CELF Embedded Linux Conference

Europe
October 15 & 16, 2009

Update on boot
time reduction
technigues

bootlin

M |C h ael O pd enac ker embedded Linux and kernel engineering
Bootlin

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Why trying to reduce boot time?

To achieve better user perception

» EXxpose the user to relativistic

acceleration T=1 \/1 — {U‘E;'JCQII

» Major drawback: the user gets to far
from the device to see it boot faster.

» Time travel

» Drawback: the user gets 2 devices
In his hands for a certain amount of
time.

» Distract the user

» Make the boot process faster

TNY-A9260 board from CALAO Systems
» AT91SAM9260 CPU at 180 MHz
» 64 MB of RAM
» 256 MB of NAND flash storage
» Serial port
» USB device port (used for networking)
» Expansion port (Ethernet, SPI...)

» Simple system built with BusyBox
» Mounting a JFFS2 partition with JPG photos on it (204 MB)

» Starting a BusyBox web server to view the photos and also
upload new ones.

» Initial boot time: 37.75 s

» Bootstrap (at91bootstrap)

» Bootloader (U-boot)

» Linux

» User space (mount jffs2, BusyBox http)

@

CONFIG PRINTK TIME

» Configure it in the Kernel Hacking section.

» Adds timing information to kernel messages. Simple and robust.
® Not accurate enough on some platforms (1 jiffy = 10 ms on arm!)

See http://elinux.org/Printk_Times

[42949372.970000] Memory: 64MB = 64MB total

[42949372.970000] Memory: 54784KB available (1404K code, 296K data, 72K init)
[42949373.180000] Mount-cache hash table entries: 512

[42949373.180000] CPU: Testing write buffer coherency: ok

[42949373.180000] checking if image is initramfs...it isn't (bad gzip magic numb
ers); looks like an initrd

[42949373.200000] Freeing initrd memory: 8192K

[42949373.210000] NET: Registered protocol family 16

http://elinux.org/Printk_Times

CONFIG BOOT TRACER in kernel configuration

» Introduced in Linux 2.6.28
Based on the ftrace tracing infrastructure

» Allows to record the timings of initcalls

» Boot with the initcall debug and printk.time=1 parameters,
run dmesg > boot.log and on your workstation, run
cat boot.log | perl scripts/bootgraph.pl > boot.svg
to generate a graphical representation

5s

o = w
P & - = @ wa -
= = = E= B E= =

mnuw T My e

tty init pty init atmel _nand_init Ip_auto_config

il

TR L

8

» From Tim Bird
http://elinux.org/Grabserial

» A simple script to add timestamps to messages coming from a
serial console.

» Key advantage: starts counting very early (bootloader),
and doesn't just start when the kernel initializes.

» Another advantage: no overhead on the target, because run on
the host machine.

http://elinux.org/Grabserial

» Stopped initializing the IP address on the kernel command line
(old remains from NFS booting, was convenient not to hardcode
the IP address in the root filesystem.)

» Instead, did it in the /etc/init.d/rcS script.
» This saved 1.56 s!

» You will save even more if you had other related options in your
kernel (DHCP, BOOP, RARP)

=RW] IP: kernel level autoconfiguration IP_PNP

O

[
[

» PTYs are needed for remote terminals (through SSH)
They are not needed in our dedicated system!

» The number of PTYs can be reduced through the
CONFIG LEGACY PTY COUNT kernel parameter.
If this number is set to 4, we save 0.63 s.

» As we're not using PTYs at all in our production system,
we disabled them with completely with CONFIG LEGACY PTYS.
We saved 0.64 s.

» Note that this can also be achieved without recompiling the
kernel, using the pty. legacy count kernel parameter.

» CONFIG JFFS2 SUMMARY
Dramatically reduces mount time. No longer needed to scan
the whole filesystem at mount time, because collected

Information is now stored in flash.

Switching this on saved 27.86 s!

@

» Possible to disable compression.
That's what we tried, as all our files (JPG photos) can't be
compressed.

» Unfortunately, we just saved 0.03 s!
JFFS2 probably gives up compressing when a file can't be

compressed.
= [« Advanced compression options for |FF52 JFF52 COMPRESSION_OPTIONS
[0 JFF52 ZLIB compression support JFF52 ZLIB
[0 JFFS2 LZO compression support (NEW) JFF52 LZO
[0 JFFS2 RTIME compression support JFF52 RTIME
[0 JFFS2 RUBIN compression support (NEW) JFF52 _RUBIN
= [JFF52 default compression mode
(¥} N0 compression JFF52 CMODE_NONE
) priority JFFS2_CMODE_PRIORITY
() size (EXPERIMENTAL) JFFS2_CMODE_SIZE
) Favour LZO JFF52 CMODE_FAVOURLZO

13

» At each boot, the Linux kernel calibrates a delay loop (for the
udelay function). This measures a Loops per jiffy (lpj)
value.

» You just need to measure this once and the result never changes!
Find the Lpj value in kernel boot messages (if you don't get it in
the console, boot Linux with the Loglevel=8 parameter).
Example:

Calibrating delay loop... 99.73 BogoMIPS (lpj=498688)

» At the next boots, start Linux with the below option:
Lpj=<value>

» It saved us 0.18 s

» LZO is a compression algorithm that is much faster than gzip,
at the cost of a slightly degrade compression ratio (+10%).

» It was already in use in the kernel code (JFFS2, UBIFS...)

» Albin Tonnerre from Bootlin added support for LZO compressed
kernels. His patches are waiting for inclusion in mainstream
Linux. Get them from http://lwn.net/Articles/350985/

= [« Kernel compression mode
O Gzip KERNEL GZIP
-
O

15

http://lwn.net/Articles/350985/

» Saves approximately 0.25 s of boot time
See https://bootlin.com/blog/lzo-kernel-compression/

» Our patch also allows LZO to be used for initramfs
decompression (CONFIG INITRAMFS COMPRESSION LZO=y)

» Another solution is to use an uncompressed kernel
(another patch will be sent), in which case kernel execution is just
marginally faster than with LZO, at the expense of a double size.

Gzip LZO Uncompressed

Kernel size 1.33Mb | L45Mb 2.45Mb
Bootloader + (0.30s 0.33s 0.60s
kernel load time
Early kernel init 0.52s 0.33s 0.02s
time
Total time (0.82s 0.66s 0.62s

16

https://bootlin.com/blog/lzo-kernel-compression/

Directly boot Linux from bootstrap code

.q.

D@\ g
» Idea: make a slight change to at91bootstrap to directly load and
execute the Linux kernel image instead of the U-boot one.

» Rather straightforward when boot U-boot and the kernel are
loaded from NAND flash.

» Requires to hardcode the kernel command line in the kernel
image (CONFIG CMDLINE)

» Requires more development work when U-boot is loaded from a
different type of storage (SPI dataflash, for example).
In this case, you can keep U-boot, but remove all the features not
needed in production (USB, Ethernet, tftp...)

» Time savings: about 2 s

See https://bootlin.com/blog/at91bootstrap-linux/

17

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

https://bootlin.com/blog/at91bootstrap-linux/

» The output of kernel bootup messages to the console takes
time! Even worse: scrolling up in framebuffer consoles!
Console output not needed in production systems.

» Console output can be disabled with the quiet
argument in the Linux kernel command line (bootloader settings)

» Example:
root=/dev/ram0@ rw init=/startup.sh quiet

» You can still see the messages through the dmesg command.

See http://elinux.org/Disable Console

http://elinux.org/Disable_Console

» Initial boot time:; 38 s

» Final boot time: approximately 4 s

» Other techniques can be used to reduce
boot time even further!

Through the CONFIG EMBEDDED option

» Remove things that are not needed in your dedicated system
(features, debugging facilities and messages)

» Make sure you have no unused kernel drivers

» Disable support for loadable kernel modules and make all your
drivers static (unless there are multiple drivers than can be
loaded later).

» A smaller kernel is faster to load

» A simpler kernel executes faster

If you are using a distribution or an automatically generated root
filesystem

» Remove services you don't need (ssh), or start them later.
Use static device files (no udev or mdev).

» Start your services directly from a single startup script.
This eliminates multiple callsto /bin/sh.

» This saves tens of seconds with root filesystems generated with
OpenEmbedded (for example).

» fork/exec system calls are very heavy.
Because of this, calls to executables from shells are slow.

» Even executing echo in busybox shells results in a fork syscall!

» Select Shells -> Standalone shell in busybox
configuration to make the busybox shell call applets whenever
possible.

» Pipes and back-quotes are also implemented by fork / exec.
You can reduce their usage in scripts. Example:
cat /proc/cpuinfo | grep model
Replace it with: grep model /proc/cpuinfo

See http://elinux.org/Optimize_RC_Scripts

http://elinux.org/Optimize_RC_Scripts

Run faster by using the most appropriate filesystems!

» Compressed read-only filesystem (block device):
use SquashFS (http://squashfs.sourceforge.net)
iInstead of CramFS (much slower, getting obsolete).

» NAND flash storage: you should try UBIFS
(http://www.linux-mtd.infradead.org/doc/ubifs.html), the
successor of JFFS2. It is much faster. You could also use
SquashFS. See our Choosing filesystems presentation
(https://bootlin.com/docs/filesystems).

http://squashfs.sourceforge.net/
http://www.linux-mtd.infradead.org/doc/ubifs.html
https://bootlin.com/docs/filesystems

The ultimate technique for instant boot!

» In development: start the system, required applications and the
user interface. Hibernate the system to disk / flash in this state.

» In production: boot the kernel and restore the system state from
with this predefined hibernation image.

» This way, you don't have to initialize the programs one by one.
You just get the back to a valid state.

» Used in Sony cameras to achieve instant power on time.

» Unlike Suspend to RAM, still allows to remove batteries!

» Using a profiler can help to identify unexpected behavior degrading
application performance.

» For example, a profiler can tell you in which functions most of the

time is spent.
» You can then profile it with the whole Valgrind toolsuite: '

Cachegrind: sources of cache misses and function statistics.
Massif: sources of memory allocation.

——

» Possible to start with strace and Itrace
» Advanced profiling with Valgrind: http://valgrind.org

» Compile your application for x86 architecture

» See Embedded Linux system development course for details:
https://bootlin.com/training/embedded-linux/

http://valgrind.org/
https://bootlin.com/training/embedded-linux/

» Copy kernel and initramfs from flash to RAM using DMA
(Used by MontaVista in Dell Latitude ON)

» Compile drivers as modules for devices not used at boot
time. This reduces time spent initializing drivers.
A smaller kernel is also faster to copy to RAM.

» Fast boot, asynchronous initcalls:
http://lwn.net/Articles/314808/
Mainlined, but API still used by very few drivers.
Mostly useful when your CPU has idle time in the boot
process.

See http://elinux.org/Boot_Time for more resources

http://lwn.net/Articles/314808/
http://elinux.org/Boot_Time

» Bootchart Lite: a lightweight bootchart implementation
http://code.google.com/p/bootchart-lite/

» Timechart from Arjan van de Ven:
http://blog.fenrus.org/?p=5
See http://elinux.org/Bootchart#Timechart

» Use statically linked applications
(less CPU overhead, less libraries to load)

» Use deferred initcalls
See http://elinux.org/Deferred_Initcalls

» NAND: just check for bad blocks once
Atmel: see http://patchwork.ozlabs.org/patch/27652/

http://code.google.com/p/bootchart-lite/
http://blog.fenrus.org/?p=5
http://elinux.org/Bootchart#Timechart
http://elinux.org/Deferred_Initcalls
http://patchwork.ozlabs.org/patch/27652/

» See the “How we got a 3D application booting in 5 seconds”

presentation from Gregory Clément and Simon Polette
http://tree.celinuxforum.org/CelfPubWiki/ELCEurope2009Presentations

http://tree.celinuxforum.org/CelfPubWiki/ELCEurope2009Presentations

