
Online
seminar

Audience
Companies and engineers interested in using the Yocto Project to build
their embedded Linux system.

Training objectives
• Be able to understand the role and principle of an embedded Linux build system, and

compare Yocto Project/OpenEmbedded to other tools offering similar functionality.
• Be able to configure and build basic embedded Linux system with Yocto, and install

the result on an embedded platform.
• Be able to write and extend recipes, for your own packages or customizations.
• Be able to use existing layers of recipes, and create your own new layers.
• Be able to integrate support for your own embedded board into a BSP layer.
• Be able to create custom images.
• Be able to use the Yocto Project SDK to develop applications.
• Be able to use devtool to generate and modify recipes.

Prerequisites
• Knowledge and practice of UNIX or GNU/Linux commands: participants must

be familiar with the Linux command line. Participants lacking experience on this
topic should get trained by themselves, for example with our freely available on-line
slides.

• Minimal experience in embedded Linux development: participants should have
a minimal understanding of the architecture of embedded Linux systems: role of
the Linux kernel vs. user-space, development of Linux user-space applications in C.
Following Bootlin’s Embedded Linux course allows to fulfill this pre-requisite.

• Minimal English language level: B1, according to the Common European Frame-
work of References for Languages, for our sessions in English. See the CEFR grid
for self-evaluation.

Pedagogics
• Lectures delivered by the trainer, over video-conference. Participants can ask ques-

tions at any time.
• Practical demonstrations done by the trainer, based on practical labs, over video-

conference. Participants can ask questions at any time. Optionally, participants
who have access to the hardware accessories can reproduce the practical labs by
themselves.

• Instant messaging for questions between sessions (replies under 24h, outside of
week-ends and bank holidays).

• Electronic copies of presentations, lab instructions and data files. They are freely
available here.

Certificate
Only the participants who have attended all training sessions, and who have scored over
50% of correct answers at the final evaluation will receive a training certificate from
Bootlin.

Disabilities
Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

1

Yocto Project and
OpenEmbedded

development training

Course duration
U 4 half days – 16 hours

Language

Materials English

Oral Lecture English
French
Portuguese
Italian

Trainer
One of the following engineers

• Alexandre Belloni
• Antonin Godard
• Jérémie Dautheribes
• João Marcos Costa
• Luca Ceresoli

Contact
@ training@bootlin.com
T +33 484 258 097

bootlin.com

https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/yocto
mailto:training@bootlin.com
mailto:training@bootlin.com
https://bootlin.com/company/staff/alexandre-belloni/
https://bootlin.com/company/staff/antonin-godard/
https://bootlin.com/company/staff/jeremie-dautheribes/
https://bootlin.com/company/staff/joaomarcos-costa/
https://bootlin.com/company/staff/luca-ceresoli/
mailto:training@bootlin.com
https://bootlin.com


Required equipement
Mandatory equipment:

• Computer with the operating system of your choice, with the Google Chrome or Chromium browser for videoconferencing.
• Webcam and microphone (preferably from an audio headset).
• High speed access to the Internet.

Optionnally, if the participants want to be able to reproduce the practical labs by themselves, they must separately purchase the
hardware platform and accessories, and must have a PC computer with a native installation of Ubuntu Linux 24.04.

Hardware platform for practical labs

STM32MP1 Discovery Kit
One of these Discovery Kits from STMi-
croelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-
DK2 or STM32MP157F-DK2

• STM32MP157, dual Cortex-A7 processor
from STMicroelectronics

• USB powered
• 512 MB DDR3L RAM
• Gigabit Ethernet port
• 4 USB 2.0 host ports
• 1 USB-C OTG port
• 1 Micro SD slot
• On-board ST-LINK/V2-1 debugger
• Arduino compatible headers
• Audio codec, buttons, LEDs
• LCD touchscreen (DK2 kits only)

BeagleBone Black
BeagleBone Black or BeagleBone Black
Wireless board

• An ARM AM335x (single Cortex-A8) pro-
cessor from Texas Instruments

• USB powered
• 512 MB of RAM
• 2 or 4 GB of on-board eMMC storage
• USB host and device
• HDMI output
• 2 x 46 pins headers, to access UARTs, SPI

buses, I2C buses and more.
• Ethernet or WiFi

BeaglePlay
BeaglePlay board

• Texas Instruments AM625x (4xARM
Cortex-A53 CPU)

• SoC with 3D acceleration, integrated
MCU and many other peripherals.

• 2 GB of RAM
• 16 GB of on-board eMMC storage
• USB host and USB device, microSD,

HDMI
• 2.4 and 5 GHz WiFi, Bluetooth and also

Ethernet
• 1 MicroBus Header (SPI, I2C, UART, ...),

OLDI and CSI connector.

2



Training Schedule

Half day 1
Lecture Introduction to embedded Linux

build systems
• Overview of an embedded Linux system architecture
• Methods to build a root filesystem image
• Usefulness of build systems

Lecture Yocto Project and Poky reference
system overview

• Introduction to the Yocto / OpenEmbedded build system and its lex-
icon

• Overview of the Poky reference system

Lecture Using Yocto Project - basics • Setting up the build directory and environment
• Configuring the build system
• Building a root filesystem image
• Organization of the build output

Demo First Yocto Project build • Downloading the Poky reference build system
• Configuring the build system
• Building a system image

Demo Flashing and booting • Flashing and booting the image on the board

Half day 2
Lecture Using Yocto Project - advanced

usage
• Variable assignment, operators and overrides
• Package variants and package selection
• bitbake command line options

Demo Using NFS and configuring the
build

• Configuring the board to boot over NFS
• Add a package to the root filesystem
• Learn how to use the PREFERRED_PROVIDER mechanism
• Get familiar with the bitbake command line options

Lecture Writing recipes - basics • Recipes: overview
• Recipe file organization
• Applying patches
• Recipe examples

Demo Adding an application to the build • Writing a recipe for ninvaders
• Troubleshooting the recipe
• Troubleshooting cross-compilation issues
• Adding ninvaders to the final image

Lecture Writing recipes - advanced fea-
tures

• Extending and overriding recipes
• Virtual packages
• Learn about classes
• BitBake file inclusions
• Debugging recipes
• Configuring BitBake network usage

Half day 3
Lecture Layers • What layers are

• Where to find layers
• Creating a layer

3



Demo Writing a layer • Learn how to write a layer
• Add the layer to the build
• Move ninvaders to the new layer

Demo Extend a recipe • Extend the kernel recipe to add patches
• Configure the kernel to compile the nunchuk driver
• Edit the ninvaders recipe to add patches
• Play ninvaders

Lecture Writing a BSP • Introduction to BSP layers
• Adding a new machine
• Bootloader configuration
• Linux: the kernel bbclass and the linux-yocto recipe

Demo Create a custom machine configu-
ration

• Create a new machine configuration
• Build an image for the new machine

Lecture Distro layers • Distro configuration
• Distro layers

Half day 4
Lecture Images • Writing an image recipe

• Image types
• Writing and using package groups recipes

Demo Create a custom image • Add a basic image recipe
• Select the image capabilities and packages
• Add a custom package group
• Add an image variant for debugging

Lecture Writing recipes - going further • The per-recipe sysroot
• Using Python code in metadata
• Variable flags
• Packages features and PACKAGECONFIG
• Conditional features
• Package splitting
• Dependencies in detail

Lecture Licensing • Managing open source licenses

Lecture The Yocto Project SDK • Goals of the SDK
• Building and customizing an SDK
• Using the Yocto Project SDK

Demo Develop your application in the
Poky SDK

• Building an SDK
• Using the Yocto Project SDK

Lecture Devtool • About devtool
• Devtool use cases

Demo Using devtool • Generate a new recipe
• Modify a recipe to add a new patch
• Upgrade a recipe to a newer version

Lecture Automating layer management • Automating layer management

4



Lecture Runtime Package Management • Introduction to runtime package management
• Build configuration
• Package server configuration
• Target configuration

Possible extra time
Extra time (up to 4 hours) may be proposed if the agenda didn’t fit in 4 half days, according to the time spent answering questions
from participants.

5


