
FOSDEM 2012

Qt for non-graphical
applications

Thomas Petazzoni
Bootlin
thomas.petazzoni@bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Thomas Petazzoni

▶ Embedded Linux engineer and trainer at Bootlin since 2008
▶ Embedded Linux development: kernel and driver development,

system integration, boot time and power consumption
optimization, consulting, etc.

▶ Embedded Linux, driver development and Android system
development trainings, with materials freely available under a
Creative Commons license.

▶ https://bootlin.com
▶ Major contributor to Buildroot, an open-source, simple and

fast embedded Linux build system
▶ Living in Toulouse, south west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 

https://bootlin.com


Agenda

▶ Context and problem statement
▶ Possible solutions
▶ Usage of Qt

▶ Why Qt ?
▶ The signal/slot mechanism
▶ Usage of timers
▶ Interaction with serial ports
▶ Interaction with sub-processes
▶ Interaction with network
▶ Interaction with Linux Input devices

▶ Conclusion

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



Context and problem statement: hardware

▶ ARM platform
▶ AT91-based
▶ 400 MHz
▶ 64 MB of RAM
▶ 128 MB Flash
▶ No screen !

▶ Platform with multiple peripherals
▶ GSM modem
▶ active RFID reader
▶ passive RFID reader
▶ GPS
▶ USB barcode reader

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



Context and problem statement: application

Develop an application that:
▶ Communicates with an HTTP server over the GSM modem

and/or a wired Ethernet connection
▶ Fetches an XML configuration from HTTP and parses it
▶ Handles events from RFID readers (serial port or Ethernet

based) and USB barcode readers
▶ Manages timers per object seen through RFID (as many

timers as objects seen)
▶ Controls the GSM modem to establish data connection and

send/receive SMS
▶ Applies actions depending on the configuration and events
▶ Informs the HTTP server of events and actions happening
▶ Remains under a proprietary license

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



Possible solutions

▶ Write an application in raw C
▶ Use libcurl for HTTP communication
▶ Use libxml2 or expat for XML parsing
▶ Manually implement, or use another library, for basic data

structure management (linked lists, hash tables, etc.)
▶ As I don’t like threads, use select() or poll() to handle

events coming from the serial ports, the GSM modem, the
network, the USB barcode reader, and the potential dozens or
hundred of timers needed by the application to track objects.

▶ Write a C application using glib for event management and
basic facilities (data structures, XML parsing, but requires
libsoup for HTTP)

▶ Write an application in Python/Ruby
▶ Quite heavy interpreter, interpreted code (no compilation), etc.

▶ Application had to be developed in a short period of time, and
had to adapt quickly to changes in the specification of its
behaviour.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



Qt features

▶ Qt is a cross-platform toolkit for application development
▶ Largely used and known as a graphical widget library, but Qt

is far more than that.

▶ QtCore, event loop with
an original signal/slot
mechanism, data
structures, threads, regular
expressions

▶ QtNetwork networking
(TCP, UDP clients and
servers made easy, HTTP,
FTP support)

▶ QtXml for SAX/DOM
parsing of XML files

▶ QtXmlPatterns for
XPath, XQuery, XSLT and
XML schema support

▶ QtGui for GUI widgets
▶ QtMultimedia for

low-level multimedia
functionality

▶ QtOpenGL
▶ QtOpenVG
▶ QtScript, an

ECMAScript-based
scripting engine

▶ QtSQL to query various
databases

▶ QtSvg
▶ and more...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



The choice of Qt
With Qt, we have :
▶ the benefits of a compiled language, C++ (checks at

compile time, slightly better performance)
▶ an ease of programming approaching the one found in

scripting languages such as Python or Ruby, with all the
services provided by Qt

▶ a framework with an excellent documentation, many
tutorials, forums

▶ a framework for which the knowledge can be re-used for
other projects, in other situations

▶ a framework licensed under the LGPL, which allows
development and distribution of proprietary applications

Moreover :
▶ We don’t have huge performance constraints or real-time

constraints
▶ Our platform is big enough to handle a library such as Qt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 



Size of Qt

▶ A common complaint about Qt could be its size
▶ Qt is highly configurable, and it is possible to build only

some of the modules and for each module define which
classes/features are included.

▶ In my application, only the following modules were needed
(binary sizes given stripped for an ARM platform)
▶ QtCore, for the event loop, timers, data structures. Weighs

2.7 MB
▶ QtNetwork, for HTTP communication. Weighs 710 KB
▶ QtXml, for parsing XML configuration files received over the

network. Weighs 200 KB.
▶ No other dependencies besides the standard C++ library

(802 KB)
▶ It’s certainly a few megabytes, but the ease of development

is so much higher that they are worth it, especially on a device
with 128 MB of Flash and 64 MB of RAM running this single
application.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



Data structures: lists

Super easy chained-list mechanism, much easier to use than the
sys/queue.h API available in C.

#include <QList>

QList<MyObject*> objList;

objList.append(someObj);

foreach (MyObject *obj, objList) {
/* Do something with obj */

}

objList.removeOne(someOtherObj);

myObj = objList.takeFirst();

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



Data structures: hash maps

Here as well, easy to use hash maps.

#include <QHash>

QHash<QString, MyObject*> objMap;

QString name("someName");
objMap[name] = obj;

if (objMap.contains(name)) {
/* Do something */

}

MyObject *obj = objMap[name];

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Signal/slot mechanism

▶ The signal/slot mechanism is a core mechanism of the Qt
framework
▶ Objects can define slots, which are functions called in response

to a signal being received
▶ Objects can emit signals, which are events optionally

associated with data
▶ A signal of a given object can be connected to one or more

prototype-compatible slots in the same object or in other
objects

▶ Allows for very clean management of event propagation inside
the application
▶ Makes select() easy to use.
▶ Most Qt classes use this mechanism, and it can be used by the

application classes as well

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



Signal/slot diagram

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



Signal/slot example: slot side

A class defines a public slot, which is implemented as a regular
C++ method.

class Foobar : public QObject {
Q_OBJECT
...
public slots:

void newFrameReceived(uint identifier);
...

};

void Foobar::newFrameReceived(uint identifier)
{
/* Do something */

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



Signal/slot example: signal side

Another class can emit a signal, and use the emit keyword to do so.

class FrameWatcher : public QObject {
Q_OBJECT
...
signals:

void notifyFrameReceived(uint identifier);
...

};

void FrameWatcher::someMethod(void)
{
uint id;
...
emit notifyFrameReceived(id);
...

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



Signal/slot example: connecting things

▶ Connection takes place between one signal and one slot using
the QObject::connect method.

▶ One signal can be connected to multiple slots.
▶ The great thing is that the class emitting the signal does not

need to know in advance to which signal receiver classes it will
be connected.

int main(void) {
FrameWatcher fw;
Foobar f;

QObject::connect(& fw, SIGNAL(notifyFrameReceived(uint)),
& f, SLOT(newFrameReceived(int)));

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 



Timers (1/2)

▶ In C, timers are a bit painful to use, especially when there are
dozens or hundreds of timers in various places of the
application.

▶ In Qt, it’s very easy and timers are naturally integrated with
all other events in the event loop.

Simply define a slot and a QTimer object.

class Foobar : public QObject
{
Q_OBJECT
private slots:

void timerExpired(void);
private:

QTimer timer;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



Timers (2/2)

Start the timer whenever you want (here in the constructor) and
your slot method gets called every second.

Foobar::Foobar()
{
connect(& timer, SIGNAL(timeout()),

this, SLOT(timerExpired()));
timer.start(1000);

}

void Foobar::timerExpired(void)
{
/* Called every second */

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



Spawning processes 1/2

Very easy to spawn and control sub-processes. In our application,
we needed to control the execution of pppd to establish GPRS
data connections.
Create a process object
p = new QProcess();

Connect its termination signal
connect(p, SIGNAL(finished(int, QProcess::ExitStatus)),

this, SLOT(mySubProcessDone(int, QProcess::ExitStatus)));

Start the process
p->start("mycommand");

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



Spawning processes 2/2

Stop the process
p->terminate();

Notification of completion in a slot
void MyClass::mySubProcessDone(int, QProcess::ExitStatus)
{
/* Do something */

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



Regular expressions

Qt has built-in support for regular expressions, there is no need for
an external library such as pcre.

QRegExp r("\\[([0-9A-F]{2})([0-9A-F]{6})([0-9A-F]{2})\\]");
int pos = r.indexIn(myString);
if (pos != 0) {

qWarning("no match");
return;

}

uint field1 = r.cap(1).toUInt(NULL, 16);
uint field2 = r.cap(2).toUInt(NULL, 16);
uint field3 = r.cap(3).toUInt(NULL, 16);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 



Networking and HTTP

Qt also has built-in support for various network protocols, including
HTTP, without the need of an external library such as libcurl.

Instantiate a NetworkManager
nmanager = new QNetworkAccessManager();

Doing a POST request
QNetworkRequest netReq(QUrl("http://foobar.com"));

reply = nmanager->post(netReq, contents.toAscii());
connect(reply, SIGNAL(finished(void)),

this, SLOT(replyFinished(void)));

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 



TCP server (1/3)

Defining the object implementing the TCP server
class MyOwnTcpServer : public QObject
{
Q_OBJECT

public:
MyOwnTcpServer();

private slots:
void acceptConnection(void);
void readClient(void);

private:
QTcpServer *srv;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



TCP server (2/3)

TCP server constructor
MyOwnTcpServer::MyOwnTcpServer(void)
{
srv = new QTcpServer(this);
srv->listen(QHostAddress::any, 4242);
connect(srv, SIGNAL(newConnection()),

this, SLOT(acceptConnection()));
}

Accepting clients
void MyOwnTcpServer::acceptConnection(void)
{
QTcpSocket *sk = srv->nextPendingConnection();
connect(sk, SIGNAL(readyRead()),

this, SLOT(readClient()));
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

 



TCP server (3/3)

Receiving data line by line
void MyOwnTcpServer::readClient(void)
{
QTcpSocket *sk = dynamic_cast<QTcpSocket *>(sender());
if (! sk->canReadLine())
return;

char buf[1024];
sk->readLine(buf, sizeof(buf));
/* Do some parsing with buf, emit a signal

to another object, etc. */
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

 



XML Parsing

Instantiating a DOM document with file contents
QFile *f = new QFile();
f->open(QIODevice::ReadOnly | QIODevice::Text);

dom = new QDomDocument();
dom->setContent(f);

▶ And then, thanks to the QDomDocument, QDomNodeList,
QDomNode and QDomElement classes, you can easily parse
your XML data.

▶ Not much different from libxml2, but it’s built into Qt, no
need for an external library.

▶ Of course, besides the basic DOM API, there is also a SAX
API and a special stream API.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

 



Communicating with serial ports (1/4)

▶ Communicating with serial ports was essential in our
application

▶ Of course, using the classical C API is possible, but we would
like to integrate serial port communication into the Qt event
loop

▶ The QExtSerialPort additional library makes this really easy.
▶ http://code.google.com/p/qextserialport/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

 

http://code.google.com/p/qextserialport/


Communicating with serial ports (2/4)

Initialization
port = new QextSerialPort("/dev/ttyS3",

QextSerialPort::EventDriven);
port->setBaudRate(BAUD9600);
port->setFlowControl(FLOW_OFF);
port->setParity(PAR_NONE);
port->setDataBits(DATA_8);
port->setTimeout(0);
port->open(QIODevice::ReadOnly);
connect(port, SIGNAL(readyRead()),

this, SLOT(getData()));

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

 



Communicating with serial ports (3/4)

Receiving data in the slot method
void MyClass::getData(void)
{
while (1) {
char c;
if (port->read(& c, 1) <= 0)

break;

/* Do something, like parse the received data, and
emit a signal when something meaningful has been
received */

}
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

 



Communicating with serial ports (4/4)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

 



Using Linux input devices (1/4)

▶ In the project, we had to use USB barcode readers, which are
implemented as standard USB HID devices

▶ QtGui obviously has support for a wide range of input devices
▶ But in QtCore, there is no dedicated infrastructure
▶ So we wanted to integrate the event notification of a Linux

Input device into the Qt event loop
▶ This is very easy to do with QSocketNotifier

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

 



Using Linux input devices (2/4)

Class declaration
class QLinuxInputDevice : public QObject
{
Q_OBJECT
public:
QLinuxInputDevice(const QString &name);

signals:
void onInputEvent(struct input_event ev);

private slots:
void readyRead(void);

private:
int fd;
QSocketNotifier *readNotifier;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

 



Using Linux input devices (3/4)

Initialization
QLinuxInputDevice::QLinuxInputDevice(const QString &name)
{
fd = ::open(fileName.toAscii(), O_RDWR | O_NONBLOCK);

readNotifier =
new QSocketNotifier(fd, QSocketNotifier::Read, this);

connect(readNotifier, SIGNAL(activated(int)),
this, SLOT(readyRead()));

}

The QSocketNotifier mechanism tells Qt to add our file
descriptor in its select() loop and to dispatch events on this file
descriptor as Qt signals.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

 



Using Linux input devices (4/4)

Receiving events
void QLinuxInputDevice::readyRead(void)
{
struct input_event ev[64];

while(1) {
int sz = ::read(fd, ev, sizeof(ev));
if (sz <= 0)

break;
for (int i = 0;

i < (sz / sizeof(struct input_event));
i++)

emit onInputEvent(ev[i]);
}

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

 



Integrating Unix signals 1/2

We want to get a nice Qt signal when an Unix signal is received.
The goal is to handle SIGHUP in order to reopen the log file (after
it has been rotated by logrotate).

Class definition
class QUnixSignalHandler : public QObject
{

Q_OBJECT
public:

QUnixSignalHandler(int signal);

signals:
void fired(void);

private slots:
void gotSignal(void);

private:
int fd;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

 



Integrating Unix signals 2/2
To implement this, we use the signalfd() system call and a
QSocketNotifier. Thanks to this, the Unix signal notification is
completely integrated into Qt event loop, like all other events.

Class implementation
QUnixSignalHandler::QUnixSignalHandler(int signal)
{

sigset_t sigset;
sigemptyset(& sigset);
sigaddset(& sigset, signal);

sigprocmask(SIG_BLOCK, &sigset, NULL);

fd = signalfd(-1, & sigset, 0);
if (fd < 0)
qFatal("Bork");

QSocketNotifier *sn = new QSocketNotifier(fd, QSocketNotifier::Read, this);
connect(sn, SIGNAL(activated(int)), this, SLOT(gotSignal()));

}

void QUnixSignalHandler::gotSignal(void)
{

struct signalfd_siginfo si;
::read(fd, & si, sizeof(si));
emit fired();

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

 



Usage of Unix signal integration

Our Logger class instantiates a QUnixSignalHandler and connects
its fired() signal to a slot that reopens the log file.

Example of QUnixSignalHandler usage
Logger::Logger(QString _logFile)
{

[...]
sigHandler = new QUnixSignalHandler(SIGHUP);
connect(sigHandler, SIGNAL(fired()),

this, SLOT(reOpenLogFile()));
}

void Logger::reOpenLogFile(void)
{

[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1

 



Coming back to the signal/slot mechanism

▶ The signal/slot mechanism is really a great feature of Qt
▶ It unifies all the event management into something much

easier to use than a single, central, select() event loop
▶ All events, such as timer expiration, communication on serial

ports, on TCP sockets, with Linux input devices,
communication with external process are all handled in the
same way.

▶ Each class appears to do its own event management, locally,
making the code very straight-forward

▶ Allows to easily write a single-threaded application: avoids the
need for threads and complicated mutual exclusion,
synchronization issues, etc.

▶ A bit more difficult to manage the the GPRS modem, needed
a moderately elaborate state machine.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

 



Building Qt applications

▶ Qt comes with its own build system, called qmake.
▶ basic and easy to use build system
▶ a .pro file describes the project sources and required libraries,

and a Makefile is automatically generated by qmake
▶ a specially-configured qmake is needed to do cross-compilation.
▶ http://doc.qt.nokia.com/latest/qmake-manual.html

▶ For a more powerful build system, CMake is definitely a good
choice
▶ the one we have chosen for our project
▶ the developer writes a CMakeLists.txt file, cmake parses this

file, runs the associated checks and generates a conventional
Makefile

▶ http://www.cmake.org.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1

 

http://doc.qt.nokia.com/latest/qmake-manual.html
http://www.cmake.org


Building with Cmake : CMakeLists.txt

project(myproject)

find_package(Qt4 REQUIRED COMPONENTS QtCore QtNetwork QtXML)

set(myproject_SOURCES main.cpp file1.cpp file2.cpp file3.cpp)
set(myproject_HEADERS_MOC file1.h file2.h)
set(myproject_HEADERS file3.h)

QT4_WRAP_CPP(myproject_HEADERS_MOC_GENERATED
${myproject_HEADERS_MOC})

include(${QT_USE_FILE})
add_definitions(${QT_DEFINITIONS})

Note: newer versions of CMake will make it even easier, the
QT4_WRAP_CPP call and related things due to the moc
pre-processor are done implicitly.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/1

 



Building with Cmake : CMakeLists.txt

find_package(PkgConfig)
pkg_search_module(EXTSERIALPORT REQUIRED qextserialport)
link_directories(${EXTSERIALPORT_LIBRARY_DIRS})
include_directories(${EXTSERIALPORT_INCLUDE_DIRS})

add_executable(myapp ${myproject_SOURCES}
${myproject_HEADERS_MOC_GENERATED}
${myproject_HEADERS})

target_link_libraries(myapp ${QT_LIBRARIES}
${EXTSERIALPORT_LIBRARIES})

install(TARGETS myapp
RUNTIME DESTINATION bin

)

See also http://developer.qt.nokia.com/quarterly/view/
using_cmake_to_build_qt_projects.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1

 

http://developer.qt.nokia.com/quarterly/view/using_cmake_to_build_qt_projects
http://developer.qt.nokia.com/quarterly/view/using_cmake_to_build_qt_projects


Building with CMake

▶ Create a build directory
mkdir build; cd build

▶ Start the configuration process
cmake
-DCMAKE_TOOLCHAIN_FILE=/path/to/toolchain.file
/path/to/sources
▶ The toolchain file describes your toolchain, and can be

generated by your embedded Linux build system. Makes the
cross-compilation process very easy.

▶ Compilation
make

▶ Installation
make DESTDIR=/path/to/rootfs install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/1

 



Qt and embedded Linux build systems

Qt is packaged is many embedded Linux build systems, which
makes it quite easy to use and integrate in your system:
▶ Buildroot, my favorite. Possible to select at configuration

time which Qt components should be built. Also generates a
CMake toolchain file.

▶ OpenEmbedded/Yocto. Always builds a full-blown Qt, but
possible to install only some parts to the target root
filesystem.

▶ OpenBricks, same thing.
▶ PTXDist, also allows to customize the Qt configuration to

select only the required modules.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/1

 



Documentation
Excellent documentation: both reference documentation and
tutorials, at http://doc.qt.nokia.com/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/1

 

http://doc.qt.nokia.com/


Books

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/1

 



Issues encountered

The development of our application went very smoothly, and Qt
allowed to focus on the application itself rather than little
“details”. Our only issues were:
▶ The fully asynchronous paradigm of signal/slot makes it a

little bit involved to write purely sequential segments of code.
Our case was managing the GPRS modem, which involves
sending multiple AT commands in sequence. We had to write
a moderately elaborate state machine for something that is in
the end quite simple.

▶ The single-threaded architecture is very sensitive to
delays/timeouts. By default, the QExtSerialPort configures
the serial ports to wait 500ms before giving up reading
(VTIME termios). This caused our application to loose events
from LinuxInput devices.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/1

 



Conclusion

Qt really met all its promises:
▶ It was easy to learn, even for a very moderately-skilled C++

programmer (me !)
▶ It allowed to develop the application very quickly by focusing

on the application logic rather than “low-level” details (XML
parsing, HTTP requests, event management, etc.)

▶ Ease of programming very close to Python. You code
something, and it just works.

▶ The skills have already been re-used for the development of
another Qt application, this time a graphical demo application
for a customer.

I would therefore strongly recommend considering the use of
Qt amongst the possible frameworks for your applications,
even non-graphical ones.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/1

 



Questions?

Thomas Petazzoni
thomas.petazzoni@bootlin.com

Slides under CC-BY-SA 3.0.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/1


