Wii Nunchuk Interface

The Wii Nunchuk uses a proprietary connector with six pins. The connections are as follows.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

1 = +3V (3V recommended but works at 5V)
2 = Clock
3 = N/A
4 = N/A
5 = Data
6 = Gnd

Figure 1: Wii Nunchuk Pinout

To communicate with the Nunchuk, we must send a handshake signal. If you are using a **black** Wii Nunchuk, send 2 bytes 0xF0, 0x55 to initialize the first register and 0xFB, 0x00 to initialize the second register of the Nunchuk. On a **white** Wii Nunchuk, send 0x40, 0x00 followed by 0x00. The **I²C** address of both Wii Nunchuks is 0x52. The frequency used to communicate with the Wii Nunchuk is 100KHz.
Figure 2: Wii Nunchuk Physical Operation

I²C Bus: Inter-Integrated Circuits

The I²C (Inter-IC) bus is a bi-directional two-wire serial bus that provides a communication link between integrated circuits (ICs). Phillips introduced the I²C bus 20 years ago for mass-produced items such as televisions, VCRs, and audio equipment. Today, I²C is the de-facto solution for embedded applications. It’s also known as the “two-wire interface” (TWI), due to the fact that it uses just two wires: SDA (serial data) and SCL (serial clock). A typical I²C configuration consists of one master device and any number of slave devices sharing the bus. The master initiates all transactions with the slaves. In this lab, the Intel Atom motherboard acts as the master device and the Wii Nunchuk is the slave device.
Another name you will hear used in connection with I²C is SMBus (System Management Bus). The SMBus protocol was developed by Intel in 2005 and is based on I²C. SMBus defines a stricter range of operating limits, including clock speed, timing and data formats, compared to I²C. Many I²C devices have, in turn, incorporated policies from SMBus and both kinds of devices can often be used on the same bus.
Wii Nunchuk Output

The Wii Nunchuk is a slave I²C bus device that outputs six bytes of data as follows.

<table>
<thead>
<tr>
<th>Data byte receive</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joystick X</td>
<td>0x00</td>
</tr>
<tr>
<td>Joystick Y</td>
<td>0x01</td>
</tr>
<tr>
<td>Accelerometer X (bit 9 to bit 2 for 10-bit resolution)</td>
<td>0x02</td>
</tr>
<tr>
<td>Accelerometer Y (bit 9 to bit 2 for 10-bit resolution)</td>
<td>0x03</td>
</tr>
<tr>
<td>Accelerometer Z (bit 9 to bit 2 for 10-bit resolution)</td>
<td>0x04</td>
</tr>
<tr>
<td>Accel. Z bit 1</td>
<td>Accel. Z bit 0</td>
</tr>
</tbody>
</table>

Byte 0x00 : X-axis data of the joystick
Byte 0x01 : Y-axis data of the joystick
Byte 0x02 : X-axis data of the accelerometer sensor
Byte 0x03 : Y-axis data of the accelerometer sensor
Byte 0x04 : Z-axis data of the accelerometer sensor
Byte 0x05 : bit 0 as Z button status - 0 = pressed and 1 = release
 bit 1 as C button status - 0 = pressed and 1 = release
 bit 2 and 3 as 2 lower bit of X-axis data of the accelerometer sensor
 bit 4 and 5 as 2 lower bit of Y-axis data of the accelerometer sensor
 bit 6 and 7 as 2 lower bit of Z-axis data of the accelerometer sensor

Figure 3: Wii Nunchuk I²C Output

Figure 4: Nunchuk Interface Board Circuit