
Yocto Project and OpenEmbedded Training

Beaglebone Black variant

Practical Labs

https://bootlin.com

July 11, 2025

https://bootlin.com

Yocto Project and OpenEmbedded Training

About this document
Updates to this document can be found on https://bootlin.com/doc/training/yocto.

This document was generated from LaTeX sources found on https://github.com/bootlin/training-materials.

More details about our training sessions can be found on https://bootlin.com/training.

Copying this document
© 2004-2025, Bootlin, https://bootlin.com.

This document is released under the terms of the Creative Commons CC BY-SA 3.0 license
. This means that you are free to download, distribute and even modify it, under certain
conditions.

Corrections, suggestions, contributions and translations are welcome!

2 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com/doc/training/yocto
https://github.com/bootlin/training-materials
https://bootlin.com/training
https://bootlin.com
https://creativecommons.org/licenses/by-sa/3.0/
https://bootlin.com

Yocto Project and OpenEmbedded Training

Training setup
Download files and directories used in practical labs

Install lab data
For the different labs in this course, your instructor has prepared a set of data (kernel images, kernel config-
urations, root filesystems and more). Download and extract its tarball from a terminal:

$ cd
$ wget https://bootlin.com/doc/training/yocto/yocto-labs.tar.xz
$ tar xvf yocto-labs.tar.xz

Lab data are now available in an yocto-labs directory in your home directory. This directory contains
directories and files used in the various practical labs. It will also be used as working space, in particular to
keep generated files separate when needed.

Update your distribution
To avoid any issue installing packages during the practical labs, you should apply the latest updates to the
packages in your distro:

$ sudo apt update
$ sudo apt dist-upgrade

You are now ready to start the real practical labs!

Install extra packages
Feel free to install other packages you may need for your development environment. In particular, we
recommend to install your favorite text editor and configure it to your taste. The favorite text editors of
embedded Linux developers are of course Vim and Emacs, but there are also plenty of other possibilities,
such as Visual Studio Code1, GEdit, Qt Creator, CodeBlocks, Geany, etc.

It is worth mentioning that by default, Ubuntu comes with a very limited version of the vi editor. So if you
would like to use vi, we recommend to use the more featureful version by installing the vim package.

More guidelines
Can be useful throughout any of the labs

• Read instructions and tips carefully. Lots of people make mistakes or waste time because they missed
an explanation or a guideline.

• Always read error messages carefully, in particular the first one which is issued. Some people stumble
on very simple errors just because they specified a wrong file path and didn’t pay enough attention to
the corresponding error message.

• Never stay stuck with a strange problem more than 5 minutes. Show your problem to your colleagues
or to the instructor.

• You should only use the root user for operations that require super-user privileges, such as: mounting
a file system, loading a kernel module, changing file ownership, configuring the network. Most regular
tasks (such as downloading, extracting sources, compiling...) can be done as a regular user.

1This tool from Microsoft is Open Source! To try it on Ubuntu: sudo snap install code --classic

© 2004-2025 Bootlin, CC BY-SA license 3

https://bootlin.com

Yocto Project and OpenEmbedded Training

• If you ran commands from a root shell by mistake, your regular user may no longer be able to handle
the corresponding generated files. In this case, use the chown -R command to give the new files back
to your regular user.
Example: $ sudo chown -R myuser.myuser linux/

4 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Yocto Project and OpenEmbedded Training

Lab1: First Yocto Project build
Your first dive into Yocto Project and its build mechanism

During this lab, you will:

• Set up an OpenEmbedded environment

• Configure the project and choose a target

• Build your first Poky image

Setup
Before starting this lab, make sure your home directory is not encrypted using eCryptFS. OpenEmbedded
cannot be used on top of an eCryptFS file system due to limitations in file name lengths.

Install the required packages:

sudo apt install gawk wget git diffstat unzip texinfo gcc build-essential \
chrpath socat cpio python3 python3-pip python3-pexpect xz-utils debianutils \
iputils-ping python3-git python3-jinja2 python3-subunit zstd liblz4-tool file \
locales libacl1

Avoiding unprivileged user namespace restrictions
Ubuntu 24.04 added an apparmor policy preventing usage of unprivileged user namespace restrictions to
improve security. Unfortunately this prevents bitbake from working, because it uses namespaces to forbid
untracked downloads outside of the do_fetch task. Ironically, bitbake does this to improve security. This
results in the following error message:

ERROR: PermissionError: [Errno 1] Operation not permitted
...

with open("/proc/self/uid_map", "w") as f:

To disable this apparmor restriction, run this command in a shell:

echo 0 | sudo tee /proc/sys/kernel/apparmor_restrict_unprivileged_userns

You will need to run this command every time you reboot your machine.

For more information, including how to disable this restriction persistently, see the Ubuntu 24.04 Release
Notes.

Download Yocto
Go to the $HOME/yocto-labs/ directory.

Download the scarthgap version of Poky:

git clone https://git.yoctoproject.org/git/poky
cd $HOME/yocto-labs/poky
git checkout -b scarthgap-5.0.4 scarthgap-5.0.4

Return to your project root directory (cd $HOME/yocto-labs/) and download the meta-arm and meta-ti
layers:

© 2004-2025 Bootlin, CC BY-SA license 5

https://discourse.ubuntu.com/t/ubuntu-24-04-lts-noble-numbat-release-notes/39890#p-99950-unprivileged-user-namespace-restrictions
https://discourse.ubuntu.com/t/ubuntu-24-04-lts-noble-numbat-release-notes/39890#p-99950-unprivileged-user-namespace-restrictions
https://bootlin.com

Yocto Project and OpenEmbedded Training

cd $HOME/yocto-labs
git clone https://git.yoctoproject.org/git/meta-arm
cd meta-arm
git checkout -b yocto-5.0.1 yocto-5.0.1

cd $HOME/yocto-labs
git clone https://git.yoctoproject.org/git/meta-ti
cd meta-ti
git checkout -b scarthgap-labs 10.01.03
git am $HOME/yocto-labs/bootlin-lab-data/0001-Don-t-use-a-custom-deployment-directory.patch \
$HOME/yocto-labs/bootlin-lab-data/0002-Modify-linux-bb.org-defconfig.patch

Set up the build environment
Check you’re using Bash. This is the default shell when using Ubuntu.

Export all needed variables and set up the build directory:

cd $HOME/yocto-labs
source poky/oe-init-build-env

You must specify which machine is your target. By default it is qemu. We need to build an image for a
beaglebone. Update the MACHINE configuration variable accordingly. Be careful, beaglebone is different from
the beagleboard machine!

Also, if you need to save disk space on your computer you can add INHERIT += "rm_work" in the previous
configuration file. This will remove the package work directory once a package is built.

Don’t forget to make the configuration aware of the ARM and TI layers. Edit the layer configuration file
($BUILDDIR/conf/bblayers.conf) and append the full path to the meta-arm-toolchain, meta-arm, meta-
ti-bsp directories to the BBLAYERS variable.

Build your first image
Now that you’re ready to start the compilation, simply run:

bitbake core-image-minimal

Once the build finished, you will find the output images under $BUILDDIR/tmp/deploy/images/beaglebone.

Set up the SD card
In this first lab we will use an SD card to store the bootloader, kernel and root filesystem files. The SD card
image has been generated and is named core-image-minimal-beaglebone.rootfs.wic.xz.

Now uncompress and flash the image with the following command:

xz -dc $BUILDDIR/tmp/deploy/images/beaglebone/core-image-minimal-beaglebone.rootfs.wic.xz | \
sudo dd of=/dev/sdX conv=fdatasync bs=4M status=progress

Setting up serial communication with the board
The Beaglebone serial connector is exported on the 6 pins close to one of the 48 pins headers. Using your
special USB to Serial adapter provided by your instructor, connect the ground wire (blue) to the pin closest
to the power supply connector (let’s call it pin 1), and the TX (red) and RX (green) wires to the pins 4 (board
RX) and 5 (board TX)2.

2See https://www.olimex.com/Products/Components/Cables/USB-Serial-Cable/USB-Serial-Cable-F/ for details about the USB
to Serial adapter that we are using.

6 © 2004-2025 Bootlin, CC BY-SA license

https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE
https://www.olimex.com/Products/Components/Cables/USB-Serial-Cable/USB-Serial-Cable-F/
https://bootlin.com

Yocto Project and OpenEmbedded Training

You always should make sure that you connect the TX pin of the cable to the RX pin of the board, and
vice-versa, whatever the board and cables that you use.

Once the USB to Serial connector is plugged in, a new serial port should appear: /dev/ttyUSB0. You can
also see this device appear by looking at the output of dmesg.

To communicate with the board through the serial port, install a serial communication program, such as
picocom:

sudo apt install picocom

If you run ls -l /dev/ttyUSB0, you can also see that only root and users belonging to the dialout group
have read and write access to this file. Therefore, you need to add your user to the dialout group:

sudo adduser $USER dialout

Important: for the group change to be effective, in Ubuntu 18.04, you have to completely reboot the system
3. A workaround is to run newgrp dialout, but it is not global. You have to run it in each terminal.

Now, you can run picocom -b 115200 /dev/ttyUSB0, to start serial communication on /dev/ttyUSB0, with
a baudrate of 115200. If you wish to exit picocom, press [Ctrl][a] followed by [Ctrl][x].

There should be nothing on the serial line so far, as the board is not powered up yet.

Boot
Insert the SD card in the dedicated slot on the BeagleBone Black. Press the S2 push button (located just
above the previous slot), plug in the USB cable and release the push button. You should see boot messages
on the console.

Wait until the login prompt, then enter root as user. Congratulations! The board has booted and you now
have a shell.

3As explained on https://askubuntu.com/questions/1045993/after-adding-a-group-logoutlogin-is-not-enough-in-18-04/.

© 2004-2025 Bootlin, CC BY-SA license 7

https://askubuntu.com/questions/1045993/after-adding-a-group-logoutlogin-is-not-enough-in-18-04/
https://bootlin.com

Yocto Project and OpenEmbedded Training

Lab2: Advanced Yocto configuration
Configure the build, customize the output images and use NFS

During this lab, you will:

• Customize the package selection

• Configure the build system

• Use the rootfs over NFS

Set up the Ethernet communication and NFS on the board
Later on, we will mount our root filesystem through the network using NFS. We will use Ethernet over USB
device and therefore will only need the USB device cable that is already used to power up the board.

First we need to set the kernel boot arguments U-Boot will pass to the Linux kernel at boot time. For that,
mount the bootfs partition of the SD card on your PC and edit the extlinux configuration file: extlinux/
extlinux.conf.

Change the APPEND line to be (in just 1 line):

APPEND root=/dev/nfs rw nfsroot=192.168.0.1:/nfs,nfsvers=3,tcp ip=192.168.0.100:::::usb0
g_ether.dev_addr=f8:dc:7a:00:00:02 g_ether.host_addr=f8:dc:7a:00:00:01
rootwait rw console=${console},${baudrate}

Set up the Ethernet communication on the workstation
To configure your network interface on the workstation side, we need to know the name of the network
interface connected to your board. You won’t be able to see the network interface corresponding to the
Ethernet over USB device connection yet, because it’s only active when the board turns it on, from U-Boot
or from Linux. When this happens, the network interface name will be enx<macaddr>. Given the value we
gave to g_ether.host_addr, it will therefore be enxf8dc7a000001.

Then, instead of configuring the host IP address from Network Manager’s graphical interface, let’s do it
through its command line interface, which is so much easier to use:

nmcli con add type ethernet ifname enxf8dc7a000001 ip4 192.168.0.1/24

Set up the NFS server on the workstation
First install the NFS server on the training computer and create the root NFS directory:

sudo apt install nfs-kernel-server
sudo mkdir -m 777 /nfs

Then make sure this directory is used and exported by the NFS server by adding the below line to the
/etc/exports file:

/nfs *(rw,sync,no_root_squash,subtree_check)

Finally, make the NFS server use the new configuration:

sudo exportfs -r

8 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Yocto Project and OpenEmbedded Training

Add a package to the rootfs image
You can add packages to be built by editing the local configuration file $BUILDDIR/conf/local.conf. The
IMAGE_INSTALL variable controls the packages included into the output image.

To illustrate this, add the Dropbear SSH server to the list of enabled packages.

Tip: do not overwrite the default enabled package list, but append the Dropbear package instead.

Boot with the updated rootfs
First we need to put the rootfs under the NFS root directory so that it is accessible by NFS clients. Simply
uncompress the archived output image in the previously created /nfs directory:

sudo tar xpf $BUILDDIR/tmp/deploy/images/beaglebone/\
core-image-minimal-beaglebone.rootfs.tar.xz -C /nfs

Then boot the board.

The Dropbear SSH server was enabled a few steps before, and should now be running as a service on the
BeagleBone Black. You can test it by accessing the board through SSH:

ssh root@192.168.0.100

You should see the BeagleBone Black command line!

Choose a package variant
Dependencies of a given package are explicitly defined in its recipe. Some packages may need a specific
library or piece of software but others only depend on a functionality. As an example, the kernel dependency
is described by virtual/kernel.

To see which kernel is used, dry-run BitBake:

bitbake -vn virtual/kernel

In our case, we can see the linux-bb.org provides the virtual/kernel functionality:

NOTE: selecting linux-bb.org to satisfy virtual/kernel due to PREFERRED_PROVIDERS

We can force Yocto to select another kernel by explicitly defining which one to use in our local configuration.
Try switching from linux-bb.org to linux-dummy only using the local configuration.

Then check the previous step worked by dry-running again BitBake.

bitbake -vn virtual/kernel

Tip: you may need to define the more specific information here to be sure it is the one used. The MACHINE
variable can help here.

As this was only to show how to select a preferred provider for a given package, you can now use linux-bb.org
again.

BitBake tips
BitBake is a powerful tool which can be used to execute specific commands. Here is a list of some useful
ones, used with the virtual/kernel package.

• The Yocto recipes are divided into numerous tasks, you can print them by using: bitbake -c listtasks
virtual/kernel.

• BitBake allows to call a specific task only (and its dependencies) with: bitbake -c <task> virtual/
kernel. (<task> can be menuconfig here).

• You can force to rebuild a package by calling: bitbake -f virtual/kernel

© 2004-2025 Bootlin, CC BY-SA license 9

https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_INSTALL
https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE
https://bootlin.com

Yocto Project and OpenEmbedded Training

• world is a special keyword for all packages. bitbake --runall=fetch world will download all packages
sources (and their dependencies).

• You can get a list of locally available packages and their current version with:
bitbake -s

• You can also find detailed information on available packages, their current version, dependencies or the
contact information of the maintainer by visiting:
https://layers.openembedded.org/layerindex/branch/master/recipes/

For detailed information, please run bitbake -h

Going further
If you have some time left, let’s improve our setup to use TFTP, in order to avoid having to reflash the SD
card for every test. What you need to do is:

1. Install a TFTP server (package tftpd-hpa) on your system.

2. Copy the Linux kernel image and Device Tree to the TFTP server home directory (specified in /etc/
default/tftpd-hpa) so that they are made available by the TFTP server.

3. Change the U-Boot bootcmd to load the kernel image and the Device Tree over TFTP.

See the training materials of our Embedded Linux system development course for details!

10 © 2004-2025 Bootlin, CC BY-SA license

https://layers.openembedded.org/layerindex/branch/master/recipes/
https://bootlin.com

Yocto Project and OpenEmbedded Training

Lab3: Add a custom application
Add a new recipe to support a required custom application

During this lab, you will:

• Write a recipe for a custom application

• Integrate this application into the build

This is the first step of adding an application to Yocto. The remaining part is covered in the next lab, ”Create
a Yocto layer”.

Setup and organization
In this lab we will add a recipe handling the nInvaders application found at https://ninvaders.sourceforge.
net/. Before starting the recipe itself, find the recipes-extended directory originating from OpenEmbedded-
Core and add a subdirectory for your application.

First hands on nInvaders
The nInvaders application is a terminal based game following the space invaders family. In order to deal with
the text based user interface, nInvaders uses the ncurses library.

First try to find the project homepage, download the sources and have a first look: license, Makefile, require-
ments…

Write a minimal recipe
Create a file that respects the Yocto nomenclature: ${PN}_${PV}.bb

Specify the source URL of the latest nInvaders archive and give a try at building your recipe:

bitbake ninvaders

Archive checksum and license
BitBake will refuse to go any further if it cannot validate the downloaded bundle using a checksum. You’ll
also need to provide some information about the license of the package.

Testing and troubleshooting
Try to make the recipe on your own. Also eliminate the warnings related to your recipe: some configuration
variables are not mandatory but it is a very good practice to define them all.

If you hang on a problem, check the following points:

• The checksum and the URI are valid

• The dependencies are explicitly defined

• The internal state has changed, clean the working directory:
bitbake -c cleanall ninvaders

One of the build failures you will face will generate many messages such as multiple definition of `skill_
level'; aliens.o:(.bss+0x674): first defined here.

The multiple definition issue is due to the code base of nInvaders being quite old, and having multiple
compilation units redefine the same symbols. While this was accepted by older gcc versions, since gcc 10 this

© 2004-2025 Bootlin, CC BY-SA license 11

https://ninvaders.sourceforge.net/
https://ninvaders.sourceforge.net/
https://bootlin.com

Yocto Project and OpenEmbedded Training

is no longer accepted by default.

While we could fix the nInvaders code base, we will take a different route: ask gcc to behave as it did before
gcc 10 and accept such redefinitions. This can be done by passing the -fcommon gcc flag.

To achieve this, make sure to add -fcommon to the CFLAGS variable.

Tip: BitBake has command line flags to increase its verbosity and activate debug outputs. Also, remember
that you need to cross-compile nInvaders for ARM! Maybe, you will have to configure your recipe to resolve
some mistakes done in the application’s Makefile (which is often the case). A bitbake variable permits to add
some Makefile’s options, you should look for it.

Update the rootfs and test
Now that you’ve compiled the nInvaders application, generate a new rootfs image with bitbake core-image-
minimal. Then update the NFS root directory. You can confirm the nInvaders program is present by running:

find /nfs -iname ninvaders

Access the board command line through SSH. You should be able to launch the nInvaders program. Now,
it’s time to play!

Inspect the build
The nInvaders application was unpacked and compiled in the recipe’s work directory. Can you spot
nInvaders’ directory in the build work directory?

Once you found it, look around. You should at least spot some directories:

• The sources. Remember the S variable?

• temp. There are two kinds of files in there. Can you tell what are their purposes?

• Try to see if the licences of nInvaders were extracted.

12 © 2004-2025 Bootlin, CC BY-SA license

https://docs.yoctoproject.org/ref-manual/variables.html#term-CFLAGS
https://docs.yoctoproject.org/ref-manual/variables.html#term-S
https://bootlin.com

Yocto Project and OpenEmbedded Training

Lab4: Create a Yocto layer
Add a custom layer to the Yocto project for your project needs

During this lab, you will:

• Create a new Yocto layer

• Interface this custom layer to the existing Yocto project

• Use applications from custom layers

This lab extends the previous one, in order to fully understand how to interface a custom project to the basic
Yocto project.

Tools
You can access the configuration and state of layers with the bitbake-layers command. This command can
also be used to retrieve useful information about available recipes. Try the following commands:

bitbake-layers show-layers
bitbake-layers show-recipes 'linux-*'
bitbake-layers show-overlayed
bitbake-layers create-layer

Create a new layer
With the above commands, create a new Yocto layer named meta-bootlinlabs with a priority of 7. Before
doing that, return to your project root directory, where by convention all layers are stored (cd $HOME/yocto-
labs/).

Before using the new layer, we need to configure its generated configuration files. You can start with the
README file which is not used in the build process but contains information related to layer maintenance. You
can then check, and adapt if needed, the global layer configuration file located in the conf directory of your
custom layer.

Integrate a layer to the build
To be fair, we already used and integrated a layer in our build configuration during the first lab, with
meta-ti. This layer was responsible for BeagleBone Black support in Yocto. We have to do the same for
our meta-bootlinlabs now.

There is a file which contains all the paths of the layers we use. Try to find it without looking back to the
first lab. Then add the full path to our newly created layer to the list of layers.

Validate the integration of the meta-bootlinlabs layer with:

bitbake-layers show-layers

and make sure you don’t have any warning from bitbake.

Add a recipe to the layer
In the previous lab we introduced a recipe for the nInvaders game. We included it to the existing meta layer.
While this approach gives a working result, the Yocto logic is not respected. You should instead always use a
custom layer to add recipes or to customize the existing ones. To illustrate this we will move our previously
created nInvaders recipe into the meta-bootlinlabs layer.

© 2004-2025 Bootlin, CC BY-SA license 13

https://bootlin.com

Yocto Project and OpenEmbedded Training

You can check the nInvaders recipe is part of the meta layer first:

bitbake-layers show-recipes ninvaders

Then move the nInvaders recipe to the meta-bootlinlabs layer. You can check that the nInvaders recipe is
now part of the layer with the bitbake-layers command.

14 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Yocto Project and OpenEmbedded Training

Lab5: Extend a recipe
Add your features to an existing recipe

During this lab, you will:

• Apply patches to an existing recipe

• Use a custom configuration file for an existing recipe

• Extend a recipe to fit your needs

Create a basic appended recipe
To avoid rewriting recipes when a modification is needed on an already existing one, BitBake allows to
extend recipes and to overwrite, append or prepend configuration variables values through the so-called
BitBake append files.

We will first create a basic BitBake append file, without any change made to the original recipe, to see how
it is integrated into the build. We will then extend some configuration variables of the original recipe.

We here aim to extend the linux-bb.org kernel recipe.

Try to create an appended recipe using the guidelines given in the slides.

You can see available bbappend files and the recipe they apply to by using the bitbake-layers tool (again!):

bitbake-layers show-appends

If the BitBake append file you just created is recognized by your Yocto environment, you should see:

linux-bb.org_git.bb:
$HOME/yocto-labs/meta-bootlinlabs/recipes-kernel/linux/linux-bb.org_git.bbappend

Add patches to apply in the recipe
We want our extended linux-bb.org kernel to support the Nunchuk as a joystick input. We can add this
by applying patches during the do_patch task. The needed patches are provided with this lab. You can
find them under ~/yocto-labs/bootlin-lab-data/nunchuk/linux. For more details about how to write the
driver handling the Nunchuk, have a look at our embedded Linux kernel and driver development training
course at https://bootlin.com/training/kernel/.

Applying a patch is a common task in the daily Yocto process. Many recipes, appended or not, apply a
specific patch on top of a mainline project. It’s why patches do not have to be explicitly applied, if the recipe
inherits from the patch class (directly or not), but only have to be present in the source files list.

Try adding the patches included in this lab to your BitBake append file. Do not forget to also add the
defconfig file provided alongside the patches. This file contains the kernel configuration. It is handled
automatically in the linux-bb.org original recipe.

You can now rebuild the kernel to take the new patches into account:

bitbake virtual/kernel

Connect the Nunchuk
Take the Nunchuk device provided by your instructor.

We will connect it to the i2c1 port of the CPU, with pins available on the P9 connector.

© 2004-2025 Bootlin, CC BY-SA license 15

https://bootlin.com/training/kernel/
https://bootlin.com

Yocto Project and OpenEmbedded Training

Identify the 4 pins of the Nunchuk connector:

PWR

GND SDA

SCL

Nunchuk i2c pinout
(UEXT connector from Olimex, front view)

Connect the Nunchuk pins:

• The GND pin to P9 pins 1 or 2 (GND)

• The PWR pin to P9 pins 3 or 4 (DC_3.3V)

• The SCL pin to P9 pin 17 (I2C1_SCL)

• The SDA pin to P9 pin 18 (I2C1_SDA)

GND

SDA
SCL

PWR

Serial

Wii Nunchuk

Test the Nunchuk
Copy the newly generated kernel and device tree images into the first SD card partition (or to the TFTP
server home directory in case you enabled TFTP boot). Then boot the board and wait until you have access
to the busybox command line.

You can then make sure that the Nunchuk is recognized and is working by checking the presence of the js0
device file:

ls /dev/input/js0

Now display the raw events generated by the Nunchuk:

16 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Yocto Project and OpenEmbedded Training

cat /dev/input/js0

You should see random characters appearing while playing with the Nunchuk. Be aware that the driver we
integrated also handles accelerometer events. Therefore, moving the device will produce many events!

Patch nInvaders
The nInvaders game uses keyboard events for its controls. We first need to apply a patch introducing joystick
support. The patch is located at ~/yocto-labs/bootlin-lab-data/nunchuk/ninvaders/.

Add the patch to the nInvaders SRC_URI.

Then build a full core-image-minimal and update the NFS root directory.

Play nInvaders!
After booting the board you should be able to play nInvaders with the keyboard… and the Nunchuk! The C
button is used to confirm and to fire, and Z to pause the game.

Access the board command line through SSH, and launch the game:

$ ninvaders

© 2004-2025 Bootlin, CC BY-SA license 17

https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI
https://bootlin.com

Yocto Project and OpenEmbedded Training

Lab6: Create a custom machine config-
uration
Let Poky know about your hardware!

During this lab, you will:

• Create a custom machine configuration

• Understand how the target architecture is dynamically chosen

Create a custom machine
The machine file configures various hardware related settings. That’s what we did in lab1, when we chose
the beaglebone one. While it is not necessary to make our custom machine image here, we’ll create a new
one to demonstrate the process.

Add a new bootlinlabs machine to the previously created layer, which will make the BeagleBone properly
boot.

This machine describes a board using the cortexa8thf-neon tune and is a part of the ti33x SoC family. Add
the following lines to your machine configuration file:

require conf/machine/include/ti-soc.inc
SOC_FAMILY:append = ":ti33x"

DEFAULTTUNE = "armv7athf-neon"
require conf/machine/include/arm/armv7a/tune-cortexa8.inc

Populate the machine configuration
This bootlinlabs machine needs:

• To select linux-bb.org as the preferred provider for the kernel.

• To build am335x-boneblack.dtb and the am335x-boneblack-wireless.dtb device trees.

• To select u-boot-bb.org as the preferred provider for the bootloader.

• To be compatible with the linux-bb.org and u-boot-bb.org recipes, which by default are designed
to only be compatible with the BeagleBone machines. To make our bootlinlabs machine compatible
with these recipes, add the string :beaglebone to the MACHINEOVERRIDES variable4.

• To use arm as the U-Boot architecture.

• To use am335x_evm_config as the U-Boot configuration target.

• To use 0x80008000 as the U-Boot entry point and load address.

• To use a zImage kernel image type.

• To configure one serial console to 115200;ttyS0

• To support some features:

– apm

4The underlying mechanism that the linux-bb.org and u-boot-bb.org recipes use is the COMPATIBLE_MACHINE mechanism.

18 © 2004-2025 Bootlin, CC BY-SA license

https://docs.yoctoproject.org/ref-manual/variables.html#term-COMPATIBLE_MACHINE
https://bootlin.com

Yocto Project and OpenEmbedded Training

– usbgadget

– usbhost

– vfat

– ext2

– alsa

• To add tar.xz as a rootfs type to generate.

Build an image with the new machine
You can now update the MACHINE variable value in the local configuration and start a fresh build.

Check generated files are here and correct
Once the generated images supporting the new bootlinlabs machine are generated, you can check all the
needed images were generated correctly.

Have a look in the output directory, in $BUILDDIR/tmp/deploy/images/bootlinlabs/.

Is there anything missing?

Update the rootfs
You can now update your root filesystem, to use the newly generated image supporting our bootlinlabs
machine!

Going further
We chose a quite generic tune (armv7athf-neon). It’s the same one as meta-ti’s definition for the Beaglebone
machine. You can see what Bitbake did in $BUILDDIR/tmp/work.

Now, we can change the tune to cortexa8thf-neon. Rebuild the image, and look at $BUILDDIR/tmp/work.
What happened?

© 2004-2025 Bootlin, CC BY-SA license 19

https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE
https://bootlin.com

Yocto Project and OpenEmbedded Training

Lab7: Create a custom image
The highest level of customization in Poky

During this lab, you will:

• Write a full customized image recipe

• Choose the exact packages you want on your board

Add a basic image recipe
A build is mainly defined by two files: the machine configuration and the image recipe. The image recipe
is the top level file for the generated rootfs and the packages it includes. Our aim in this lab is to define a
custom image from scratch to allow a precise selection of packages on the target. To show how to deal with
real world configuration and how the Yocto Project can be used in the industry we will, in addition to the
production image recipe you will use in the final product, create a development one including debug tools
and show how to link the two of them to avoid configuration duplication.

First add a custom image recipe in the meta-bootlinlabs layer. We will name it bootlinlabs-image-
minimal. You can find information on how to create a custom image on the dedicated Yocto Project devel-
opment manual at https://docs.yoctoproject.org/dev-manual/index.html. There are different ways to
customize an image, we here want to create a full recipe, using a custom .bb file.

Do not forget to inherit from the core-image class.

Select the images capabilities and packages
You can control the packages built and included into the final image with the IMAGE_INSTALL configuration
variable. It is a list of packages to be built. You can also use package groups to include a bunch of programs,
generally enabling a functionality, such as packagegroup-core-boot which adds the minimal set of packages
required to boot an image (i.e. a shell or a kernel).

You can find the package groups under the packagegroups directories. To have a list of the available ones:

find -name packagegroups

Open some of them to read their description and have an idea about the capabilities they provide. Then
update the installed packages of the image recipe and don’t forget to add the nInvaders one!

Additionally, replace the dropbear package with the packagegroup-core-ssh-dropbear package. This is
needed to support SFTP to copy files via SSH, and devtool (covered in lab 9) needs it to work.

Add a custom package group
We just saw it is possible to use package groups to organize and select the packages instead of having a big
blob of configuration in the image recipe itself. We will here create a custom package group for game related
recipes.

With the above documentation, create a packagegroup-bootlinlabs-games group which inherits from the
packagegroup class. Add the nInvaders program into its runtime dependencies.

Now update the image recipe to include the package group instead of the nInvaders program directly.

20 © 2004-2025 Bootlin, CC BY-SA license

https://docs.yoctoproject.org/dev-manual/index.html
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_INSTALL
https://bootlin.com

Yocto Project and OpenEmbedded Training

Differentiate the production recipe from the debug one
You can enable the debugging capabilities of your image just by changing the BitBake target when building
the whole system. We want here to have a common base for both the production and the debug images, but
also take into account the possible differences. In our example only the built package list will change.

Create a debug version of the previous image recipe, and name it bootlinlabs-image-minimal-dbg. Try to
avoid duplicating code! Then add the dbg-pkgs to the image features list. It is also recommended to update
the recipe’s description, and to add extra debugging tools.

Build the new debug image with BitBake.

You may encounter an error: Bitbake warns you that the size of the root filesystem exceeded a predefined
limit. Fix this error by overriding the maximum image size (tip: the maximum image size is defined by a
configuration variable).

Check that the previously included packages are present in the newly generated rootfs.

© 2004-2025 Bootlin, CC BY-SA license 21

https://bootlin.com

Yocto Project and OpenEmbedded Training

Lab8: Develop your application in the
Poky SDK
Generate and use the Poky SDK

During this lab, you will:

• Build the Poky SDK

• Install the SDK

• Compile an application for your machine in the SDK environment

Build the SDK
Two SDKs are available, one only embedding a toolchain and the other one allowing for application devel-
opment. We will use the latter one here.

Build an SDK for the bootlinlabs-image-minimal image, with the populate_sdk task.

Once the SDK is generated, a script will be available in tmp/deploy/sdk.

Install the SDK
Open a new terminal to be sure that no extra environment variable is set. We mean to show you how the
SDK sets up a fully working environment.

Install the SDK in $HOME/yocto-labs/sdk by executing the script generated at the previous step.
$BUILDDIR/tmp/deploy/sdk/poky-glibc-x86_64-bootlinlabs-image-minimal-cortexa8t2hf-neon-bootlinlabs-toolchain-5.0.4.sh

Set up the environment
Go into the directory where you installed the SDK ($HOME/yocto-labs/sdk). Source the environment script:

source environment-setup-cortexa8t2hf-neon-poky-linux-gnueabi

Have a look at the exported environment variables:

env

Compile an application in the SDK
Download the Ctris sources at https://download.mobatek.net/sources/ctris-0.42-1-src.tar.bz2

Extract the source in the SDK:

tar xf ctris-0.42-1-src.tar.bz2
tar xf ctris-0.42.tar.bz2
cd ctris-0.42

Then modify the Makefile, to make sure that the environment variables exported by the SDK script are not
overridden.

Try to compile the application. Just like nInvaders, ctris is also an old program and won’t build with a recent
toolchain. You will face these errors:

22 © 2004-2025 Bootlin, CC BY-SA license

https://download.mobatek.net/sources/ctris-0.42-1-src.tar.bz2
https://bootlin.com

Yocto Project and OpenEmbedded Training

• The ctris makefile uses the native compiler, not the cross compiler provided by the SDK; while you
could fix it using make -e as done for nInvaders, try fixing it by editing the Makefile this time; hint:
you don’t need to write any code, just to delete two lines

• Building with a recent GCC will give the following error, not reported by older versions:

error: format not a string literal and no format arguments [-Werror=format-security]

Fix this by adding -Wno-error=format-security to CFLAGS

• As for nInvaders, you will see the multiple definition of... error; add the -fcommon flag to CFLAGS
also for ctris

You can check the application was successfully compiled for the right target by using the file command.
The ctris binary should be an ELF 32-bit LSB executable compiled for ARM.

Finally, you can copy the binary to the board, by using the scp command. Then run it and play a bit to
ensure it is working fine!

© 2004-2025 Bootlin, CC BY-SA license 23

https://docs.yoctoproject.org/ref-manual/variables.html#term-CFLAGS
https://bootlin.com

Yocto Project and OpenEmbedded Training

Lab9: Using devtool
Automate recipe development and debugging using devtool

During this lab, you will:

• Use devtool to generate a new recipe more quickly

• Modify a recipe to add a new patch using devtool

• Upgrade a recipe to a newer version using devtool

Generate a new recipe
The devtool executable is already available in your shell after sourcing the oe-init-build-env script. Take
a look at the sub-commands it offers:

devtool --help

We now want to add a new recipe for the “GNU Hello” program (https://www.gnu.org/software/hello/).
We can do so using the add subcommand.

However we want to use version 2.10 instead of the latest mainline version, so we can use the --version
option:

devtool add --version 2.10 https://ftp.gnu.org/gnu/hello/hello-2.10.tar.gz

You can observe that devtool calls bitbake multiple times. In the output messages, some lines are particularly
interesting:

INFO: Creating workspace layer in .../build/workspace
...
INFO: Using default source tree path .../build/workspace/sources/hello
...
INFO: Recipe .../build/workspace/recipes/hello/hello_2.10.bb has been automatically created; \

further editing may be required to make it fully functional

The first INFO line means devtool has created the workspace in the workspace directory inside the build
directory. Take a moment to inspect how the workspace looks like, but remember to never modify it manually:
the workspace is the internal state of devtool, so it may stop working if it is modified externally. The workspace
now looks like this:

$ tree workspace/ | head -n20
workspace/
|-- README
|-- appends
| `-- hello_2.10.bbappend
|-- conf
| `-- layer.conf
|-- recipes
| `-- hello
| `-- hello_2.10.bb
`-- sources

24 © 2004-2025 Bootlin, CC BY-SA license

https://www.gnu.org/software/hello/
https://bootlin.com

Yocto Project and OpenEmbedded Training

`-- hello
...
|-- GNUmakefile
|-- INSTALL
|-- Makefile.am
|-- Makefile.in

$

As you can see the workspace is a layer, having a conf/layer.conf file. It also has a directory for recipes
which already holds a recipe for GNU Hello 2.10. The sources directory contains the source code of the hello
recipe, that devtool uses internally to manage patches.

You can see that the workspace layer has been enabled by checking your conf/bblayers.conf or by running
bitbake-layers show-layers.

It’s time to try building the GNU Hello program via devtool:

devtool build hello

In the output messages, look for:

NOTE: hello: compiling from external source tree .../workspace/sources/hello

This means that the recipes managed by devtool do not download the source code in the usual way, but
rather they use the local copy of the sources that has been previously populated is in workspace/sources/
<RECIPENAME>.

You can have a look at the output of the build, which is in the usual location inside the workdir: tmp/work/
<ARCHITECTURE>/hello/2.10-r0/image/.

Using devtool deploy-target is a handy way to try the newly built code on the target:

devtool deploy-target hello root@192.168.0.100

This will send to the device all the files in the image subdirectory of the recipe work directory, keeping the
directory layout and file permissions. You can now test the program on the target:

$ ssh root@192.168.0.100
root@bootlinlabs:~# hello
Hello, world!
root@bootlinlabs:~#

Before moving the recipe to the meta-bootlinlabs layer, have a look at the recipe code as it has been generated
by devtool:

devtool edit-recipe hello

This command will open the hello_2.10.bb file of the workspace in an editor. You can see that the recipe
has various comments added by devtool: you should review them, fix or adapt whatever is needed, and save
the recipe.

First of all, check the exact license by reading the first few lines of workspace/sources/hello/src/hello.c
and you will discover it is a “GPL 3.0 or later”. The license guessed by devtool is GPL-3.0-only, thus replace
it by GPL-3.0-or-later.

You can also simplify the SRC_URI line using GNU_MIRROR, getting:

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"

© 2004-2025 Bootlin, CC BY-SA license 25

https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI
https://docs.yoctoproject.org/ref-manual/variables.html#term-GNU_MIRROR
https://bootlin.com

Yocto Project and OpenEmbedded Training

Note the inherit line: from the content of the source code files of the GNU Hello program, devtool already
guessed that it is configured using the Autotools and it is using GNU Gettext. This saved us a lot of time!
There is a comment above the inherit line: do not remove it for the moment.

Finally there is a line setting EXTRA_OECONF to an empty string. This line is useless unless you know you need
to set some configuration flags, thus you can remove it together with the comment line.

The resulting recipe (workspace/recipes/hello/hello_2.10.bb) should now look like:

LICENSE = "GPL-3.0-or-later"
LIC_FILES_CHKSUM = "file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"
SRC_URI[sha256sum] = "31e066137a962676e89f69d1b65382de95a7ef7d914b8cb956f41ea72e0f516b"

NOTE: if this software is not capable of being built in a separate build directory
from the source, you should replace autotools with autotools-brokensep in the
inherit line
inherit gettext autotools

You can double check that your recipe still works as expected using devtool build and devtool deploy-
target. When you are done you can remove the files from the target:

devtool undeploy-target hello root@192.168.0.100

You can now stop having the hello recipe handled by devtool and move it to the meta-bootlinlabs layer:

devtool finish -f hello ../meta-bootlinlabs/

Now the recipe is in ../meta-bootlinlabs/recipes-hello/hello/hello_2.10.bb. You can read the .bb file
and verify the content has not changed. Move the recipe to a more reasonable directory name:

mv ../meta-bootlinlabs/recipes-hello ../meta-bootlinlabs/recipes-utils

Now check the content of the workspace: the hello recipe is not there anymore. However the source code of
the GNU Hello program was moved in the workspace/attic/sources directory. Devtool does not delete it,
in case you have done any valuable work in it that you still haven’t saved to a patch. As it is not your case,
just delete it:

rm -fr workspace/attic/sources/hello.<timestamp>/

Now double check that the recipe is still building correctly in the meta-bootlinlabs layer. There’s no reason
it should fail, right?

bitbake hello

Oops, it failed! To have a hint about the reason, have a look at the comment we didn’t remove from the
recipe:

NOTE: if this software is not capable of being built in a separate build directory
from the source, you should replace autotools with autotools-brokensep in the
inherit line

This points exactly to the problem with GNU Hello 2.10: it fails building out-of-tree, i.e. with a build
directory different from the source directory, as is done by default when using autotools.bbclass. Just fix
the recipe as the comment suggests by changing the inherit line. You can then remove the comment as well.
Your work dir is now polluted so you need to clean it before running a new build:

26 © 2004-2025 Bootlin, CC BY-SA license

https://docs.yoctoproject.org/ref-manual/variables.html#term-EXTRA_OECONF
https://bootlin.com

Yocto Project and OpenEmbedded Training

bitbake -c clean hello
bitbake hello

That’s all: you now have a very concise (and working!) hello recipe in the meta-bootlinlabs layer!

Modify a recipe
Now use devtool to modify the hello recipe adding a patch. This can be very useful if you have to fix a bug
in a third-party program and there is no patch around to fix it yet.

Use devtool modify to put an existing recipe under the control of devtool:

devtool modify hello

Now you have two hello recipes: one in the meta-bootlinlabs layers and one in the workspace layer. To ensure
about which will be used by bitbake, you can inspect the layer priorities.

Now enter the source directory. You can notice devtool created a git repository into it:

cd workspace/sources/hello/
git log

The generated git repository contains only one commit which contains the pristine sources as extracted
from the downloaded tarball. Now open the src/hello.c with an editor, go around line 60 and edit the
“Hello, world” string to print whatever you prefer. Save and exit the editor. Check your modification using
git diff -- src/hello.c and test it as done earlier:

devtool build hello
devtool deploy-target hello root@192.168.0.100

Edit again the source code if needed. When you are satisfied with your changes, just commit them using git:

git add src/hello.c
git commit -m 'Change the greeting message'

Check your changes in the git repository, then exit the workspace:

git log
cd $BUILDDIR

You are now ready to update the original recipe to take into account your changes:

devtool update-recipe hello

Looking at the recipes-utils/hello directory in the meta-bootlinlabs layer you can notice that a new patch
has been created and added to SRC_URI. The patch applies the same change that you have just committed.
With devtool you don’t need to handle the patch syntax, but rather you can use git as you are probably
already used to.

Now remove the hello recipe from under the control of devtool, then cleanup as done earlier:

devtool reset hello
rm -fr workspace/attic/sources/hello.<timestamp>/

Upgrade a recipe to the latest mainline version
devtool can be used to simplify the upgrade of a recipe to a newer mainline version.

First, it can detect which is the latest version available on the original site. This is based on heuristics that
work for projects that store their source tarballs in a standard way, which most do. To check for the latest

© 2004-2025 Bootlin, CC BY-SA license 27

https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI
https://bootlin.com

Yocto Project and OpenEmbedded Training

version, use:

devtool latest-version hello

At the time of this writing, the output shows that 2.12.1 is the latest version. You can modify the recipe to
use the newest version, including the computation of the new hashes and renaming the .bb file, with a single
command:

devtool upgrade hello

Note the INFO line about license changes that you have to verify. Double check in the sources that the license
is still “GPL 3.0 or later”, then open the recipe as it is currently in the devtool workspace:

devtool edit-recipe hello

The recipe file contains a diff between the old and the new version of the recipe. If you can see that the
license changes are not relevant, as is the case for the upgrade from 2.10 to 2.12.1, then you can simply delete
the comment, save and exit.

Now check that everything works as done earlier, then apply your changes to the layer.

devtool finish hello ../meta-bootlinlabs/
rm -fr workspace/attic/sources/hello.<timestamp>/

Now the meta-bootlinlabs layer contains the latest version of GNU Hello!

28 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

	About this document
	Copying this document
	Training setup
	Install lab data
	Update your distribution
	Install extra packages
	More guidelines

	Lab1: First Yocto Project build
	Setup
	Avoiding unprivileged user namespace restrictions
	Download Yocto
	Set up the build environment
	Build your first image
	Set up the SD card
	Setting up serial communication with the board
	Boot

	Lab2: Advanced Yocto configuration
	Set up the Ethernet communication and NFS on the board
	Set up the Ethernet communication on the workstation
	Set up the NFS server on the workstation
	Add a package to the rootfs image
	Boot with the updated rootfs
	Choose a package variant
	BitBake tips
	Going further

	Lab3: Add a custom application
	Setup and organization
	First hands on nInvaders
	Write a minimal recipe
	Archive checksum and license
	Testing and troubleshooting
	Update the rootfs and test
	Inspect the build

	Lab4: Create a Yocto layer
	Tools
	Create a new layer
	Integrate a layer to the build
	Add a recipe to the layer

	Lab5: Extend a recipe
	Create a basic appended recipe
	Add patches to apply in the recipe
	Connect the Nunchuk
	Test the Nunchuk
	Patch nInvaders
	Play nInvaders!

	Lab6: Create a custom machine configuration
	Create a custom machine
	Populate the machine configuration
	Build an image with the new machine
	Check generated files are here and correct
	Update the rootfs
	Going further

	Lab7: Create a custom image
	Add a basic image recipe
	Select the images capabilities and packages
	Add a custom package group
	Differentiate the production recipe from the debug one

	Lab8: Develop your application in the Poky SDK
	Build the SDK
	Install the SDK
	Set up the environment
	Compile an application in the SDK

	Lab9: Using devtool
	Generate a new recipe
	Modify a recipe
	Upgrade a recipe to the latest mainline version

