The standard language in Linux is C. All the system, and many libraries are
written in this language.

▶ C++ is also widely used.
▶ Many interpreted languages are available: Lua, Python, Perl, PHP. Do not neglect

their usefulness for non-performance sensitive parts, since they typically allow
faster development.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/103

Application and system debugging

▶ Cross-debugging with gdb and gdbserver
▶ gdbserver runs on the target, and controls the execution of the application to debug
▶ gdb and potentially one of its graphical interfaces, runs on the development

machine, and talks to gdbserver through Ethernet or serial port.
▶ System call tracing with strace and library call tracing with ltrace
▶ System-wide tracing with LTTng, http://lttng.org
▶ System-wide profiling with OProfile, http://oprofile.sourceforge.net

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/103

http://lttng.org
http://oprofile.sourceforge.net

Licenses

▶ The free software licenses grants to everyone the set of four fundamental
freedoms, but they also have some requirements.

▶ They fall into two main categories:
▶ Copyleft licenses, that require modified versions to be distributed under the same

license.
▶ Non-copyleft licenses, that do not require modified versions to be distributed under

the same license: they can be kept proprietary.
▶ The Free Software Foundation and the Open Source Initiative have a list of

licenses together with their opinion on them:
http://www.gnu.org/licenses/license-list.html
http://opensource.org/licenses/index.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/103

http://www.gnu.org/licenses/license-list.html
http://opensource.org/licenses/index.html

GPL

▶ General Public License
▶ The major copyleft license, covers ≈ 50% of the free software projects
▶ For example: Busybox, Linux Kernel, U-Boot, etc.
▶ Requires derivative works to be released under the same license, including

applications relying on a library licensed under the GPL.
▶ The license requires you to ship the complete source code of the GPL components

together with your product, including your modifications to these components,
and attribution must be kept.

▶ No need to distribute the source code before the product is distributed.
▶ License already enforced multiple times in court.
▶ Even though the kernel is GPL, all userspace does not need to be under the GPL

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/103

GPL and kernel modules

▶ As the Linux kernel is under GPL, modifications to it must be released under the
GPL

▶ Some kernel code can be written as modules, which can be dynamically
loaded/unloaded at runtime.

▶ There is a debate whether kernel modules are derivative works of the kernel
or not.

▶ No final answer on the question, opinions vary.
▶ Generally, the community opinion, including many kernel developers, is that

proprietary kernel modules are bad.
▶ “We, the undersigned Linux kernel developers, consider any closed-source Linux

kernel module or driver to be harmful and undesirable.”,
▶ Easier to make your kernel code GPL, and leave the added-value parts in

userspace

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/103

LGPL

▶ Lesser General Public License
▶ A weaker copyleft license, used for many libraries
▶ For example: Gtk, Qt, alsa-lib and most libraries
▶ Requires derivative works to be released under the same license, but non-free

applications can be linked against a LGPL library, as long as the library can be
replaced (dynamic linking is used in general)

▶ The license also requires you to ship the complete source code of the LGPL
components, including your modifications.

▶ Beware that a few libraries are under the GPL: readline library, MySQL library, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/103

Non-copyleft licenses

Many non-copyleft licenses are widely used. They do not require derivative works to
be distributed under the same license, but the original project must still be
credited.
▶ BSD license
▶ Apache license
▶ MIT license
▶ Artistic license
▶ X11 license

You are not required to distribute the source code for these components and you can
integrate code from these components into your proprietary applications.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/103

Licensing good practices

▶ Keep an accurate and complete list of all components you use in your
product, together with their respective license

▶ Make sure that the license of a component matches your requirements before
basing all your product development on it.

▶ Keep your changes separate from the original version of the components. This
allows for easier upgrades, but also to respect the licenses that want the changes
from the original version to be clearly identified.
Possible methods: stack of patches with Quilt, or branches in a revision control
system.

▶ Do not copy/paste GPL/LGPL code into the parts of your system that must
remain proprietary.

▶ Comply with the licenses as soon as your product starts shipping.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/103

Licensing analysis

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/103

Working on embedded Linux

▶ Use Linux on the development station
▶ All community tools are developed by Linux developers, using Linux as their desktop

operating system. Trying to use Windows or Mac OS to do embedded Linux
development will lead to difficulties

▶ Linux on the embedded system is the same as the Linux on the desktop: many good
embedded Linux engineers are just long-time Linux users

▶ Have a good e-mail client
▶ Needed to interact with the community
▶ Your e-mail client must support threading, text-only e-mails (no HTML) and proper

wrapping
▶ Don’t use Outlook or Lotus Notes, but instead Thunderbird, Evolution, KMail,

Claws-Mail, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/103

Working on embedded Linux

▶ Have a good and unfiltered network connectivity
▶ Need to have access to many resources: Git and SVN repositories, IRC channels for

discussion with the community, mailing-lists
▶ Having a standard SMTP server is also useful to send patches

▶ Control your system components, build procedure and use revision control
systems
▶ Don’t rely on prebuilt kernels or root filesystems, make sure you have all the source

code and the documentation or scripts to rebuild all your system from scratch.
▶ Use revision control systems to keep track of the changes you make to the different

components you use in your system.
▶ A significant part of working with embedded Linux is integration: it has to be done

in a clean way.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/103

Support: full commercial solutions

▶ Vendors such as Montavista, Wind River or Timesys
▶ Provides integrated Board Support Package, system building tools, application

development tools for embedded Linux, together with support.
▶ Advantages: single known representative to deal with, supposedly well-tested

solutions and comprehensive support
▶ Drawbacks: dependency on vendor specific tools, vendor specific kernel and

component versions, lock-in, high cost, support not necessarily that good

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/103

Support: community

▶ The developers of the different components and the open-source community as a
whole generally provides good and timely support.

▶ Through mailing-lists, IRC.
▶ Need to understand how the community works, or better be part of it, to benefit

from good support.
▶ Advantages: small cost, generally very quick and efficient feedback, allows your

engineers to gain knowledge
▶ Drawbacks: support only for recent versions of the components, no clear

representative, need to have some knowledge of how the community works,
doesn’t work for closed code

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/103

Support: commercial support to community solutions

▶ Companies that do not have any specific product, and provide support for existing
open-source components

▶ Companies such as Bootlin, DENX, and hundreds of other small to medium sized
companies.

▶ Advantages: single known representative, usage of well-known open source
components so that you remain independent from the support provider, support
that cares about your specific problem even if old components are used

▶ Drawbacks:?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/103

Android

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/103

Android

▶ Android is the famous Linux-based embedded operating system developed by
Google, mainly targeted at phones, but usable for other applications as well

▶ Not a traditional Linux system: Google has only re-used the Linux kernel and a
few userspace components, but the large majority of the system is Android-specific
→ need of specific skills and knowledge to work on Android

▶ The kernel needs fairly major modifications to be Android-compatible (power
management, inter-process communication, etc.)

▶ Most components developed by Google are licensed under the Apache license, the
kernel is the only component under the GPL.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/103

Android architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/103

Conclusion

▶ Linux and the open source world offers a wide range of components and tools for
embedded system development

▶ Those components have many advantages: focus on added value, low cost,
complete control, etc.

▶ Support is available, both from the community or commercial companies

▶ So what about Linux in your next embedded product?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/103

Conclusion

▶ Linux and the open source world offers a wide range of components and tools for
embedded system development

▶ Those components have many advantages: focus on added value, low cost,
complete control, etc.

▶ Support is available, both from the community or commercial companies
▶ So what about Linux in your next embedded product?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/103

Questions?

Thomas Petazzoni
thomas.petazzoni@bootlin.com

▶ Embedded Linux system development, 23 au 27 janvier 2012, Avignon (english)
▶ Développement système Linux embarqué, 6 au 10 février 2012, Toulouse (français)
▶ Embedded Linux kernel and driver development, 19 au 23 mars 2012, Avignon (english)
▶ Développement système Linux embarqué, avril 2012, Lyon (français)
▶ Développement noyau Linux et drivers, 4 au 8 juin 2012, Toulouse (français)
▶ Toutes les informations sur https://bootlin.com/fr/formation/sessions/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/103

https://bootlin.com/fr/formation/sessions/

	Title

