
Embedded Linux system development training

Embedded Linux system
development training

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Latest update: April 02, 2024.

Document updates and training details:
https://bootlin.com/training/embedded-linux

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@bootlin.com

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/533

https://bootlin.com/training/embedded-linux
mailto:feedback@bootlin.com

Gregory Clement

▶ Embedded Linux engineer and trainer at Bootlin since 2010
▶ Contributing to kernel support for the Armada 370, 375, 38x and Armada

XP ARM SoCs from Marvell.
▶ Co-maintainer of mvebu sub-architecture (SoCs from Marvell Engineering

Business Unit)
▶ Living near Lyon, France
▶ gregory@bootlin.com

https://bootlin.com/company/staff/gregory-clement/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/533

https://bootlin.com/company/staff/gregory-clement/

Electronic copies of these documents

▶ Electronic copies of your particular version of the materials are available on:
https://bootlin.com/doc/training/sessions/online.embedded-linux.apr2024

▶ You can download and open these documents to follow lectures and labs, to look
for explanations given earlier by the trainer and to copy and paste text during labs.

▶ This specific URL will remain available for a long time. This way, you can always
access the exact instructions corresponding to the labs performed in this session.

▶ If you are interested in the latest versions of our training materials, visit the
description of each course on https://bootlin.com/training/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/533

https://bootlin.com/doc/training/sessions/online.embedded-linux.apr2024
https://bootlin.com/training/

About Bootlin

About Bootlin

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/533

Bootlin introduction

▶ Engineering company
• In business since 2004
• Before 2018: Free Electrons

▶ Team based in France and Italy
▶ Serving customers worldwide
▶ Highly focused and recognized expertise

• Embedded Linux
• Linux kernel
• Embedded Linux build systems

▶ Strong open-source contributor
▶ Activities

• Engineering services
• Training courses

▶ https://bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/533

https://bootlin.com

Bootlin engineering services

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/533

Bootlin training courses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/533

Bootlin, an open-source contributor

▶ Strong contributor to the Linux kernel
• In the top 30 of companies contributing to Linux worldwide
• Contributions in most areas related to hardware support
• Several engineers maintainers of subsystems/platforms
• 8000 patches contributed
• https://bootlin.com/community/contributions/kernel-contributions/

▶ Contributor to Yocto Project
• Maintainer of the official documentation
• Core participant to the QA effort

▶ Contributor to Buildroot
• Co-maintainer
• 5000 patches contributed

▶ Significant contributions to U-Boot, OP-TEE, Barebox, etc.
▶ Fully open-source training materials

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/533

https://bootlin.com/community/contributions/kernel-contributions/

Bootlin on-line resources

▶ Website with a technical blog:
https://bootlin.com

▶ Engineering services:
https://bootlin.com/engineering

▶ Training services:
https://bootlin.com/training

▶ Twitter:
https://twitter.com/bootlincom

▶ LinkedIn:
https://www.linkedin.com/company/bootlin

▶ Elixir - browse Linux kernel sources on-line:
https://elixir.bootlin.com

Icon by Freepik, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/533

https://bootlin.com
https://bootlin.com/engineering
https://bootlin.com/training
https://twitter.com/bootlincom
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

Generic course information

Generic course
information

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/533

Supported hardware

Discovery Kits from STMicroelectronics: STM32MP157A-DK1, STM32MP157D-DK1,
STM32MP157C-DK2 or STM32MP157F-DK2
▶ STM32MP157 (Dual Cortex-A7 + Cortex-M4) CPU

from STMicroelectronics
▶ 512 MB DDR3L RAM
▶ Gigabit Ethernet port
▶ 4 USB 2.0 host ports, 1 USB-C OTG port
▶ 1 Micro SD slot
▶ On-board ST-LINK/V2-1 debugger
▶ Misc: buttons, LEDs, audio codec
▶ LCD touchscreen (DK2 only) DK1 Discovery Kit
Board and CPU documentation, design files, software: A-DK1, D-DK1, C-DK2, F-DK2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/533

https://www.st.com/en/evaluation-tools/stm32mp157a-dk1.html
https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html
https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
https://www.st.com/en/evaluation-tools/stm32mp157f-dk2.html

Shopping list: hardware for this course

▶ STMicroelectronics STM32MP157D-DK1 Discovery kit - Available
from Mouser (65 EUR + VAT)

▶ USB-C cable for the power supply
▶ USB-A to micro B cable for the serial console
▶ RJ45 cable for networking
▶ Nintendo Nunchuk with UEXT connector 1

▶ Breadboard jumper wires - Male ends (to connect the Nunchuk) 2

▶ A standard USB audio headset.
▶ A micro SD card with at least 1 GB of capacity
1
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/

2
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/533

https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

Labs proposed on another platform

After this course, you can also run all labs on the
Beaglebone Black or Beaglebone Black Wireless ARM board.

Lab instructions are available at
https://bootlin.com/doc/training/embedded-linux-bbb/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/533

https://bootlin.com/doc/training/embedded-linux-bbb/

Labs proposed on another platform

In addition to the BeagleBone and the STM32MP157D-DK1
you can also run most labs on the Beagleplay board.

Lab instructions are available at
https://bootlin.com/doc/training/embedded-linux-

beagleplay/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/533

https://bootlin.com/doc/training/embedded-linux-beagleplay/
https://bootlin.com/doc/training/embedded-linux-beagleplay/

Training quiz and certificate

▶ You have been given a quiz to test your knowledge on the topics covered by the
course. That’s not too late to take it if you haven’t done it yet!

▶ At the end of the course, we will submit this quiz to you again. That time, you
will see the correct answers.

▶ It allows Bootlin to assess your progress thanks to the course. That’s also a kind
of challenge, to look for clues throughout the lectures and labs / demos, as all the
answers are in the course!

▶ Another reason is that we only give training certificates to people who achieve at
least a 50% score in the final quiz and who attended all the sessions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/533

Participate!

During the lectures...
▶ Don’t hesitate to ask questions. Other people in the audience may have similar

questions too.
▶ Don’t hesitate to share your experience too, for example to compare Linux with

other operating systems you know.
▶ Your point of view is most valuable, because it can be similar to your colleagues’

and different from the trainer’s.
▶ In on-line sessions

• Please always keep your camera on!
• Also make sure your name is properly filled.
• You can also use the ”Raise your hand” button when you wish to ask a question but

don’t want to interrupt.
▶ All this helps the trainer to engage with participants, see when something needs

clarifying and make the session more interactive, enjoyable and useful for everyone.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/533

Collaborate!

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
▶ Use the dedicated Matrix channel for this session to add

questions.
▶ If your session offers practical labs, you can also report issues,

share screenshots and command output there.
▶ Don’t hesitate to share your own answers and to help others

especially when the trainer is unavailable.
▶ The Matrix channel is also a good place to ask questions outside

of training hours, and after the course is over.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/533

Introduction to Embedded Linux

Introduction to
Embedded Linux

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/533

Birth of Free Software

▶ 1983, Richard Stallman, GNU project and the free
software concept. Beginning of the development of gcc,
gdb, glibc and other important tools

▶ 1991, Linus Torvalds, Linux kernel project, a UNIX-like
operating system kernel. Together with GNU software and
many other open-source components: a completely free
operating system, GNU/Linux

▶ 1995, Linux is more and more popular on server systems
▶ 2000, Linux is more and more popular on embedded

systems
▶ 2008, Linux is more and more popular on mobile devices

and phones
▶ 2012, Linux is available on cheap, extensible hardware:

Raspberry Pi, BeagleBone Black

Richard Stallman in 2019
https://commons.wikimedia.org/
wiki/File:Richard_Stallman_at_
LibrePlanet_2019.jpg

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/533

https://commons.wikimedia.org/wiki/File:Richard_Stallman_at_LibrePlanet_2019.jpg
https://commons.wikimedia.org/wiki/File:Richard_Stallman_at_LibrePlanet_2019.jpg
https://commons.wikimedia.org/wiki/File:Richard_Stallman_at_LibrePlanet_2019.jpg

Free software?

▶ A program is considered free when its license offers to all its users the following
four freedoms

• Freedom to run the software for any purpose
• Freedom to study the software and to change it
• Freedom to redistribute copies
• Freedom to distribute copies of modified versions

▶ These freedoms are granted for both commercial and non-commercial use
▶ They imply the availability of source code, software can be modified and

distributed to customers
▶ Good match for embedded systems!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/533

What is embedded Linux?

Embedded Linux is the usage of the Linux
kernel and various open-source components

in embedded systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/533

Advantages of Linux and Open-Source in embedded systems

▶ Ability to reuse components
Many features, protocols and hardware are
supported. Allows to focus on the added
value of your product.

▶ Low cost
No per-unit royalties. Development tools free
too. But of course deploying Linux costs time
and effort.

▶ Full control
You decide when to update components in
your system. No vendor lock-in. This secures
your investment.

▶ Easy testing of new features
No need to negotiate with third-party
vendors. Just explore new solutions released
by the community.

▶ Quality
Your system is built on high-quality
foundations (kernel, compiler, C-library, base
utilities...). Many Open-Source applications
have good quality too.

▶ Security
You can trace the sources of all system
components and perform independent
vulnerability assessments.

▶ Community support
Can get very good support from the
community if you approach it with a
constructive attitude.

▶ Participation in community work
Possibility to collaborate with peers and get
opportunities beyond corporate barriers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/533

Introduction to Embedded Linux

A few examples of embedded systems running
Linux

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/533

Wireless routers

Image credits: Evan Amos (https://bit.ly/2JzDIkv)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/533

https://bit.ly/2JzDIkv

Video systems

Image credits: https://bit.ly/2HbwyVq

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/533

https://bit.ly/2HbwyVq

Bike computers

Product from BLOKS (http://bloks.de). Permission to use this picture only in this document, in updates and in translations.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/533

http://bloks.de

Robots

eduMIP robot (https://www.ucsdrobotics.org/edumip)
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/533

https://www.ucsdrobotics.org/edumip

In space

SpaceX Starlink satellites

SpaceX Falcon 9 and Falcon Heavy rockets

Image credits: Wikipedia

Mars Ingenuity Helicopter

See the Linux on Mars: How the Perseverance Rover and Ingenuity
Helicopter Leveraged Linux to Accomplish their Mission presentation from
Tim Canham (JPL, NASA): https://youtu.be/0_GfMcBmbCg?t=111

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/533

https://youtu.be/0_GfMcBmbCg?t=111

Introduction to Embedded Linux

Embedded hardware for Linux systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/533

Processor and architecture (1)

The Linux kernel and most other architecture-dependent components support a wide
range of 32 and 64 bit architectures
▶ x86 and x86-64, as found on PC platforms, but also embedded systems

(multimedia, industrial)
▶ ARM, with hundreds of different System on Chips

(SoC: CPU + on-chip devices, for all sorts of products)
▶ RISC-V, the rising architecture with a free instruction set

(from high-end cloud computing to the smallest embedded systems)
▶ PowerPC (mainly real-time, industrial applications)
▶ MIPS (mainly networking applications)
▶ Microblaze (Xilinx), Nios II (Altera): soft cores on FPGAs
▶ Others: ARC, m68k, Xtensa, SuperH...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/533

Processor and architecture (2)

▶ Both MMU and no-MMU architectures are supported, even though no-MMU
architectures have a few limitations.

▶ Linux does not support small microcontrollers (8 or 16 bit)
▶ Besides the toolchain, the bootloader and the kernel, all other components are

generally architecture-independent

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/533

RAM and storage

▶ RAM: a very basic Linux system can work within 8 MB of RAM, but a more
realistic system will usually require at least 32 MB of RAM. Depends on the type
and size of applications.

▶ Storage: a very basic Linux system can work within 4 MB of storage, but usually
more is needed.

• Block storage: SD/MMC/eMMC, USB mass storage, SATA, etc,
• Raw flash storage is supported too, both NAND and NOR flash, with specific

filesystems
▶ Not necessarily interesting to be too restrictive on the amount of RAM/storage:

having flexibility at this level allows to increase performance and re-use as many
existing components as possible.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/533

Communication

▶ The Linux kernel has support for many common communication buses
• I2C
• SPI
• 1-wire
• SDIO
• PCI
• USB
• CAN (mainly used in automotive)

▶ And also extensive networking support
• Ethernet, Wifi, Bluetooth, CAN, etc.
• IPv4, IPv6, TCP, UDP, SCTP, DCCP, etc.
• Firewalling, advanced routing, multicast

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/533

Types of hardware platforms (1)

▶ Evaluation platforms from the SoC vendor. Usually
expensive, but many peripherals are built-in. Generally
unsuitable for real products, but best for product
development.

▶ System on Module (SoM) or Component on Module, a
small board with only CPU/RAM/flash and a few other core
components, with connectors to access all other peripherals.
Can be used to build end products for small to medium
quantities.

STM32MP157C-EV1
evaluation board
Image credits

PocketBeagle
Image credits (Beagleboard.org):
https://beagleboard.org/pocket

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/533

https://www.mouser.fr/ProductDetail/STMicroelectronics/STM32MP157C-EV1?qs=9r4v7xj2LnmHBJ35TLmsRg%3D%3D
https://beagleboard.org/pocket

Types of hardware platforms (2)

▶ Community development platforms, to make a particular
SoC popular and easily available. These are ready-to-use
and low cost, but usually have fewer peripherals than
evaluation platforms. To some extent, can also be used for
real products.

▶ Custom platform. Schematics for evaluation boards or
development platforms are more and more commonly freely
available, making it easier to develop custom platforms.

Beaglebone Black Wireless
board

Olimex Open hardware
ARM laptop main board
Image credits (Olimex):
https://www.olimex.com/Products/
DIY-Laptop/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/533

https://www.olimex.com/Products/DIY-Laptop/
https://www.olimex.com/Products/DIY-Laptop/

Criteria for choosing the hardware

▶ Most SoCs are delivered with support for the Linux kernel and for an open-source
bootloader.

▶ Having support for your SoC in the official versions of the projects (kernel,
bootloader) is a lot better: quality is better, new versions are available, and Long
Term Support releases are available.

▶ Some SoC vendors and/or board vendors do not contribute their changes back to
the mainline Linux kernel. Ask them to do so, or use another product if you can.
A good measurement is to see the delta between their kernel and the official one.

▶ Between properly supported hardware in the official Linux kernel and
poorly-supported hardware, there will be huge differences in development
time and cost.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/533

Introduction to Embedded Linux

Embedded Linux system architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/533

Host and target

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/533

Software components

▶ Cross-compilation toolchain
• Compiler that runs on the development machine, but generates code for the target

▶ Bootloader
• Started by the hardware, responsible for basic initialization, loading and executing

the kernel
▶ Linux Kernel

• Contains the process and memory management, network stack, device drivers and
provides services to user space applications

▶ C library
• Of course, a library of C functions
• Also the interface between the kernel and the user space applications

▶ Libraries and applications
• Third-party or in-house

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/533

Embedded Linux work

Several distinct tasks are needed when deploying embedded Linux in a product:
▶ Board Support Package development

• A BSP contains a bootloader and kernel with the suitable device drivers for the
targeted hardware

• Purpose of our Kernel Development course
▶ System integration

• Integrate all the components, bootloader, kernel, third-party libraries and
applications and in-house applications into a working system

• Purpose of this course
▶ Development of applications

• Normal Linux applications, but using specifically chosen libraries

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/533

https://bootlin.com/training/kernel

Embedded Linux development environment

Embedded Linux
development
environment

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/533

Embedded Linux solutions

▶ Two ways to switch to embedded Linux
• Use solutions provided and supported by vendors like MontaVista, Wind River or

TimeSys. These solutions come with their own development tools and environment.
They use a mix of open-source components and proprietary tools.

• Use community solutions. They are completely open, supported by the community.
▶ In Bootlin training sessions, we do not promote a particular vendor, and therefore

use community solutions
• However, knowing the concepts, switching to vendor solutions will be easy

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/533

OS for Linux development
We strongly recommend to use GNU/Linux as the desktop operating system to
embedded Linux developers, for multiple reasons.
▶ All community tools are developed and designed to run on Linux. Trying to use

them on other operating systems (Windows, macOS) will lead to trouble.
▶ As Linux also runs on the embedded device, all the knowledge gained from using

Linux on the desktop will apply similarly to the embedded device.
▶ If you are stuck with a Windows desktop, at least you should use GNU/Linux in a

virtual machine (such as VirtualBox which is open source), though there could be
a small performance penalty. With Windows 10/11, you can also run your favorite
native Linux distro through Windows Subsystem for Linux (WSL2)

:-)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/533

Desktop Linux distribution

▶ Any good and sufficiently recent Linux desktop
distribution can be used for the development
workstation

• Ubuntu, Debian, Fedora, openSUSE, Arch Linux, etc.
▶ We have chosen Ubuntu, derived from Debian, as it is a

widely used and easy to use desktop Linux
distribution.

▶ The Ubuntu setup on the training laptops has
intentionally been left untouched after the normal
installation process. Learning embedded Linux is also
about learning the tools needed on the development
workstation!

Image credits:
https://tinyurl.com/f4zxj5kw

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/533

https://tinyurl.com/f4zxj5kw

Host vs. target

▶ When doing embedded development, there is always a split between
• The host, the development workstation, which is typically a powerful PC
• The target, which is the embedded system under development

▶ They are connected by various means: almost always a serial line for debugging
purposes, frequently a networking connection, sometimes a JTAG interface for
low-level debugging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/533

Serial line communication program

▶ An essential tool for embedded development is a serial line communication
program, like HyperTerminal in Windows.

▶ There are multiple options available in Linux: Minicom, Picocom, Gtkterm, Putty,
screen, tmux and the new tio (https://github.com/tio/tio).

▶ In this training session, we recommend using the simplest of them: Picocom
• Installation with sudo apt install picocom
• Run with picocom -b BAUD_RATE /dev/SERIAL_DEVICE.
• Exit with [Ctrl][a] [Ctrl][x]

▶ SERIAL_DEVICE is typically
• ttyUSBx for USB to serial converters
• ttySx for real serial ports

▶ Most frequent command: picocom -b 115200 /dev/ttyUSB0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/533

https://github.com/tio/tio

Practical lab - Training Setup

Prepare your lab environment
▶ Download and extract the lab archive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/533

Cross-compiling toolchains

Cross-compiling
toolchains

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/533

Cross-compiling toolchains

Definition and Components

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/533

Toolchain definition (1)

▶ The usual development tools available on a GNU/Linux workstation is a native
toolchain

▶ This toolchain runs on your workstation and generates code for your workstation,
usually x86

▶ For embedded system development, it is usually impossible or not interesting to
use a native toolchain

• The target is too restricted in terms of storage and/or memory
• The target is very slow compared to your workstation
• You may not want to install all development tools on your target.

▶ Therefore, cross-compiling toolchains are generally used. They run on your
workstation but generate code for your target.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/533

Toolchain definition (2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/533

Architecture tuple and toolchain prefix

▶ Many UNIX/Linux build mechanisms rely on architecture tuple names to identify
machines.

▶ Examples: arm-linux-gnueabihf, mips64el-linux-gnu,
arm-vendor-none-eabihf

▶ These tuples are 3 or 4 parts:
1. The architecture name: arm, riscv, mips64el, etc.
2. Optionally, a vendor name, which is a free-form string
3. An operating system name, or none when not targeting an operating system
4. The ABI/C library (see later)

▶ This tuple is used to:
• configure/build software for a given platform
• as a prefix of cross-compilation tools, to differentiate them from the native toolchain

gcc → native compiler
arm-linux-gnueabihf-gcc → cross-compiler

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/533

Components of gcc toolchains

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/533

Binutils

▶ Binutils is a set of tools to generate and manipulate binaries (usually with the
ELF format) for a given CPU architecture

• as, the assembler, that generates binary code from assembler source code
• ld, the linker
• ar, ranlib, to generate .a archives (static libraries)
• objdump, readelf, size, nm, strings, to inspect binaries. Very useful analysis tools!
• objcopy, to modify binaries
• strip, to strip parts of binaries that are just needed for debugging (reducing their

size).
▶ GNU Binutils: https://www.gnu.org/software/binutils/, GPL license

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/533

https://www.gnu.org/software/binutils/

C/C++ compiler

▶ GCC: GNU Compiler Collection, the famous free software
compiler

▶ https://gcc.gnu.org/

▶ Can compile C, C++, Ada, Fortran, Java, Objective-C,
Objective-C++, Go, etc. Can generate code for a large number
of CPU architectures, including x86, ARM, RISC-V, and many
others.

▶ Available under the GPL license, libraries under the GPL with
linking exception.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/533

https://gcc.gnu.org/

Kernel headers (1)

▶ The C standard library and compiled programs need to
interact with the kernel

• Available system calls and their numbers
• Constant definitions
• Data structures, etc.

▶ Therefore, compiling the C standard library requires
kernel headers, and many applications also require them.

▶ Available in <linux/...> and <asm/...> and a few
other directories corresponding to the ones visible in
include/uapi/ and in arch/<arch>/include/uapi in
the kernel sources

▶ The kernel headers are extracted from the kernel sources
using the headers_install kernel Makefile target.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/533

https://elixir.bootlin.com/linux/latest/source/include/uapi/

Kernel headers (2)

▶ System call numbers, in <asm/unistd.h>

#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3

▶ Constant definitions, here in <asm-generic/fcntl.h>, included from
<asm/fcntl.h>, included from <linux/fcntl.h>

#define O_RDWR 00000002

▶ Data structures, here in <asm/stat.h> (used by the stat command)
struct stat {

unsigned long st_dev;
unsigned long st_ino;
[...]

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/533

Kernel headers (3)

The kernel to user space interface is backward compatible
▶ Kernel developers are doing their best to never break existing programs when the

kernel is upgraded. Otherwise, users would stick to older kernels, which would be
bad for everyone.

▶ Hence, binaries generated with a toolchain using kernel headers older than the
running kernel will work without problem, but won’t be able to use the new
system calls, data structures, etc.

▶ Binaries generated with a toolchain using kernel headers newer than the running
kernel might work only if they don’t use the recent features, otherwise they will
break.

What to remember: updating your kernel shouldn’t break your programs; it’s usually
fine to keep an old toolchain as long is it works fine for your project.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/533

C standard library

▶ The C standard library is an essential
component of a Linux system.

• Interface between the applications and the
kernel

• Provides the well-known standard C API to
ease application development

▶ Several C standard libraries are available: glibc,
uClibc, musl, klibc, newlib...

▶ The choice of the C standard library must be
made at cross-compiling toolchain generation
time, as the GCC compiler is compiled against
a specific C standard library.

Linux-specific

Application

system calls

system calls

functioncalls

functi
on

ca
lls

by Shmuel Csaba Otto Traian; GNU FDL 1.3 & CC-BY-SA 3.0; created 2014-02-27, last updated 2014-03-25

BusyBox
et al.

Application
POSIX-compatible

Source: Wikipedia (https://bit.ly/2zrGve2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/533

https://bit.ly/2zrGve2

glibc

▶ License: LGPL
▶ C standard library from the GNU project
▶ Designed for performance, standards compliance and

portability
▶ Found on all GNU / Linux host systems
▶ Of course, actively maintained
▶ By default, quite big for small embedded systems. On

armv7hf, version 2.31: libc: 1.5 MB, libm: 432 KB,
source: https://toolchains.bootlin.com

▶ https://www.gnu.org/software/libc/

Image source

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/533

https://toolchains.bootlin.com
https://www.gnu.org/software/libc/
https://en.wikipedia.org/wiki/File:Heckert_GNU_white.svg

uClibc-ng

▶ https://uclibc-ng.org/

▶ A continuation of the old uClibc project, license: LGPL
▶ Lightweight C standard library for small embedded systems

• High configurability: many features can be enabled or disabled through a
menuconfig interface.

• Supports most embedded architectures, including MMU-less ones (ARM Cortex-M,
Blackfin, etc.). The only standard library supporting ARM noMMU.

• No guaranteed binary compatibility. May need to recompile applications when the
library configuration changes.

• Some features may be implemented later than on glibc (real-time, floating-point
operations...)

• Focus on size (RAM and storage) rather than performance
• Size on armv7hf, version 1.0.34: libc: 712 KB, source:

https://toolchains.bootlin.com

▶ Actively supported, supported by Buildroot but not by Yocto Project.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/533

https://uclibc-ng.org/
https://toolchains.bootlin.com

musl C standard library
https://www.musl-libc.org/

▶ A lightweight, fast and simple standard library for embedded systems
▶ Created while uClibc’s development was stalled
▶ In particular, great at making small static executables, which can run

anywhere, even on a system built from another C standard library.
▶ More permissive license (MIT), making it easier to release static

executables. We will talk about the requirements of the LGPL license
(glibc, uClibc) later.

▶ Supported by build systems such as Buildroot and Yocto Project.
▶ Used by the Alpine Linux lightweight distribution

(https://www.alpinelinux.org/)
▶ Size on armv7hf, version 1.2.0: libc: 748 KB, source:

https://toolchains.bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/533

https://www.musl-libc.org/
https://www.alpinelinux.org/
https://toolchains.bootlin.com

Other smaller C libraries

▶ Several other smaller C libraries exist, but they do not implement the full POSIX
interface required by most Linux applications

▶ They can run only relatively simple programs, typically to make very small static
executables and run in very small root filesystems.

▶ Therefore not commonly used in most embedded Linux systems
▶ Choices:

• Newlib, https://sourceware.org/newlib/, maintained by Red Hat, used mostly in
Cygwin, in bare metal and in small POSIX RTOS.

• Klibc, https://en.wikipedia.org/wiki/Klibc, from the kernel community,
designed to implement small executables for use in an initramfs at boot time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/533

https://sourceware.org/newlib/
https://en.wikipedia.org/wiki/Klibc

Advice for choosing the C standard library

▶ Advice to start developing and debugging your applications with glibc, which is
the most standard solution

▶ If you have size constraints, try to compile your app and then the entire filesystem
with uClibc or musl

• The size advantage of uClibc or musl, which used to be a significant argument, is
less relevant with today’s storage capacities.

• Smaller binaries and filesystems remain useful when optimizing boot time, though,
typically booting on a filesystem loaded in RAM, and to reduce the size of container
and virtual machine images (one of the use cases of Alpine Linux).

▶ If you run into trouble, it could be because of missing features in the C standard
library.

▶ In case you wish to make static executables, musl will be an easier choice in terms
of licensing constraints.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/533

Linux vs. bare-metal toolchain

▶ A Linux toolchain
• is a toolchain that includes a Linux-ready C standard library, which uses the Linux

system calls to implement system services
• can be used to build Linux user-space applications, but also bare-metal code

(firmware, bootloader, Linux kernel)
• is identified by the linux OS identifier in the toolchain tuple: arm-linux,

arm-none-linux-gnueabihf

▶ A bare metal toolchain
• is a toolchain that does not include a C standard library, or a very minimal one that

isn’t tied to a particular operating system
• can be used to build only bare-metal code (firmware, bootloader, Linux kernel)
• is identified by the none OS identifier in the toolchain tuple: arm-none-eabi,

arm-none-none-eabi (vendor is none, OS is none)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/533

An alternate compiler suite: LLVM

▶ Most Embedded Linux projects use toolchains based on GNU project: GCC
compiler, binutils, GDB debugger

▶ The LLVM project has been developing an alternative compiler suite:
• Clang, C/C++ compiler, https://clang.llvm.org/
• LLDB, debugger, https://lldb.llvm.org/
• LLD, linker, https://lld.llvm.org/
• and more, see https://llvm.org/

▶ While they are used by several high-profile projects, they are not yet in widespread
use in most Embedded Linux projects.

▶ Initially had better code optimization and diagnostics than GCC, but thanks to
having competition, GCC has improved significantly in this area.

▶ Available under MIT/BSD licenses
▶ https://en.wikipedia.org/wiki/LLVM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/533

https://clang.llvm.org/
https://lldb.llvm.org/
https://lld.llvm.org/
https://llvm.org/
https://en.wikipedia.org/wiki/LLVM

Cross-compiling toolchains

Toolchain Options

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/533

ABI

▶ When building a toolchain, the ABI used to generate binaries needs to be defined
▶ ABI, for Application Binary Interface, defines the calling conventions (how

function arguments are passed, how the return value is passed, how system calls
are made) and the organization of structures (alignment, etc.)

▶ All binaries in a system are typically compiled with the same ABI, and the kernel
must understand this ABI.

▶ On ARM 32-bit, two main ABIs: EABI and EABIhf
• EABIhf passes floating-point arguments in floating-point registers → needs an ARM

processor with a FPU
▶ On RISC-V, several ABIs: ilp32, ilp32f, ilp32d, lp64, lp64f, and lp64d
▶ https://en.wikipedia.org/wiki/Application_Binary_Interface

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/533

https://en.wikipedia.org/wiki/Application_Binary_Interface

Floating point support

▶ All ARMv7-A (32-bit) and ARMv8-A (64-bit) processors have a floating point unit
▶ RISC-V cores with the F extension have a floating point unit
▶ Some older ARM cores (ARMv4/ARMv5) or some RISC-V cores may not have a

floating point unit
▶ For processors without a floating point unit, two solutions for floating point

computation:
• Generate hard float code and rely on the kernel to emulate the floating point

instructions. This is very slow.
• Generate soft float code, so that instead of generating floating point instructions,

calls to a user space library are generated
▶ Decision taken at toolchain configuration time
▶ For processors with a floating point unit, sometimes different FPU are possible.

For example on ARM: VFPv3, VFPv3-D16, VFPv4, VFPv4-D16, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/533

CPU optimization flags

▶ GNU tools (gcc, binutils) can only be compiled for a specific target architecture at
a time (ARM, x86, RISC-V...)

▶ gcc offers further options:
• -march allows to select a specific target instruction set
• -mtune allows to optimize code for a specific CPU
• For example: -march=armv7 -mtune=cortex-a8
• -mcpu=cortex-a8 can be used instead to allow gcc to infer the target instruction set

(-march=armv7) and cpu optimizations (-mtune=cortex-a8)
• https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

▶ At the GNU toolchain compilation time, values can be chosen. They are used:
• As the default values for the cross-compiling tools, when no other -march, -mtune,

-mcpu options are passed
• To compile the C library

▶ Note: LLVM (Clang, LLD...) utilities support multiple target architectures at once.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/533

https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

Cross-compiling toolchains

Obtaining a Toolchain

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/533

Building a toolchain manually
▶ Building a cross-compiling toolchain manually is a fairly difficult process
▶ Lots of details to learn: many components to build with complicated configuration
▶ Typical process is:

• Build dependencies of binutils/gcc (GMP, MPFR, ISL, etc.)
• Build binutils
• Build a baremetal, first stage GCC
• Extract kernel headers from the Linux source code
• Build the C library using the first stage GCC
• Build the second stage and final GCC supporting the Linux OS and the C library.

▶ Many decisions to make about the components: C library, gcc and binutils
versions, ABI, floating point mechanisms, etc. Not trivial to find correct
combinations of these possibilities

▶ See the Crosstool-NG documentation for details on how toolchains are built.
▶ Talk: Anatomy of Cross-Compilation Toolchains, by Thomas Petazzoni, ELCE

2017, video and slides
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/533

https://crosstool-ng.github.io/docs/toolchain-construction/
https://youtu.be/Pbt330zuNPc
https://elinux.org/images/1/15/Anatomy_of_Cross-Compilation_Toolchains.pdf

Get a pre-compiled toolchain

▶ Solution that many people choose
• Advantage: it is the simplest and most convenient solution
• Drawback: you can’t fine tune the toolchain to your needs

▶ Make sure the toolchain you find meets your requirements: CPU, endianness, C
library, component versions, version of the kernel headers, ABI, soft float or hard
float, etc.

▶ Some possibilities:
• Toolchains packaged by your distribution, for example Ubuntu package

gcc-arm-linux-gnueabihf or Fedora gcc-arm-linux-gnu. Often limited to
ARM/ARM64 with glibc.

• Bootlin’s GNU toolchains, most CPU architectures, with glibc/uClibc/musl,
https://toolchains.bootlin.com

• ARM and ARM64 toolchains released by ARM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/533

https://packages.ubuntu.com/gcc-arm-linux-gnueabihf
https://packages.fedoraproject.org/pkgs/cross-gcc/gcc-arm-linux-gnu/
https://toolchains.bootlin.com
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/downloads

Example of toolchains from ARM: downloading

From Arm GNU Toolchains

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/533

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/downloads

Example of toolchains from ARM: using

$ wget https://developer.arm.com/-/media/Files/downloads/gnu-a/10.3-2021.07/binrel/[...]
[...]gcc-arm-10.3-2021.07-x86_64-arm-none-linux-gnueabihf.tar.xz

$ tar xf gcc-arm-10.3-2021.07-x86_64-arm-none-linux-gnueabihf.tar.xz

$ cd gcc-arm-10.3-2021.07-x86_64-arm-none-linux-gnueabihf/

$./bin/arm-none-linux-gnueabihf-gcc -o test test.c

$ file test
test: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-armhf.so.3, [...]

for GNU/Linux 3.2.0, with debug_info, not stripped

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/533

Toolchain building utilities

Another solution is to use utilities that automate the process of building the
toolchain
▶ Same advantage as the pre-compiled toolchains: you don’t need to mess up with

all the details of the build process
▶ But also offers more flexibility in terms of toolchain configuration, component

version selection, etc.
▶ Allows to rebuild the toolchain if needed to fix a bug or security issue.
▶ They also usually contain several patches that fix known issues with the different

components on some architectures
▶ Multiple tools with identical principle: shell scripts or Makefile that automatically

fetch, extract, configure, compile and install the different components

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/533

Toolchain building utilities (2)

Crosstool-ng
▶ Rewrite of the older Crosstool, with a

menuconfig-like configuration system
▶ Feature-full: supports uClibc, glibc and musl,

hard and soft float, many architectures
▶ Actively maintained
▶ https://crosstool-ng.github.io/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/533

https://crosstool-ng.github.io/

Toolchain building utilities (3)

Many root filesystem build systems also allow the construction of a cross-compiling
toolchain
▶ Buildroot

• Makefile-based. Can build glibc, uClibc and musl based toolchains, for a wide range
of architectures. Use make sdk to only generate a toolchain.

• https://buildroot.org

▶ PTXdist
• Makefile-based, maintained mainly by Pengutronix, supporting only glibc and uClibc

(version 2023.01 status)
• https://www.ptxdist.org/

▶ OpenEmbedded / Yocto Project
• A featureful, but more complicated build system, supporting only glibc and musl.
• https://www.openembedded.org/
• https://www.yoctoproject.org/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/533

https://buildroot.org
https://www.ptxdist.org/
https://www.openembedded.org/
https://www.yoctoproject.org/

Crosstool-NG: download

▶ Getting Crosstool-NG
$ git clone https://github.com/crosstool-ng/crosstool-ng.git

▶ Using a well-known stable version
$ cd crosstool-ng
$ git checkout crosstool-ng-1.25.0

▶ As we’re fetching from Git, the configure script needs to be generated:
$./bootstrap

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/533

Crosstool-NG: installation

▶ Installation can be done:
• system-wide, for example in /usr/local, the ct-ng command is then available

globally
$./configure
$ make
$ sudo make install

• or just locally in the source directory, the ct-ng command will be invoked from this
directory
$./configure --enable-local
$ make

▶ In our labs, we will use the second method
▶ Note: the make invocation doesn’t build any toolchain, it builds the ct-ng

executable.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/533

Crosstool-NG: toolchain configuration

▶ Once installed, the ct-ng tool allows to configure and build an arbitrary number
of toolchains

▶ Its configuration system is based on kconfig, like the Linux kernel configuration
system

▶ Configuration of the toolchain to build stored in a .config file
▶ Example configurations provided with Crosstool-NG

• List: ./ct-ng list-samples
• Load an example: ./ct-ng <sample-name>, replaces .config
• For example ./ct-ng aarch64-unknown-linux-gnu
• No sample loaded → default Crosstool-NG configuration is a bare-metal toolchain

for the Alpha CPU architecture!
▶ The configuration can then be refined using either:

• ./ct-ng menuconfig
• ./ct-ng nconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/533

Crosstool-NG: toolchain configuration

./ct-ng menuconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/533

Crosstool-NG: toolchain building

▶ To build the toolchain
./ct-ng build

This will automatically download all the needed dependencies, and build all
toolchain components in the right order, with the specified configuration.

▶ By default the results go in $HOME/x-tools/<architecture-tuple>, as defined
by the option CT_PREFIX_DIR in Paths and misc options

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/533

Important toolchain contents

▶ bin/: cross compilation tool binaries
• This directory can be added to your PATH to ease usage of the toolchain
• Sometimes with symlinks for shorter names

arm-linux-gcc -> arm-cortexa7-linux-uclibcgnueabihf-gcc

▶ <arch-tuple>/sysroot: sysroot directory
• <arch-tuple>/sysroot/lib: C library, GCC runtime, C++ standard library

compiled for the target
• <arch-tuple>/sysroot/usr/include: C library headers and kernel headers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/533

Practical lab - Using Crosstool-NG

Time to build your toolchain
▶ Getting and configuring Crosstool-NG
▶ Executing it to build a custom

cross-compilation toolchain
▶ Exploring the contents of the toolchain

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/533

Bootloaders and firmware

Bootloaders and
firmware

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/533

Bootloaders and firmware

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/533

Bootloader role

▶ The bootloader is a piece of code responsible for
• Basic hardware initialization
• Loading of an application binary, usually an operating system kernel, from flash

storage, from the network, or from another type of non-volatile storage.
• Possibly decompression of the application binary
• Execution of the application

▶ Besides these basic functions, most bootloaders provide a shell or menu
• Menu to select the operating system to load
• Shell with commands to load data from storage or network, inspect memory, perform

hardware testing/diagnostics
▶ The first piece of code running by the processor that can be modified by us

developers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/533

Bootloaders and firmware

Booting on x86 platforms

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/533

Legacy BIOS booting (1)

▶ x86 platforms shipped before 2005-2006 include a firmware called BIOS
• BIOS = Basic Input Output System
• Part of the hardware platform, closed-source, rarely modifiable
• Implements the booting process
• Provides runtime services that can be invoked - not commonly used
• Stored in some flash memory, outside of regular user-accessible storage devices

▶ To be bootable, the first sector of a storage device is “special”
• MBR = Master Boot Record
• Contains the partition table
• Contains up to 446 bytes of bootloader code, loaded into RAM and executed
• The BIOS is responsible for the RAM initialization

▶ https://en.wikipedia.org/wiki/BIOS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/533

https://en.wikipedia.org/wiki/BIOS

Legacy BIOS booting (2)

▶ Due to the limitation in size of the bootloader, bootloaders are split into two
stages

• Stage 1, which fits within the 446 bytes constraint
• Stage 2, which is loaded by stage 1, and can therefore be bigger

▶ Stage 2 is typically stored outside of any filesystem, at a fixed offset → simpler to
load by stage 1

▶ Stage 2 generally has filesystem support, so it can load the kernel image from a
filesystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/533

Legacy BIOS booting: sequence and storage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/533

UEFI booting

▶ Starting from 2005-2006, UEFI is the new firmware interface on x86 platforms
• Unified Extensible Firmware Interface
• Describes the interface between the operating system and the firmware
• Firmware in charge of booting
• Firmware also provides runtime services to the operating system
• Stored in some flash memory, outside of regular user-accessible storage devices

▶ Loads EFI binaries from the EFI System Partition
• Generally a bootloader
• Can also be directly the Linux kernel, with an EFI Boot Stub

▶ Special partition, formatted with the FAT filesystem
• MBR: identified by type 0xEF
• GPT: identified with a specific globally unique identifier

▶ File /efi/boot/bootx32.efi, /efi/boot/bootx64.efi
▶ https://en.wikipedia.org/wiki/UEFI

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/533

https://en.wikipedia.org/wiki/UEFI

UEFI booting: sequence and storage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/533

ACPI

▶ Advanced Configuration and Power Interface
▶ Open standard that operating systems can use to discover and configure computer

hardware components, to perform power management, to perform auto
configuration, and to perform status monitoring

▶ Tables with descriptions of the hardware that cannot be dynamically discovered at
runtime

▶ Tables provided by the firmware (UEFI or legacy) and used by the operating
system (Linux kernel in our case)

▶ https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/533

https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface

UEFI and ACPI on ARM

▶ Historically UEFI and ACPI are technologies coming from the Intel/x86 world
▶ ARM is also pushing for the adoption of UEFI and ACPI as part of its ARM

System Ready certification
• Mainly for servers/workstations SoCs
• Does not impact embedded SoCs
• Currently not common in embedded Linux projects on ARM
• https://www.arm.com/architecture/system-architectures/systemready-

certification-program

▶ Also some on-going effort to use UEFI on RISC-V, but not the de-facto standard
▶ When an embedded platform uses UEFI → its booting process is similar to an x86

platform

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/533

https://www.arm.com/architecture/system-architectures/systemready-certification-program
https://www.arm.com/architecture/system-architectures/systemready-certification-program

Bootloaders and firmware

Booting on embedded platforms

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/533

Booting on embedded platforms: ROM code

▶ Most embedded processors include a ROM code that implements the initial step
of the boot process

▶ The ROM code is written by the processor vendor and directly built into the
processor

• Cannot be changed or updated
• Its behavior is described in the processor datasheet

▶ Responsible for finding a suitable bootloader, loading it and running it
• From NAND/NOR flash, from USB, from SD card, from eMMC, etc.
• Well defined location/format

▶ Generally runs with the external RAM not initialized, so it can only load the
bootloader into an internal SRAM

• Limited size of the bootloader, due to the size of the SRAM
• Forces the boot process to be split in two steps: first stage bootloader (small, runs

from SRAM, initializes external DRAM), second stage bootloader (larger, runs from
external DRAM)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/533

Booting on STM32MP1: datasheet

Source: https://www.st.com/resource/en/
application_note/dm00389996-getting-
started-with-stm32mp151-stm32mp153-and-
stm32mp157-line-hardware-development-
stmicroelectronics.pdf

Useful details:

https://wiki.st.com/stm32mpu/wiki/

STM32_MPU_ROM_code_overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/533

https://www.st.com/resource/en/application_note/dm00389996-getting-started-with-stm32mp151-stm32mp153-and-stm32mp157-line-hardware-development-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00389996-getting-started-with-stm32mp151-stm32mp153-and-stm32mp157-line-hardware-development-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00389996-getting-started-with-stm32mp151-stm32mp153-and-stm32mp157-line-hardware-development-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00389996-getting-started-with-stm32mp151-stm32mp153-and-stm32mp157-line-hardware-development-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00389996-getting-started-with-stm32mp151-stm32mp153-and-stm32mp157-line-hardware-development-stmicroelectronics.pdf
https://wiki.st.com/stm32mpu/wiki/STM32_MPU_ROM_code_overview
https://wiki.st.com/stm32mpu/wiki/STM32_MPU_ROM_code_overview

Booting on AM335x (32 bit BeagleBone): datasheet

Source:
https://www.mouser.com/pdfdocs/spruh73h.pdf,

chapter 26

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/533

https://www.mouser.com/pdfdocs/spruh73h.pdf

Two stage booting sequence

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/533

ROM code recovery mechanism

▶ Most ROM code also provide some sort of recovery
mechanism, allowing to flash a board with no
bootloader or a broken one, usually with a
vendor-specific protocol over UART or USB.

▶ Often allows to push a new bootloader into RAM,
making it possible to reflash the bootloader.

▶ Vendor-specific tools to run on the workstation
• STM32MP1: STM32 Cube Programmer
• NXP i.MX: uuu
• Microchip AT91/SAM: SAM-BA
• Allwinner: sunxi-fel
• Some open-source, some proprietary

▶ Snagboot: new vendor agnostic tool replacing the
above ones: https://github.com/bootlin/snagboot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/533

https://www.st.com/en/development-tools/stm32cubeprog.html
https://github.com/NXPmicro/mfgtools
https://www.microchip.com/en-us/development-tool/SAM-BA-In-system-Programmer
https://github.com/linux-sunxi/sunxi-tools
https://github.com/bootlin/snagboot

Bootloaders and firmware

Bootloaders

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/533

GRUB
▶ Grand Unified Bootloader, from the GNU

project
▶ De-facto standard in most Linux distributions

for x86 platforms
▶ Supports x86 legacy and UEFI systems
▶ Can read many filesystem formats to load the

kernel image, modules and configuration
▶ Provides a menu and powerful shell with

various commands
▶ Can load kernel images over the network
▶ Also supports ARM, ARM64, RISC-V,

PowerPC, but less popular than other
bootloaders on those platforms

▶ https://www.gnu.org/software/grub/

▶ https://en.wikipedia.org/wiki/GNU_GRUB- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/533

https://www.gnu.org/software/grub/
https://en.wikipedia.org/wiki/GNU_GRUB

Syslinux

▶ For network and removable media booting (USB key, SD card,
CD-ROM)

▶ syslinux: booting from FAT filesystem
▶ pxelinux: booting from the network
▶ isolinux: booting from CD-ROM
▶ extlinux: booting from numerous filesystem types
▶ A bit rustic to build and configure, not very actively maintained,

but still useful for specific use-cases
▶ https://wiki.syslinux.org/

▶ https://kernel.org/pub/linux/utils/boot/syslinux/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/533

https://wiki.syslinux.org/
https://kernel.org/pub/linux/utils/boot/syslinux/

systemd-boot

▶ Simple UEFI boot manager
▶ Useful alternative to GRUB for UEFI systems: simpler

than GRUB
▶ Configured using files stored in the EFI System Partition
▶ Part of the systemd project, even though obviously

distinct from systemd itself
• See our slides later in this course for more details on

systemd
▶ https://www.freedesktop.org/wiki/Software/

systemd/systemd-boot/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/533

https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/

shim

▶ Minimal UEFI bootloader
▶ Mainly used in secure boot scenario: it is signed by Microsoft and therefore

successfully verified by UEFI firmware in the field
▶ Allows to chainload another bootloader (GRUB) or directly the Linux kernel, with

signature checking
▶ https://github.com/rhboot/shim

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/533

https://github.com/rhboot/shim

U-Boot

▶ The de-facto standard and most widely used bootloader
on embedded architectures: ARM, ARM64, RISC-V,
PowerPC, MIPS, and more.

▶ Also supports x86 with UEFI firmware.
▶ Very likely the one provided by your SoC vendor, SoM

vendor or board vendor for your hardware.
▶ We will study it in detail in the next section, and use it

in all practical labs of this course.
▶ https://www.denx.de/wiki/U-Boot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/533

https://www.denx.de/wiki/U-Boot

Barebox

▶ Another bootloader for most embedded CPU
architectures: ARM/ARM64, MIPS, PowerPC, RISC-V,
x86, etc.

▶ Initially developed as an alternative to U-Boot to
address some U-Boot shortcomings

• kconfig for the configuration like the Linux kernel
• well-defined device model internally
• More Linux-style shell interface
• Cleaner code base

▶ Actively maintained and developed, but
• Less widely used than U-Boot
• Less platform support than in U-Boot

▶ https://www.barebox.org/

▶ Talk barebox Bells and Whistles, by Ahmad Fatoum,
ELCE 2020, video and slides

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/533

https://www.barebox.org/
https://youtu.be/Oj7lKbFtyM0
https://elinux.org/images/9/9d/Barebox-bells-n-whistles.pdf

Bootloaders and firmware

Trusted firmware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/533

Concept

▶ Traditionally, bootloaders are only used during the booting process
• Bootloader loads operating system, jumps to it, and is discarded

▶ Modern SoCs have advanced security mechanisms that require running some sort
of trusted firmware

▶ This firmware is loaded by the bootloader, or part of the boot chain itself
▶ This trusted firmware stays resident after control has been passed to the OS

• It is stored in a dedicated portion of the DDR, or some specific SRAM, inaccessible
from the OS

• It provides services to the OS, which the OS cannot perform directly
• Can also be responsible for running a secure OS alongside the regular OS (Linux in

our case)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/533

ARM

▶ Modern ARMv7 and ARMv8 processors have
• 4 privilege levels (Exception Levels)

EL3, the most priviledged, runs secure firmware
EL2, typically used by hypervisors, for virtualization
EL1, used to run the Linux kernel
EL0, used to run Linux user-space applications

• 2 worlds
Normal world, used to run a general purpose OS, like Linux
Secure world, to run a separate, isolated, secure operating system and applications.
Also called TrustZone by ARM.

▶ EL3 only exists in the secure world
▶ EL2 exists in both secure and normal worlds since ARMv8.4, before that EL2 was

only in the normal world
▶ EL1 and EL0 exist in both secure and normal worlds

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/533

ARM exception levels and worlds

Source: ARM documentation
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/533

https://developer.arm.com/documentation/102412/0102/Execution-and-Security-states

Interfaces with secure firmware

▶ Standardized by ARM
▶ Services

• implemented by the secure firmware
• called by the operating system

▶ Prevents the operating system running in normal world from
directly accessing critical hardware resources

▶ PSCI, Power State Coordination Interface
• Power management related: turn CPUs on/off, CPU idle state,

platform shutdown/reset
▶ SCMI, System Control and Management Interface

• Power domain, clocks, sensor, performance
▶ Secure firmware implementing these interfaces is

• Mandatory to run Linux on ARMv8
• Mandatory to run Linux on some ARMv7 platforms, but not all

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/533

http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/DEN0056A_System_Control_and_Management_Interface.pdf

TF-A

▶ Trusted Firmware-A (TF-A) provides a reference implementation of secure world
software for Armv7-A and Armv8-A, including a Secure Monitor executing at
Exception Level 3 (EL3)

▶ Formerly known as ATF, for ARM Trusted Firmware
▶ Implements the various standard interfaces that operating systems need from the

secure firmware
▶ Has drivers for the hardware blocks that are not accessed directly by Linux
▶ Needs to be ported for each SoC
▶ Depending on the platform, may also need to be ported per board: DDR

initialization
▶ Used on the vast majority of ARMv8 platforms, and on a few recent ARMv7

platforms
▶ https://www.trustedfirmware.org/projects/tf-a/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/533

https://www.trustedfirmware.org/projects/tf-a/

Trusted OS, OP-TEE

▶ A trusted operating system can run in the secure world, also called Trusted
Execution Environment or TEE

▶ Hardware partitioning between secure world and normal world
• Some hardware resources only available in the secure world, by the trusted OS

▶ Allows to run trusted applications/services
• isolated from Linux
• can provide services to Linux applications

▶ Most common open-source implementation: OP-TEE
• Supported by most silicon vendors
• https://www.op-tee.org/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/533

https://www.op-tee.org/

ARM: summary

Largely inspired from Ahmad Fatoum presentation From Reset Vector to Kernel, slides, video
See also details about the ARM terms: BL1, BL2...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/533

https://archive.fosdem.org/2021/schedule/event/from_reset_vector_to_kernel/attachments/slides/4632/export/events/attachments/from_reset_vector_to_kernel/slides/4632/from_reset_vector_to_kernel.pdf
https://www.youtube.com/watch?v=-Ak9MWGxd7M
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html

RISC-V

▶ Linux-class RISC-V processors have several privilege
levels

• M-mode: machine mode
• S-mode: level at which the Linux kernel runs
• U-mode: level at which Linux user-space applications

run
▶ Some specific HW resources are not accessible in

S-mode
▶ A more priviledged firmware runs in M-mode
▶ RISC-V has defined SBI, Supervisor Binary Interface

• Standardized interface between the OS and the firmware
• https://github.com/riscv-non-isa/riscv-sbi-doc

▶ OpenSBI is a reference, open-source implementation of
SBI

• https://github.com/riscv-software-src/opensbi

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/533

https://github.com/riscv-non-isa/riscv-sbi-doc
https://github.com/riscv-software-src/opensbi

Bootloaders and firmware

Example boot sequences on ARM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/533

TI AM335x (32 bit BeagleBone): ARMv7

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/533

NXP i.MX6: ARMv7

Note: this diagram shows one possible boot flow on NXP i.MX6, but it is also possible
to use the U-Boot SPL → U-Boot boot flow on i.MX6.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/533

STM32MP1: ARMv7

Note: booting with U-Boot SPL and U-Boot is also possible.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/533

Allwinner ARMv8 cores

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/533

TI AM62x (BeaglePlay): ARMv7 and ARMv8 cores

See https://u-boot.readthedocs.io/en/latest/board/ti/am62x_sk.html for details.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/533

https://u-boot.readthedocs.io/en/latest/board/ti/am62x_sk.html

Bootloaders and firmware

The U-boot bootloader

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/533

U-Boot

U-Boot is a typical free software project
▶ License: GPLv2 (same as Linux)
▶ Freely available at https://www.denx.de/wiki/U-Boot
▶ Documentation available at

https://u-boot.readthedocs.io/en/latest/

▶ The latest development source code is available in a Git
repository: https://gitlab.denx.de/u-boot/u-boot

▶ Development and discussions happen around an open
mailing-list
https://lists.denx.de/pipermail/u-boot/

▶ Follows a regular release schedule. Every 2 or 3 months,
a new version is released. Versions are named YYYY.MM. Image source

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/533

https://www.denx.de/wiki/U-Boot
https://u-boot.readthedocs.io/en/latest/
https://gitlab.denx.de/u-boot/u-boot
https://lists.denx.de/pipermail/u-boot/
https://en.wikipedia.org/wiki/Das_U-Boot#/media/File:U-Boot_Logo.svg

Where to get U-Boot from?

▶ Ideal: your platform is supported directly by upstream U-Boot
• Best quality → code reviewed and approved by the community
• Long-term maintenance
• Use directly U-Boot from https://gitlab.denx.de/u-boot/u-boot Git repository

▶ Less ideal: use a fork of U-Boot by your silicon vendor, system-on-module vendor
or board vendor

• Generally older, does not follow all upstream U-Boot updates
• Changes not reviewed by the community → quality is often dubious
• Check your HW vendor documentation/SDK

▶ If designing your own custom board
• You will have to port U-Boot
• If good support for your SoC in upstream U-Boot → use upstream U-Boot
• If not → use the U-Boot fork from your SoC vendor

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/533

https://gitlab.denx.de/u-boot/u-boot

U-Boot configuration

▶ Configuration system based on kconfig from the Linux kernel
▶ The configs/ directory contains configuration files for supported boards or

platforms
• There may be a single configuration supporting multiple boards based on the same

processor
• The configuration files defines all relevant options: CPU type, drivers needed,

U-Boot features to compile in
• Examples:

configs/stm32mp15_basic_defconfig
configs/stm32mp15_trusted_defconfig

▶ Note: migration to kconfig is still on-going
• Not all boards have been converted to the new configuration system.
• Many boards still have a combination of configuration settings in include/configs/

header files, and configuration settings in defconfig files

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/533

https://elixir.bootlin.com/u-boot/latest/source/configs/
https://elixir.bootlin.com/u-boot/latest/source/configs/stm32mp15_basic_defconfig
https://elixir.bootlin.com/u-boot/latest/source/configs/stm32mp15_trusted_defconfig
https://elixir.bootlin.com/u-boot/latest/source/include/configs/

U-Boot configuration file: stm32mp15_trusted_defconfig

CONFIG_ARM=y
CONFIG_ARCH_STM32MP=y
CONFIG_TFABOOT=y
CONFIG_SYS_MALLOC_F_LEN=0x3000
CONFIG_ENV_OFFSET=0x280000
CONFIG_ENV_SECT_SIZE=0x40000
CONFIG_DEFAULT_DEVICE_TREE="stm32mp157c-ev1"
[..]
CONFIG_CMD_ADTIMG=y
CONFIG_CMD_ERASEENV=y
CONFIG_CMD_NVEDIT_EFI=y
CONFIG_CMD_MEMINFO=y
CONFIG_CMD_MEMTEST=y
CONFIG_CMD_UNZIP=y
CONFIG_CMD_ADC=y
CONFIG_CMD_CLK=y
CONFIG_CMD_DFU=y
CONFIG_CMD_FUSE=y
CONFIG_CMD_GPIO=y
[...]
CONFIG_SPI=y
CONFIG_DM_SPI=y
CONFIG_STM32_QSPI=y
CONFIG_STM32_SPI=y
[...]

See the full file: configs/stm32mp15_trusted_defconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/533

https://elixir.bootlin.com/u-boot/latest/source/configs/stm32mp15_trusted_defconfig

U-Boot configuration

▶ U-Boot must be configured before being
compiled

▶ Configuration stored in a .config file
▶ Load a pre-defined configuration

$ make BOARDNAME_defconfig

Where BOARDNAME is the name of a
configuration, as visible in the configs/
directory.

▶ You can then run make menuconfig to further
customize U-Boot’s configuration.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/533

https://elixir.bootlin.com/u-boot/latest/source/configs/

U-Boot compilation

▶ The path to the cross-compiler must be specified in the CROSS_COMPILE variable
▶ CROSS_COMPILE contains the prefix common to all cross-compilation tools, e.g

arm-linux-

▶ Common to add the cross-compiler location in PATH to keep the CROSS_COMPILE
value short
$ export PATH=/path/to/toolchain/bin:$PATH
$ make CROSS_COMPILE=arm-linux-

▶ The main result is a u-boot.bin file, which is the U-Boot image.
▶ Depending on your specific platform, or what storage device you’re booting from

(NAND or MMC), there may be other specialized images: u-boot.img,
u-boot.kwb...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/533

Concept of U-Boot SPL

▶ To meet the need of a two-stage boot process, U-Boot has the concept of U-Boot
SPL

▶ SPL = Secondary Program Loader
▶ The SPL is a stripped-down version of U-Boot, made small enough to meet the

size constraints of a first stage bootloader
▶ Configured through menuconfig, one can define the subset of drivers to include
▶ No U-Boot shell/commands: the behavior is hardcoded in C code
▶ For some platforms: TPL, Tertiary Program Loader, an even more minimal first

stage bootloader to do TPL → SPL → main U-Boot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/533

Device Tree in U-Boot

▶ The Device Tree is a data structure that describes the topology of the hardware
▶ Allows software to know which hardware peripherals are available and how they

are connected to the system
▶ Initially mainly used by Linux, now also used by U-Boot, Barebox, TF-A, etc.
▶ Used by U-Boot on most platforms.
▶ Device Tree files located in arch/ARCH/dts

▶ One .dts for each board: need to create one if you build a custom board
▶ U-Boot defconfigs usually specify a default Device Tree, but it can be overridden

using the DEVICE_TREE variable
▶ More details on the Device Tree later in this course.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/533

U-Boot build example: TI AM335x BeagleBoneBlack wireless
▶ One defconfig file suitable for all AM335x platforms:

configs/am335x_evm_defconfig
• Yes its name looks like it supports only the EVM (EValuation Module) board
• Contains CONFIG_DEFAULT_DEVICE_TREE="am335x-evm" → uses

arch/arm/dts/am335x-evm.dts by default
▶ One Device Tree file describing the BeagleBoneBlack Wireless:

arch/arm/dts/am335x-boneblack-wireless.dts

▶ Configure and build U-Boot
$ export PATH=/path/to/toolchain/bin:$PATH
$ make am335x_evm_defconfig
$ make DEVICE_TREE=am335x-boneblack-wireless CROSS_COMPILE=arm-linux-

▶ Produces:
• MLO, the SPL, first-stage bootloader. Called MLO (Mmc LOad) as required on TI

platforms.
• u-boot.img, full U-Boot, second-stage bootloader

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/533

https://elixir.bootlin.com/u-boot/latest/source/configs/am335x_evm_defconfig
https://elixir.bootlin.com/u-boot/latest/source/arch/arm/dts/am335x-evm.dts
https://elixir.bootlin.com/u-boot/latest/source/arch/arm/dts/am335x-boneblack-wireless.dts

Installing U-Boot

1. If U-Boot is loaded from external storage, just update the binaries on such storage.
2. If U-Boot is loaded from internal storage (eMMC or NAND), you can update it

using Snagboot (https://github.com/bootlin/snagboot) if it supports your
SoC, or with the custom solution from the SoC vendor.

3. An alternative is to reflash internal storage with JTAG (if available), but that’s
more complicated and requires a JTAG probe.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/533

https://github.com/bootlin/snagboot

U-boot shell prompt

▶ Connect the target to the host
through a serial console.

▶ Power-up the board. On the serial
console, you should see U-Boot
starting up.

▶ The U-Boot shell offers a set of
commands.

▶ The U-Boot shell is not a Linux shell:
commands are completely different
from Linux ones.

U-Boot SPL 2022.01 (Mar 31 2022 - 14:58:17 +0200)
Trying to boot from MMC1

U-Boot 2022.01 (Mar 31 2022 - 14:58:17 +0200)

CPU : AM335X-GP rev 2.1
Model: TI AM335x BeagleBone Black
DRAM: 512 MiB
WDT: Started wdt@44e35000 with servicing (60s timeout)
NAND: 0 MiB
MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1
Loading Environment from FAT... OK
Net: Could not get PHY for ethernet@4a100000: addr 0
eth2: ethernet@4a100000, eth3: usb_ether [PRIME]
Hit any key to stop autoboot: 0
=>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/533

U-Boot help command

▶ help command to list all available
commands

▶ The set of available commands
depend on the U-Boot configuration

• Many CONFIG_CMD_* options to
enable commands at compile time

• See Command line interface
submenu in menuconfig

▶ help <command> for the complete
help of one command

STM32MP> help
? - alias for 'help'
adc - ADC sub-system
adtimg - manipulate dtb/dtbo Android image
base - print or set address offset
[...]
usb - USB sub-system
[...]

STM32MP> help usb
usb - USB sub-system

Usage:
usb start - start (scan) USB controller
usb reset - reset (rescan) USB controller
usb stop [f] - stop USB [f]=force stop
usb tree - show USB device tree
usb info [dev] - show available USB devices
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/533

U-Boot information commands

Version details: version

=> version
U-Boot 2020.04 (May 26 2020 - 16:05:43 +0200)
arm-linux-gcc (crosstool-NG 1.24.0.105_5659366) 9.2.0
GNU ld (crosstool-NG 1.24.0.105_5659366) 2.34

NAND flash information: nand info

=> nand info
Device 0: nand0, sector size 128 KiB
Page size 2048 b
OOB size 64 b
Erase size 131072 b
subpagesize 2048 b
options 0x40004200
bbt options 0x00008000

MMC information: mmc info

=> mmc info
Device: STM32 SD/MMC
Manufacturer ID: 3
[...]
Capacity: 14.8 GiB
Bus Width: 4-bit

Board information: bdinfo

=> bdinfo
boot_params = 0x00000000
DRAM bank = 0x00000000
-> start = 0xc0000000
-> size = 0x20000000
flashstart = 0x00000000
flashsize = 0x00000000
flashoffset = 0x00000000
baudrate = 115200 bps
relocaddr = 0xddb21000
reloc off = 0x1da21000
[...]
fdt_blob = 0xdbb01950
new_fdt = 0xdbb01950
fdt_size = 0x0001d540
Video = display-controller@5a001000 inactive
[...]

▶ DRAM starts at 0xc0000000, for a size of 512 MB
(0x20000000).

▶ The end of the memory is used by U-Boot itself:
relocaddr is the location of U-Boot in RAM.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/533

Concept of U-Boot environment

▶ A significant part of the U-Boot configuration happens at compile time:
menuconfig

▶ U-Boot also has runtime configuration, through the concept of environment
variables

▶ Environment variables are key/value pairs
• Some specific environment variables impact the behavior of different U-Boot

commands
• Additional custom environment variables can be added, and used in scripts

▶ U-Boot environment variables are loaded and modified in RAM
▶ U-Boot has a default environment built into its binary

• used when no other environment is found
• defined in the configuration
• the default environment is sometimes quite complex in some existing configurations

▶ The environment can be persistently stored in non-volatile storage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/533

U-Boot environment persistent storage

Depending on the configuration, the
U-Boot environment can be:
▶ At a fixed offset in NAND flash
▶ At a fixed offset on MMC or USB

storage, before the beginning of the
first partition.

▶ In a file on a FAT or ext4 partition
▶ In a UBI volume
▶ Not stored at all, only the built-in

environment in the U-Boot binary is
used

U-Boot environment configuration menu

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/533

U-Boot environment commands
▶ printenv

Shows all variables
▶ printenv <variable-name>

Shows the value of a variable
▶ setenv <variable-name> <variable-value>

Changes the value of a variable or defines a new one, only in RAM
▶ editenv <variable-name>

Interactively edits the value of a variable, only in RAM
▶ After an editenv or setenv, changes in the environment are lost if they are not

saved persistently
▶ saveenv

Saves the current state of the environment to storage for persistence.
▶ env command, with many sub-commands: env default, env info, env erase,

env set, env save, etc.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/533

U-Boot environment commands example

=> printenv
baudrate=19200
ethaddr=00:40:95:36:35:33
netmask=255.255.255.0
ipaddr=10.0.0.11
serverip=10.0.0.1
stdin=serial
stdout=serial
stderr=serial
=> setenv serverip 10.0.0.100
=> printenv serverip
serverip=10.0.0.100
=> saveenv

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/533

U-Boot memory allocation

▶ Many commands in U-Boot loading data into memory, or using data from
memory, expect a RAM address as argument

▶ No built-in memory allocation mechanism → up to the user to know usable
memory areas to load/use data

▶ Use the output of bdinfo to know the start address and size of RAM
▶ Avoid the end of the RAM, which is used by the U-Boot code and dynamic

memory allocations
▶ Not the best part of the U-Boot design, sadly

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/533

U-Boot memory manipulation commands

▶ Commands to inspect or modify any memory location, useful for debugging,
poking into hardware registers, etc.

▶ Addresses manipulated in U-Boot are directly physical addresses
▶ Memory display

md [.b, .w, .l, .q] address [# of objects]

▶ Memory write
mw [.b, .w, .l, .q] address value [count]

▶ Memory modify (modify memory contents interactively starting from address)
mm [.b, .w, .l, .q] address

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/533

U-Boot raw storage commands
U-Boot can manipulate raw storage devices:
▶ NAND flash

• nand info
• nand read <addr> <off|partition>

<size>
• nand erase [<off> [<size>]]
• nand write <addr> <off|partition>

<size>
• More: help nand

▶ MMC
• mmc info
• mmc read <addr> <blk#> <cnt>
• mmc write <addr> <blk#> <cnt>
• mmc part to show partition table
• mmc dev to show/set current MMC device
• More: help mmc

▶ USB storage
• usb info
• usb read <addr> <blk#>

<cnt>
• usb write <addr> <blk#>

<cnt>
• usb part
• usb dev
• More: help usb

Note: <addr> are addresses in
RAM where data is stored

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/533

U-Boot commands example

List partitions on MMC
STM32MP> mmc part
Partition Map for MMC device 0 -- Partition Type: EFI

Part Start LBA End LBA Name
Attributes
Type GUID
Partition GUID

1 0x00000022 0x000001d3 "fsbl1"
attrs: 0x0000000000000000
type: 0fc63daf-8483-4772-8e79-3d69d8477de4
type: linux
guid: 72c63477-c475-4cf7-988e-b763bce4604e

2 0x000001d4 0x00000385 "fsbl2"
attrs: 0x0000000000000000
type: 0fc63daf-8483-4772-8e79-3d69d8477de4
type: linux
guid: 66d616db-de56-4a1e-9b13-9b1a5a6e360f

3 0x00000386 0x00001385 "fip"
attrs: 0x0000000000000000
type: 0fc63daf-8483-4772-8e79-3d69d8477de4
type: linux
guid: 6251ecf7-d985-4d81-a396-7a6b6fab8b7c

[...]

Read block 0x22 from MMC to RAM 0xc0000000
STM32MP> mmc read c0000000 22 1

MMC read: dev # 0, block # 34, count 1 ... 1 blocks read: OK

Dump memory at 0xc00000000
STM32MP> md c0000000
c0000000: 324d5453 00000000 00000000 00000000 STM2............
c0000010: 00000000 00000000 00000000 00000000
c0000020: 00000000 00000000 00000000 00000000
c0000030: 00000000 00000000 00000000 00000000

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/533

U-Boot filesystem storage commands

▶ U-Boot has support for many filesystems
• The exact list of supported filesystems depends on the U-Boot configuration

▶ Per-filesystem commands
• FAT: fatinfo, fatls, fatsize, fatload, fatwrite
• ext2/3/4: ext2ls, ext4ls, ext2load, ext4load, ext4size, ext4write
• Squashfs: sqfsls, sqfsload

▶ “New” generic commands, working for all filesystem types
• Load a file:

load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]
• List files: ls <interface> [<dev[:part]> [directory]]
• Get the size of a file: size <interface> <dev[:part]> <filename>

(result stored in filesize environment variable)
• interface: mmc, usb
• dev: device number, 0 for first device, 1 for second device
• part: partition number

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/533

U-Boot filesystem command example

List files
STM32MP> ls mmc 0:4
<DIR> 1024 .
<DIR> 1024 ..
<DIR> 12288 lost+found
<DIR> 2048 bin
<DIR> 1024 boot
<DIR> 1024 dev
<DIR> 1024 etc
[...]

STM32MP> ls mmc 0:4 /etc
<DIR> 1024 .
<DIR> 1024 ..

209 asound.conf
<DIR> 1024 fonts

334 fstab
347 group

[...]

Load file
STM32MP> load mmc 0:4 c0000000 /etc/fstab
334 bytes read in 143 ms (2 KiB/s)

Show file contents
STM32MP> md c0000000
c0000000: 663c2023 20656c69 74737973 093e6d65 # <file system>.
c0000010: 756f6d3c 7020746e 3c093e74 65707974 <mount pt>.<type
c0000020: 6f3c093e 6f697470 093e736e 6d75643c >.<options>.<dum
c0000030: 3c093e70 73736170 642f0a3e 722f7665 p>.<pass>./dev/r
c0000040: 09746f6f 6509092f 09327478 6e2c7772 oot./..ext2.rw,n
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/533

U-Boot networking

▶ Environment variables
• ethaddr: MAC address
• ipaddr: IP address of the board
• serverip: IP address of the server for network related commands

▶ Important commands
• ping: ping a destination machine. Note: U-Boot is not an operating system with

multitasking/interrupts, so ping from another machine to U-Boot cannot work.
• tftp: load a file using the TFTP protocol
• dhcp: get an IP address using DHCP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/533

TFTP

▶ Network transfer from the development workstation to U-Boot on the target takes
place through TFTP

• Trivial File Transfer Protocol
• Somewhat similar to FTP, but without authentication and over UDP

▶ A TFTP server is needed on the development workstation
• sudo apt install tftpd-hpa
• All files in /srv/tftp are then visible through TFTP
• A TFTP client is available in the tftp-hpa package, for testing

▶ A TFTP client is integrated into U-Boot
• Configure the ipaddr, serverip, and ethaddr environment variables
• Use tftp <address> <filename> to load file contents to the specified RAM

address
• Example: tftp 0x21000000 zImage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/533

Scripts in environment variables

▶ Environment variables can contain small scripts, to execute several commands and
test the results of commands.

• Useful to automate booting or upgrade processes
• Several commands can be chained using the ; operator
• Tests can be done using if command ; then ... ; else ... ; fi
• Scripts are executed using run <variable-name>
• You can reference other variables using ${variable-name}

▶ Examples
• setenv bootcmd 'tftp 0x21000000 zImage; tftp 0x22000000 dtb; bootz

0x21000000 - 0x22000000'
• setenv mmc-boot 'if fatload mmc 0 80000000 boot.ini; then source; else

if fatload mmc 0 80000000 zImage; then run mmc-do-boot; fi; fi'

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/533

U-Boot booting commands

▶ Commands to boot a Linux kernel image
• bootz → boot a compressed ARM32 zImage
• booti → boot an uncompressed ARM64 or RISC-V Image
• bootm → boot a kernel image with legacy U-Boot headers
• zboot → boot a compressed x86 bzImage

▶ bootz [addr [initrd[:size]] [fdt]]
• addr: address of the kernel image in RAM
• initrd: address of the initrd or initramfs, if any. Otherwise, must pass -
• fdt: address of the Device Tree passed to the Linux kernel

▶ Important environment variables
• bootcmd: list of commands executed automatically by U-Boot after the count down
• bootargs: Linux kernel command line

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/533

U-Boot booting example

Load kernel image and Device Tree
STM32MP> ls mmc 0:4 /boot
<DIR> 1024 .
<DIR> 1024 ..

117969 stm32mp157c-dk2.dtb
7538376 zImage

STM32MP> load mmc 0:4 c2000000 /boot/zImage
7538376 bytes read in 463 ms (15.5 MiB/s)

STM32MP> load mmc 0:4 c4000000 /boot/stm32mp157c-dk2.dtb
117969 bytes read in 148 ms (778.3 KiB/s)

Set kernel command line and boot
STM32MP> setenv bootargs root=/dev/mmcblk0p4 rootwait

STM32MP> bootz c2000000 - c4000000
Kernel image @ 0xc2000000 [0x000000 - 0x7306c8]
Flattened Device Tree blob at c4000000

Booting using the fdt blob at 0xc4000000
Loading Device Tree to cffe0000, end cffffcd0 ... OK

[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/533

FIT image

▶ U-Boot has a concept of FIT image
▶ FIT = Flat Image Tree
▶ Container format that allows to bundle multiple images into one

• Multiple kernel images
• Multiple Device Trees
• Multiple initramfs
• Any other image: FPGA bitstream, etc.

▶ Typically useful for secure booting and to ensure binaries don’t overlap in memory.
▶ Interestingly, relies on the Device Tree Compiler

• .its file describes the contents of the image
• Device Tree Compiler compiles it into an .itb

▶ U-Boot can load an .itb image and use its different elements
▶ https://www.thegoodpenguin.co.uk/blog/u-boot-fit-image-overview/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/533

https://www.thegoodpenguin.co.uk/blog/u-boot-fit-image-overview/

Generic Distro boot (1)

▶ Each board/platform used to have its own U-Boot environment, with custom
variables/commands

▶ Wish to standardize the behavior of bootloaders, including U-Boot
▶ Generic Distro boot concept
▶ If enabled, at boot time, U-Boot:

• Can be asked to locate a bootable partition (part list command), as defined by
the bootable flag of the partition table

• With the sysboot command, will look for a /extlinux/extlinux.conf or
/boot/extlinux/extlinux.conf file describing how to boot, and will offer a
prompt in the console to choose between available configurations.

• Once a configuration is selected, will load and boot the corresponding kernel, device
tree and initramfs images.

• Example bootcmd:
part list mmc 0 -bootable bootpart; sysboot mmc 0:${bootpart} any

▶ https://u-boot.readthedocs.io/en/latest/develop/distro.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/533

https://u-boot.readthedocs.io/en/latest/develop/distro.html

Generic Distro boot (2)

Several environment variables need to be set:
▶ kernel_addr_r: address in RAM to load

the kernel image
▶ ramdisk_addr_r: address in RAM to load

the initramfs image (if any)
▶ fdt_addr_r: address in RAM to load the

DTB (Flattened Device Tree)
▶ pxefile_addr_r: address in RAM to load

the configuration file (usually
extlinux.conf)

▶ bootfile: the path to the configuration
file, for example
/boot/extlinux/extlinux.conf

Example /boot/extlinux/extlinux.conf

label stm32mp157c-dk2-buildroot
kernel /boot/zImage
devicetree /boot/stm32mp157c-dk2.dtb
append root=/dev/mmcblk0p4 rootwait

U-Boot boot log
Hit any key to stop autoboot: 0
Boot over mmc0!
switch to partitions #0, OK
mmc0 is current device
Scanning mmc 0:4...
Found /boot/extlinux/extlinux.conf
Retrieving file: /boot/extlinux/extlinux.conf
131 bytes read in 143 ms (0 Bytes/s)
1: stm32mp157c-dk2-buildroot
Retrieving file: /boot/zImage
7538376 bytes read in 462 ms (15.6 MiB/s)
append: root=/dev/mmcblk0p4 rootwait
Retrieving file: /boot/stm32mp157c-dk2.dtb
117969 bytes read in 148 ms (778.3 KiB/s)
Kernel image @ 0xc2000000 [0x000000 - 0x7306c8]
Flattened Device Tree blob at c4000000

Booting using the fdt blob at 0xc4000000
Loading Device Tree to cffe0000, end cffffcd0 ... OK

Starting kernel ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/533

Bootloaders and firmware

TF-A: Trusted Firmware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/533

Concept of FIP

▶ FIP = Firmware Image Package
▶ Concept specific to TF-A
▶ packaging format used by TF-A to package firmware images in a single binary
▶ Typically used to bundle the BL33, i.e. the U-Boot bootloader that will be loaded

by TF-A.
▶ https://trustedfirmware-

a.readthedocs.io/en/latest/getting_started/tools-build.html

▶ https://wiki.st.com/stm32mpu/wiki/How_to_configure_TF-A_FIP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/533

https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/tools-build.html
https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/tools-build.html
https://wiki.st.com/stm32mpu/wiki/How_to_configure_TF-A_FIP

Configuring TF-A

▶ TF-A does not use Kconfig for configuration
▶ All the configuration is based on variables passed on the make command line
▶ Most variables are documented at: https://trustedfirmware-

a.readthedocs.io/en/latest/getting_started/build-options.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/533

https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/build-options.html
https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/build-options.html

Configure TF-A: important variables

▶ CROSS_COMPILE, cross-compiler prefix
▶ ARCH, CPU architecture: aarch32 or aarch64
▶ ARM_ARCH_MAJOR, 7 for ARMv7, 8 for ARMv8
▶ PLAT, SoC family, any directory name in plat that contains platform.mk

▶ AARCH32_SP, the Secure Payload, specific to ARMv7. Either OP-TEE or the
built-in SP-MIN provided by TF-A

▶ DTB_FILE_NAME, path to the Device Tree describing our board
▶ BL33, path to the second stage bootloader, usually U-Boot, to include in the FIP

image
▶ Specific to STM32MP1

• BL33_CFG, path to the U-Boot Device Tree
• STM32MP_SDMMC=1, enable support for SD card/eMMC in TF-A

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/533

Building TF-A for STM32MP1

$ make CROSS_COMPILE=arm-linux- \
ARM_ARCH_MAJOR=7 \
ARCH=aarch32 \
PLAT=stm32mp1 \
AARCH32_SP=sp_min \
DTB_FILE_NAME=stm32mp157a-dk1.dtb \
BL33=/path/to/u-boot/u-boot-nodtb.bin \
BL33_CFG=/path/to/u-boot/u-boot.dtb \
STM32MP_SDMMC=1 \
fip all

Build results in build/stm32mp1/release. Important files:
▶ tf-a-stm32mp157a-dk1.stm32, TF-A itself
▶ fip.bin, the FIP image, containing U-Boot and other elements

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/533

FIP image contents

fiptool info
$./tools/fiptool/fiptool info build/stm32mp1/release/fip.bin
Secure Payload BL32 (Trusted OS): offset=0x100, size=0x8AEC, cmdline="--tos-fw"
Non-Trusted Firmware BL33: offset=0x8BEC, size=0xECE6C, cmdline="--nt-fw"
FW_CONFIG: offset=0xF5A58, size=0x226, cmdline="--fw-config"
HW_CONFIG: offset=0xF5C7E, size=0x16A98, cmdline="--hw-config"
TOS_FW_CONFIG: offset=0x10C716, size=0x3CF6, cmdline="--tos-fw-config"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/533

STM32MP1 partition layout

Reminder: boot sequence with TF-A
on STM32MP1

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/533

AM62x (BeaglePlay) partition layout

Reminder: boot sequence with TF-A
on AM62x

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/533

Practical lab - U-Boot / TF-A

Time to start the practical lab!
▶ Communicate with the board using a serial

console
▶ Configure, build and install the bootloader

stages:
• TF-A and U-Boot on STM32MP1 and

Beagleplay
• U-Boot SPL and U-Boot on BeagleBoneBlack

and QEMU
▶ Learn U-Boot commands
▶ Set up TFTP communication with the host

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/533

Linux kernel introduction

Linux kernel
introduction

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/533

Linux kernel in the system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/533

Linux kernel main roles

▶ Manage all the hardware resources: CPU, memory, I/O.
▶ Provide a set of portable, architecture and hardware independent APIs to

allow user space applications and libraries to use the hardware resources.
▶ Handle concurrent accesses and usage of hardware resources from different

applications.
• Example: a single network interface is used by multiple user space applications

through various network connections. The kernel is responsible for “multiplexing”
the hardware resource.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/533

System calls

▶ The main interface between the kernel and user space is
the set of system calls

▶ About 400 system calls that provide the main kernel
services

• File and device operations, networking operations,
inter-process communication, process management,
memory mapping, timers, threads, synchronization
primitives, etc.

▶ This interface is stable over time: only new system calls
can be added by the kernel developers

▶ This system call interface is wrapped by the C library,
and user space applications usually never make a system
call directly but rather use the corresponding C library
function

Image credits (Wikipedia):
https://bit.ly/2U2rdGB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/533

https://bit.ly/2U2rdGB

Pseudo filesystems

▶ Linux makes system and kernel information available in user space through
pseudo filesystems, sometimes also called virtual filesystems

▶ Pseudo filesystems allow applications to see directories and files that do not exist
on any real storage: they are created and updated on the fly by the kernel

▶ The two most important pseudo filesystems are
• proc, usually mounted on /proc:

Operating system related information (processes, memory management
parameters...)

• sysfs, usually mounted on /sys:
Representation of the system as a tree of devices connected by buses. Information
gathered by the kernel frameworks managing these devices.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/533

Linux kernel introduction

Linux versioning scheme and development
process

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 171/533

Linux versioning scheme

▶ Until 2003, there was a new “stabilized” release branch of Linux every 2 or 3 years
(2.0, 2.2, 2.4). Development branches took 2-3 years to be merged (too slow!).

▶ Since 2003, there is a new official release of Linux about every 10 weeks:
• Versions 2.6 (Dec. 2003) to 2.6.39 (May 2011)
• Versions 3.0 (Jul. 2011) to 3.19 (Feb. 2015)
• Versions 4.0 (Apr. 2015) to 4.20 (Dec. 2018)
• Versions 5.0 (Mar. 2019) to 5.19 (July 2022)
• Version 6.0 was released in Oct. 2022.

▶ Features are added to the kernel in a progressive way. Since 2003, kernel
developers have managed to do so without having to introduce a massively
incompatible development branch.

▶ For each release, there are bugfix and security updates called stable releases:
6.0.1, 6.0.2, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 172/533

Linux development model

Using merge and bug fixing windows

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/533

Need for long term support (1)

▶ Issue: bug and security fixes only released for most recent kernel versions.
▶ Solution: the last release of each year is made an LTS (Long Term Support)

release, and is supposed to be supported (and receive bug and security fixes) for
at least 2 years.

Captured on https://kernel.org in Nov.
2023, following the Releases link.

▶ Example at Google: starting from Android O (2017), all new Android devices have
to run such an LTS kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/533

https://kernel.org
https://www.kernel.org/category/releases.html

Need for long term support (2)

▶ You could also get long term support from a commercial embedded Linux
provider.

• Wind River Linux can be supported for up to 15 years.
• Ubuntu Core can be supported for up to 10 years.

▶ ”If you are not using a supported distribution kernel, or a stable / longterm kernel,
you have an insecure kernel” - Greg KH, 2019
Some vulnerabilities are fixed in stable without ever getting a CVE.

▶ The Civil Infrastructure Platform project is an industry / Linux Foundation effort
to support much longer (at least 10 years) selected LTS versions (currently 4.4,
4.19, 5.10 and 6.1) on selected architectures. See
https://wiki.linuxfoundation.org/civilinfrastructureplatform/start.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/533

https://wiki.linuxfoundation.org/civilinfrastructureplatform/start

Linux kernel introduction

Linux kernel sources

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 176/533

Location of official kernel sources

▶ The mainline versions of the Linux kernel, as released by Torvalds
• These versions follow the development model of the kernel (master branch)
• They may not contain the latest developments from a specific area yet
• A good pick for products development phase
• https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

▶ The stable versions of the Linux kernel, as maintained by a maintainers group
• These versions do not bring new features compared to Linus’ tree
• Only bug fixes and security fixes are pulled there
• Each version is stabilized during the development period of the next mainline kernel
• Certain versions can be maintained for much longer, 2+ years
• A good pick for products commercialization phase
• https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/533

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Location of non-official kernel sources
▶ Many chip vendors supply their own kernel sources

• Focusing on hardware support first
• Can have a very important delta with mainline Linux
• Sometimes they break support for other platforms/devices without caring
• Useful in early phases only when mainline hasn’t caught up yet (many vendors invest

in the mainline kernel at the same time)
• Suitable for PoC, not suitable for products on the long term as usually no updates

are provided to these kernels
• Getting stuck with a deprecated system with broken software that cannot be

updated has a real cost in the end
▶ Many kernel sub-communities maintain their own kernel, with usually newer but

fewer stable features, only for cutting-edge development
• Architecture communities (ARM, MIPS, PowerPC, etc)
• Device drivers communities (I2C, SPI, USB, PCI, network, etc)
• Other communities (real-time, etc)
• Not suitable to be used in products

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 178/533

Getting Linux sources

▶ The kernel sources are available from https://kernel.org/pub/linux/kernel
as full tarballs (complete kernel sources) and patches (differences between two
kernel versions).

▶ But today the entire open source community has settled in favor of Git
• Fast, efficient with huge code bases, reliable, open source
• Incidentally written by Torvalds

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/533

https://kernel.org/pub/linux/kernel

Going through Linux sources

▶ Development tools:
• Any text editor will work
• Vim and Emacs support

ctags and cscope and
therefore can help with
symbol lookup and
auto-completion.

• It’s also possible to use
more elaborate IDEs to
develop kernel code, like
Visual Studio Code.

▶ Powerful web browsing: Elixir
• Generic source indexing tool and code browser

for C and C++.
• Very easy to find symbols

declaration/implementation/usage
• Try out https://elixir.bootlin.com!

Project
selection
(U-Boot,
Linux,
BusyBox...)

Identifier
search

Current
directory

Source
browsing

All versions
available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/533

https://elixir.bootlin.com

Linux kernel size and structure
▶ Linux v5.18 sources: close to 80k files, 35M lines, 1.3GiB
▶ But a compressed Linux kernel just sizes a few megabytes.
▶ So, why are these sources so big?

Because they include numerous device drivers, network protocols, architectures,
filesystems... The core is pretty small!

▶ As of kernel version v5.18 (in percentage of total number of lines):

▶ drivers/: 61.1%
▶ arch/: 11.6%
▶ fs/: 4.4%
▶ sound/: 4.1%
▶ tools/: 3.9%
▶ net/: 3.7%

▶ include/: 3.5%
▶ Documentation/:

3.4%
▶ kernel/: 1.3%
▶ lib/: 0.7%
▶ usr/: 0.6%
▶ mm/: 0.5%

▶ scripts/, security/, crypto/,
block/, samples/, ipc/, virt/,
init/, certs/: <0.5%

▶ Build system files: Kbuild,
Kconfig, Makefile

▶ Other files: COPYING, CREDITS,
MAINTAINERS, README

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 181/533

https://elixir.bootlin.com/linux/latest/source/drivers/
https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/fs/
https://elixir.bootlin.com/linux/latest/source/sound/
https://elixir.bootlin.com/linux/latest/source/tools/
https://elixir.bootlin.com/linux/latest/source/net/
https://elixir.bootlin.com/linux/latest/source/include/
https://elixir.bootlin.com/linux/latest/source/Documentation/
https://elixir.bootlin.com/linux/latest/source/kernel/
https://elixir.bootlin.com/linux/latest/source/lib/
https://elixir.bootlin.com/linux/latest/source/usr/
https://elixir.bootlin.com/linux/latest/source/mm/
https://elixir.bootlin.com/linux/latest/source/scripts/
https://elixir.bootlin.com/linux/latest/source/security/
https://elixir.bootlin.com/linux/latest/source/crypto/
https://elixir.bootlin.com/linux/latest/source/block/
https://elixir.bootlin.com/linux/latest/source/samples/
https://elixir.bootlin.com/linux/latest/source/ipc/
https://elixir.bootlin.com/linux/latest/source/virt/
https://elixir.bootlin.com/linux/latest/source/init/
https://elixir.bootlin.com/linux/latest/source/certs/
https://elixir.bootlin.com/linux/latest/source/Kbuild
https://elixir.bootlin.com/linux/latest/source/Kconfig
https://elixir.bootlin.com/linux/latest/source/Makefile
https://elixir.bootlin.com/linux/latest/source/COPYING
https://elixir.bootlin.com/linux/latest/source/CREDITS
https://elixir.bootlin.com/linux/latest/source/MAINTAINERS
https://elixir.bootlin.com/linux/latest/source/README

Practical lab - Fetching Linux kernel sources

▶ Clone the mainline Linux tree
▶ Accessing stable releases

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/533

Linux kernel introduction

Kernel configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/533

Kernel configuration

▶ The kernel contains thousands of device drivers, filesystem drivers, network
protocols and other configurable items

▶ Thousands of options are available, that are used to selectively compile parts of
the kernel source code

▶ The kernel configuration is the process of defining the set of options with which
you want your kernel to be compiled

▶ The set of options depends
• On the target architecture and on your hardware (for device drivers, etc.)
• On the capabilities you would like to give to your kernel (network capabilities,

filesystems, real-time, etc.). Such generic options are available in all architectures.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/533

Kernel configuration and build system

▶ The kernel configuration and build system is based on multiple Makefiles
▶ One only interacts with the main Makefile, present at the top directory of the

kernel source tree
▶ Interaction takes place

• using the make tool, which parses the Makefile
• through various targets, defining which action should be done (configuration,

compilation, installation, etc.).
• Run make help to see all available targets.

▶ Example
• cd linux/
• make <target>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/533

https://elixir.bootlin.com/linux/latest/source/Makefile

Specifying the target architecture

First, specify the architecture for the kernel to build
▶ Set ARCH to the name of a directory under arch/:

ARCH=arm or ARCH=arm64 or ARCH=riscv, etc
▶ By default, the kernel build system assumes that the kernel is configured and built

for the host architecture (x86 in our case, native kernel compiling)
▶ The kernel build system will use this setting to:

• Use the configuration options for the target architecture.
• Compile the kernel with source code and headers for the target architecture.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/533

https://elixir.bootlin.com/linux/latest/source/arch/

Choosing a compiler

The compiler invoked by the kernel Makefile is $(CROSS_COMPILE)gcc

▶ Specifying the compiler is already needed at configuration time, as some kernel
configuration options depend on the capabilities of the compiler.

▶ When compiling natively
• Leave CROSS_COMPILE undefined and the kernel will be natively compiled for the host

architecture using gcc.
▶ When using a cross-compiler

• Specify the prefix of your cross-compiler executable, for example for
arm-linux-gnueabi-gcc:
CROSS_COMPILE=arm-linux-gnueabi-

Set LLVM to 1 to compile your kernel with Clang.
See our LLVM tools for the Linux kernel presentation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/533

https://bootlin.com/pub/conferences/2022/lee/opdenacker-llvm-tools-for-linux-kernel/opdenacker-llvm-tools-for-linux-kernel.pdf

Specifying ARCH and CROSS_COMPILE

There are actually two ways of defining ARCH and CROSS_COMPILE:
▶ Pass ARCH and CROSS_COMPILE on the make command line:

make ARCH=arm CROSS_COMPILE=arm-linux- ...
Drawback: it is easy to forget to pass these variables when you run any make
command, causing your build and configuration to be screwed up.

▶ Define ARCH and CROSS_COMPILE as environment variables:
export ARCH=arm
export CROSS_COMPILE=arm-linux-
Drawback: it only works inside the current shell or terminal. You could put these
settings in a file that you source every time you start working on the project, see
also the https://direnv.net/ project.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/533

https://direnv.net/

Initial configuration

Difficult to find which kernel configuration will work with your hardware and root
filesystem. Start with one that works!
▶ Desktop or server case:

• Advisable to start with the configuration of your running kernel:
cp /boot/config-`uname -r` .config

▶ Embedded platform case:
• Default configurations stored in-tree as minimal configuration files (only listing

settings that are different with the defaults) in arch/<arch>/configs/
• make help will list the available configurations for your platform
• To load a default configuration file, just run make foo_defconfig (will erase your

current .config!)
On ARM 32-bit, there is usually one default configuration per CPU family
On ARM 64-bit, there is only one big default configuration to customize

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/533

Create your own default configuration

▶ Use a tool such as make menuconfig to make changes to the configuration
▶ Saving your changes will overwrite your .config (not tracked by Git)
▶ When happy with it, create your own default configuration file:

• Create a minimal configuration (non-default settings) file:
make savedefconfig

• Save this default configuration in the right directory:
mv defconfig arch/<arch>/configs/myown_defconfig

▶ This way, you can share a reference configuration inside the kernel sources and
other developers can now get the same .config as you by running
make myown_defconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/533

Built-in or module?

▶ The kernel image is a single file, resulting from the linking of all object files that
correspond to features enabled in the configuration

• This is the file that gets loaded in memory by the bootloader
• All built-in features are therefore available as soon as the kernel starts, at a time

where no filesystem exists
▶ Some features (device drivers, filesystems, etc.) can however be compiled as

modules
• These are plugins that can be loaded/unloaded dynamically to add/remove features

to the kernel
• Each module is stored as a separate file in the filesystem, and therefore access

to a filesystem is mandatory to use modules
• This is not possible in the early boot procedure of the kernel, because no filesystem

is available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 191/533

Kernel option types

There are different types of options, defined in Kconfig files:
▶ bool options, they are either

• true (to include the feature in the kernel) or
• false (to exclude the feature from the kernel)

▶ tristate options, they are either
• true (to include the feature in the kernel image) or
• module (to include the feature as a kernel module) or
• false (to exclude the feature)

▶ int options, to specify integer values
▶ hex options, to specify hexadecimal values

Example: CONFIG_PAGE_OFFSET=0xC0000000

▶ string options, to specify string values
Example: CONFIG_LOCALVERSION=-no-network
Useful to distinguish between two kernels built from different options

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/533

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PAGE_OFFSET
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LOCALVERSION

Kernel option dependencies
Enabling a network driver requires the network stack to be enabled, therefore
configuration symbols have two ways to express dependencies:

▶ depends on dependency:
config B

depends on A

• B is not visible until A is
enabled

• Works well for dependency
chains

▶ select dependency:
config A

select B

• When A is enabled, B is enabled too (and
cannot be disabled manually)

• Should preferably not select symbols with
depends on dependencies

• Used to declare hardware features or select
libraries

config SPI_ATH79
tristate "Atheros AR71XX/AR724X/AR913X SPI controller driver"
depends on ATH79 || COMPILE_TEST
select SPI_BITBANG
help
This enables support for the SPI controller present on the
Atheros AR71XX/AR724X/AR913X SoCs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 193/533

Kernel configuration details

▶ The configuration is stored in the .config file at
the root of kernel sources

• Simple text file, CONFIG_PARAM=value
• Options are grouped by sections and are prefixed

with CONFIG_
• Included by the top-level kernel Makefile
• Typically not edited by hand because of the

dependencies

#
CD-ROM/DVD Filesystems
#
CONFIG_ISO9660_FS=m
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_UDF_FS=y
end of CD-ROM/DVD Filesystems

#
DOS/FAT/EXFAT/NT Filesystems
#
CONFIG_FAT_FS=y
CONFIG_MSDOS_FS=y
CONFIG_VFAT_FS is not set
CONFIG_FAT_DEFAULT_CODEPAGE=437
CONFIG_EXFAT_FS is not set

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 194/533

xconfig

make xconfig

▶ A graphical interface to configure the
kernel.

▶ File browser: easy to load
configuration files

▶ Search interface to look for
parameters ([Ctrl] + [f])

▶ Required Debian/Ubuntu packages:
qtbase5-dev on Ubuntu 22.04

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/533

menuconfig

make menuconfig

▶ Useful when no graphics are available.
Very efficient interface.

▶ Same interface found in other tools:
BusyBox, Buildroot...

▶ Convenient number shortcuts to jump
directly to search results.

▶ Required Debian/Ubuntu packages:
libncurses-dev

▶ Alternative: make nconfig
(now also has the number shortcuts)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 196/533

Kernel configuration options

You can switch from one tool to another, they all load/save the same .config file,
and show the same set of options
Compiled as a module:

Additional driver options:

Statically built:

CONFIG_ISO9660_FS=m

CONFIG_JOLIET=y

CONFIG_ZISOFS=y

CONFIG_UDF_FS=y

Values in resulting .config file Parameter values as displayed by xconfig Parameter values as displayed by menuconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/533

make oldconfig

make oldconfig

▶ Useful to upgrade a .config file from an earlier kernel release
▶ Asks for values for new parameters.
▶ ... unlike make menuconfig and make xconfig which silently set default values

for new parameters.
If you edit a .config file by hand, it’s useful to run make oldconfig afterwards, to set
values to new parameters that could have appeared because of dependency changes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/533

Undoing configuration changes

A frequent problem:
▶ After changing several kernel configuration settings, your kernel no longer works.
▶ If you don’t remember all the changes you made, you can get back to your

previous configuration:
$ cp .config.old .config

▶ All the configuration tools keep this .config.old backup copy.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/533

Linux kernel introduction

Compiling and installing the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/533

Kernel compilation

make

▶ Only works from the top kernel source directory
▶ Should not be performed as a priviledged user
▶ Run several jobs in parallel. Our advice: ncpus * 2 to

fully load the CPU and I/Os at all times.
Example: make -j 8

▶ To recompile faster (7x according to some benchmarks),
use the ccache compiler cache:
export CROSS_COMPILE="ccache arm-linux-"

Command: make

Total time: 129 s

Tests on Linux 5.11 on arm

 configuration

showing the load on 4 threads / 2 CPUs

Command: make -j8

Total time: 67 s

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/533

Kernel compilation results

▶ arch/<arch>/boot/Image, uncompressed kernel image that can be booted
▶ arch/<arch>/boot/*Image*, compressed kernel images that can also be booted

• bzImage for x86, zImage for ARM, Image.gz for RISC-V, vmlinux.bin.gz for ARC,
etc.

▶ arch/<arch>/boot/dts/*.dtb, compiled Device Tree Blobs
▶ All kernel modules, spread over the kernel source tree, as .ko (Kernel Object) files.
▶ vmlinux, a raw uncompressed kernel image in the ELF format, useful for

debugging purposes but generally not used for booting purposes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/533

Kernel installation: native case

▶ sudo make install
• Does the installation for the host system by default

▶ Installs
• /boot/vmlinuz-<version>

Compressed kernel image. Same as the one in arch/<arch>/boot
• /boot/System.map-<version>

Stores kernel symbol addresses for debugging purposes (obsolete: such information is
usually stored in the kernel itself)

• /boot/config-<version>
Kernel configuration for this version

▶ In GNU/Linux distributions, typically re-runs the bootloader configuration utility
to make the new kernel available at the next boot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/533

Kernel installation: embedded case

▶ make install is rarely used in embedded development, as the kernel image is a
single file, easy to handle.

▶ Another reason is that there is no standard way to deploy and use the kernel
image.

▶ Therefore making the kernel image available to the target is usually manual or
done through scripts in build systems.

▶ It is however possible to customize the make install behavior in
arch/<arch>/boot/install.sh

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/533

Module installation: native case

▶ sudo make modules_install
• Does the installation for the host system by default, so needs to be run as root

▶ Installs all modules in /lib/modules/<version>/
• kernel/

Module .ko (Kernel Object) files, in the same directory structure as in the sources.
• modules.alias, modules.alias.bin

Aliases for module loading utilities
• modules.dep, modules.dep.bin

Module dependencies. Kernel modules can depend on other modules, based on the
symbols (functions and data structures) they use.

• modules.symbols, modules.symbols.bin
Tells which module a given symbol belongs to (related to module dependencies).

• modules.builtin
List of built-in modules of the kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/533

Module installation: embedded case

▶ In embedded development, you can’t directly use make modules_install as it
would install target modules in /lib/modules on the host!

▶ The INSTALL_MOD_PATH variable is needed to generate the module related files
and install the modules in the target root filesystem instead of your host root
filesystem (no need to be root):
make INSTALL_MOD_PATH=<dir>/ modules_install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/533

Kernel cleanup targets

▶ From make help:

Cleaning targets:
clean - Remove most generated files but keep the config and

enough build support to build external modules
mrproper - Remove all generated files + config + various backup files
distclean - mrproper + remove editor backup and patch files

▶ If you are in a git tree, remove all files not tracked (and ignored) by git:
git clean -fdx

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 207/533

Kernel building overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/533

Linux kernel introduction

Booting the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/533

Hardware description

▶ Many embedded architectures have a lot of non-discoverable hardware (serial,
Ethernet, I2C, Nand flash, USB controllers...)

▶ This hardware needs to be described and passed to the Linux kernel.
▶ Using C code directly within the kernel is legacy, nowadays the

bootloader/firmware is expected to provide this description when starting the
kernel:

• On x86: using ACPI tables
• On most embedded devices: using an OpenFirmware Device Tree (DT)

▶ This way, a kernel supporting different SoCs knows which SoC and device
initialization hooks to run on the current board.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/533

Customize your board device tree!

▶ Kernel developers write Device Tree Sources (DTS), which become Device Tree
Blobs (DTB) once compiled.

▶ There is one different Device Tree for each board/platform supported by the
kernel, available in arch/<arch>/boot/dts/<vendor>/<board>.dtb
(arch/arm/boot/dts/<board>.dtb on ARM 32 before Linux 6.5).

▶ As a board user, you may have legitimate needs to customize your board device
tree:

• To describe external devices attached to non-discoverable busses and configure them.
• To configure pin muxing: choosing what SoC signals are made available on the

board external connectors. See http://linux.tanzilli.com/ for a web service
doing this interactively.

• To configure some system parameters: flash partitions, kernel command line (other
ways exist)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/533

http://linux.tanzilli.com/

Booting with U-Boot

▶ On ARM32, U-Boot can boot zImage (bootz command)
▶ On ARM64 or RISC-V, it boots the Image file (booti command)
▶ In addition to the kernel image, U-Boot should also pass a DTB to the kernel.
▶ The typical boot process is therefore:

1. Load zImage at address X in memory
2. Load <board>.dtb at address Y in memory
3. Start the kernel with boot[z|i] X - Y

The - in the middle indicates no initramfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/533

Kernel command line

▶ In addition to the compile time configuration, the kernel behavior can be adjusted
with no recompilation using the kernel command line

▶ The kernel command line is a string that defines various arguments to the kernel
• It is very important for system configuration
• root= for the root filesystem (covered later)
• console= for the destination of kernel messages
• Example: console=ttyS0 root=/dev/mmcblk0p2 rootwait
• Many more exist. The most important ones are documented in

admin-guide/kernel-parameters in kernel documentation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 213/533

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

Passing the kernel command line

▶ U-Boot carries the Linux kernel command line string in
its bootargs environment variable

▶ Right before starting the kernel, it will store the
contents of bootargs in the chosen section of the
Device Tree

▶ The kernel will behave differently depending on its
configuration:

• If CONFIG_CMDLINE_FROM_BOOTLOADER is set:
The kernel will use only the string from the bootloader

• If CONFIG_CMDLINE_FORCE is set:
The kernel will only use the string received at
configuration time in CONFIG_CMDLINE

• If CONFIG_CMDLINE_EXTEND is set:
The kernel will concatenate both strings

See the ”Understanding U-Boot Falcon
Mode” presentation from Michael
Opdenacker, for details about how U-Boot
boots Linux.

Slides: https:
//bootlin.com/pub/conferences/2021/lee/
Video: https:
//www.youtube.com/watch?v=LFe3x2QMhSo

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 214/533

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_FROM_BOOTLOADER
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_FORCE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_EXTEND
https://bootlin.com/pub/conferences/2021/lee/
https://bootlin.com/pub/conferences/2021/lee/
https://www.youtube.com/watch?v=LFe3x2QMhSo
https://www.youtube.com/watch?v=LFe3x2QMhSo

Kernel log
▶ The kernel keeps its messages in a circular buffer in memory

• The size is configurable using CONFIG_LOG_BUF_SHIFT

▶ When a module is loaded, related information is available in the kernel log.
▶ Kernel log messages are available through the dmesg command (diagnostic

message)
▶ Kernel log messages are also displayed on the console pointed by the console=

kernel command line argument
• Console messages can be filtered by level using the loglevel parameter:

loglevel= allows to filter messages displayed on the console based on priority
ignore_loglevel (same as loglevel=8) will lead to all messages being printed
quiet (same as loglevel=0) prevents any message from being displayed on the
console

• Example: console=ttyS0 root=/dev/mmcblk0p2 loglevel=5

▶ It is possible to write to the kernel log from user space:
echo "<n>Debug info" > /dev/kmsg

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/533

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LOG_BUF_SHIFT

Practical lab - Kernel cross-compiling

▶ Configuring the Linux kernel and
cross-compiling it for the embedded hardware
platform.

▶ Downloading your kernel on the board through
U-boot’s TFTP client.

▶ Booting your kernel.
▶ Automating the kernel boot process with

U-Boot scripts.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/533

Linux Root Filesystem

Linux Root Filesystem

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/533

Linux Root Filesystem

Principle and solutions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/533

Filesystems

▶ Filesystems are used to organize data in directories and files on storage devices or
on the network. The directories and files are organized as a hierarchy

▶ In UNIX systems, applications and users see a single global hierarchy of files and
directories, which can be composed of several filesystems.

▶ Filesystems are mounted in a specific location in this hierarchy of directories
• When a filesystem is mounted in a directory (called mount point), the contents of

this directory reflect the contents of this filesystem.
• When the filesystem is unmounted, the mount point is empty again.

▶ This allows applications to access files and directories easily, regardless of their
exact storage location

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/533

Filesystems (2)

▶ Create a mount point, which is just a directory
$ sudo mkdir /mnt/usbkey

▶ It is empty
$ ls /mnt/usbkey
$

▶ Mount a storage device in this mount point
$ sudo mount -t vfat /dev/sda1 /mnt/usbkey
$

▶ You can access the contents of the USB key
$ ls /mnt/usbkey
docs prog.c picture.png movie.avi
$

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 220/533

mount / umount

▶ mount allows to mount filesystems
• mount -t type device mountpoint
• type is the type of filesystem (optional for non-virtual filesystems)
• device is the storage device, or network location to mount
• mountpoint is the directory where files of the storage device or network location will

be accessible
• mount with no arguments shows the currently mounted filesystems

▶ umount allows to unmount filesystems
• This is needed before rebooting, or before unplugging a USB key, because the Linux

kernel caches writes in memory to increase performance. umount makes sure that
these writes are committed to the storage.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 221/533

Root filesystem

▶ A particular filesystem is mounted at the root of the hierarchy, identified by /

▶ This filesystem is called the root filesystem
▶ As mount and umount are programs, they are files inside a filesystem.

• They are not accessible before mounting at least one filesystem.
▶ As the root filesystem is the first mounted filesystem, it cannot be mounted with

the normal mount command
▶ It is mounted directly by the kernel, according to the root= kernel option
▶ When no root filesystem is available, the kernel panics:

Please append a correct "root=" boot option
Kernel panic - not syncing: VFS: Unable to mount root fs on unknown block(0,0)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/533

Location of the root filesystem

▶ It can be mounted from different locations
• From the partition of a hard disk
• From the partition of a USB key
• From the partition of an SD card
• From the partition of a NAND flash chip or similar type of storage device
• From the network, using the NFS protocol
• From memory, using a pre-loaded filesystem (by the bootloader)
• etc.

▶ It is up to the system designer to choose the configuration for the system, and
configure the kernel behavior with root=

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 223/533

Mounting rootfs from storage devices

▶ Partitions of a hard disk or USB key
• root=/dev/sdXY, where X is a letter indicating the device, and Y a number

indicating the partition
• /dev/sdb2 is the second partition of the second disk drive (either USB key or ATA

hard drive)
▶ Partitions of an SD card

• root=/dev/mmcblkXpY, where X is a number indicating the device and Y a number
indicating the partition

• /dev/mmcblk0p2 is the second partition of the first device
▶ Partitions of flash storage

• root=/dev/mtdblockX, where X is the partition number
• /dev/mtdblock3 is the fourth enumerated flash partition in the system (there could

be multiple flash chips)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 224/533

Mounting rootfs over the network (1)

Once networking works, your root filesystem could be a directory on your GNU/Linux
development host, exported by NFS (Network File System). This is very convenient for
system development:
▶ Makes it very easy to update files on the root filesystem, without rebooting.
▶ Can have a big root filesystem even if you don’t have support for internal or

external storage yet.
▶ The root filesystem can be huge. You can even build native compiler tools and

build all the tools you need on the target itself (better to cross-compile though).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 225/533

Mounting rootfs over the network (2)

On the development workstation side, a NFS server is needed
▶ Install an NFS server (example: Debian, Ubuntu)

sudo apt install nfs-kernel-server

▶ Add the exported directory to your /etc/exports file:
/home/tux/rootfs 192.168.1.111(rw,no_root_squash,no_subtree_check)

• 192.168.1.111 is the client IP address
• rw,no_root_squash,no_subtree_check are the NFS server options for this

directory export.
▶ Ask your NFS server to reload this file:

sudo exportfs -r

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/533

Mounting rootfs over the network (3)

▶ On the target system
▶ The kernel must be compiled with

• CONFIG_NFS_FS=y (NFS client support)
• CONFIG_ROOT_NFS=y (support for NFS as rootfs)
• CONFIG_IP_PNP=y (configure IP at boot time)

▶ The kernel must be booted with the following parameters:
• root=/dev/nfs (we want rootfs over NFS)
• ip=192.168.1.111 (target IP address)
• nfsroot=192.168.1.110:/home/tux/rootfs/ (NFS server details)
• You may need to add ”,nfsvers=3,tcp” to the nfsroot setting, as an NFS version

2 client and UDP may be rejected by the NFS server in recent GNU/Linux
distributions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/533

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_ROOT_NFS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_IP_PNP

Mounting rootfs over the network (4)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 228/533

Root filesystem in memory: initramfs

It is also possible to boot the system with a filesystem in memory: initramfs
▶ Either from a compressed CPIO archive integrated into the kernel image
▶ Or from such an archive loaded by the bootloader into memory
▶ At boot time, this archive is extracted into the Linux file cache
▶ It is useful for two cases:

• Fast booting of very small root filesystems. As the filesystem is completely loaded at
boot time, application startup is very fast.

• As an intermediate step before switching to a real root filesystem, located on devices
for which drivers are not part of the kernel image (storage drivers, filesystem drivers,
network drivers). This is always used on the kernel of desktop/server distributions to
keep the kernel image size reasonable.

▶ Details (in kernel documentation):
filesystems/ramfs-rootfs-initramfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 229/533

https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html

External initramfs

▶ To create one, first create a compressed CPIO archive:
cd rootfs/
find . | cpio -H newc -o > ../initramfs.cpio
cd ..
gzip initramfs.cpio

▶ If you’re using U-Boot, you’ll need to include your archive in a U-Boot container:
mkimage -n 'Ramdisk Image' -A arm -O linux -T ramdisk -C gzip \

-d initramfs.cpio.gz uInitramfs

▶ Then, in the bootloader, load the kernel binary, DTB and uInitramfs in RAM
and boot the kernel as follows:
bootz kernel-addr initramfs-addr dtb-addr

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 230/533

Built-in initramfs

To have the kernel Makefile include an initramfs archive in the
kernel image: use the CONFIG_INITRAMFS_SOURCE option.
▶ It can be the path to a directory containing the root

filesystem contents
▶ It can be the path to a ready made cpio archive
▶ It can be a text file describing the contents of the initramfs

See the kernel documentation for details:
driver-api/early-userspace/early_userspace_support

WARNING: only binaries from GPLv2 compatible code are
allowed to be included in the kernel binary using this technique.
Otherwise, use an external initramfs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 231/533

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_INITRAMFS_SOURCE
https://www.kernel.org/doc/html/latest/driver-api/early-userspace/early_userspace_support.html

Linux Root Filesystem

Contents

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/533

Root filesystem organization

▶ The organization of a Linux root filesystem in terms of directories is well-defined
by the Filesystem Hierarchy Standard

▶ https://refspecs.linuxfoundation.org/fhs.shtml
▶ Most Linux systems conform to this specification

• Applications expect this organization
• It makes it easier for developers and users as the filesystem organization is similar in

all systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/533

https://refspecs.linuxfoundation.org/fhs.shtml

Important directories (1)

/bin Basic programs
/boot Kernel images, configurations and initramfs (only when the kernel is

loaded from a filesystem, not common on non-x86 architectures)
/dev Device files (covered later)
/etc System-wide configuration

/home Directory for the users home directories
/lib Basic libraries

/media Mount points for removable media
/mnt Mount point for a temporarily mounted filesystem
/proc Mount point for the proc virtual filesystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 234/533

Important directories (2)

/root Home directory of the root user
/run Run-time variable data (previously /var/run)

/sbin Basic system programs
/sys Mount point of the sysfs virtual filesystem

/tmp Temporary files
/usr /usr/bin Non-basic programs

/usr/lib Non-basic libraries
/usr/sbin Non-basic system programs

/var Variable data files, for system services. This includes spool directories and
files, administrative and logging data, and transient and temporary files

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 235/533

Separation of programs and libraries

▶ Basic programs are installed in /bin and /sbin and basic libraries in /lib

▶ All other programs are installed in /usr/bin and /usr/sbin and all other libraries in
/usr/lib

▶ In the past, on UNIX systems, /usr was very often mounted over the network, through
NFS

▶ In order to allow the system to boot when the network was down, some binaries and
libraries are stored in /bin, /sbin and /lib

▶ /bin and /sbin contain programs like ls, ip, cp, bash, etc.
▶ /lib contains the C library and sometimes a few other basic libraries
▶ All other programs and libraries are in /usr

▶ Update: distributions are now making /bin link to /usr/bin, /lib to /usr/lib and
/sbin to /usr/sbin. Details on
https://www.freedesktop.org/wiki/Software/systemd/TheCaseForTheUsrMerge/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 236/533

https://www.freedesktop.org/wiki/Software/systemd/TheCaseForTheUsrMerge/

Linux Root Filesystem

Pseudo Filesystems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 237/533

proc virtual filesystem

▶ The proc virtual filesystem exists since the beginning of Linux
▶ It allows

• The kernel to expose statistics about running processes in the system
• The user to adjust at runtime various system parameters about process

management, memory management, etc.
▶ The proc filesystem is used by many standard user space applications, and they

expect it to be mounted in /proc

▶ Applications such as ps or top would not work without the proc filesystem
▶ Command to mount proc:

mount -t proc nodev /proc

▶ See filesystems/proc in kernel documentation or man proc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/533

https://www.kernel.org/doc/html/latest/filesystems/proc.html

proc contents

▶ One directory for each running process in the system
• /proc/<pid>
• cat /proc/3840/cmdline
• It contains details about the files opened by the process, the CPU and memory

usage, etc.
▶ /proc/interrupts, /proc/iomem, /proc/cpuinfo contain general device-related

information
▶ /proc/cmdline contains the kernel command line
▶ /proc/sys contains many files that can be written to adjust kernel parameters

• They are called sysctl. See admin-guide/sysctl/ in kernel documentation.
• Example (free the page cache and slab objects):

echo 3 > /proc/sys/vm/drop_caches

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 239/533

https://www.kernel.org/doc/html/latest/admin-guide/sysctl/

sysfs filesystem

▶ It allows to represent in user space the vision that the kernel has of the buses,
devices and drivers in the system

▶ It is useful for various user space applications that need to list and query the
available hardware, for example udev or mdev (see later)

▶ All applications using sysfs expect it to be mounted in the /sys directory
▶ Command to mount /sys:

mount -t sysfs nodev /sys

▶ $ ls /sys/
block bus class dev devices firmware
fs kernel module power

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 240/533

Linux Root Filesystem

Minimal filesystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 241/533

Basic applications
▶ In order to work, a Linux system needs at least a few applications
▶ An init application, which is the first user space application started by the kernel after

mounting the root filesystem (see https://en.wikipedia.org/wiki/Init):
• The kernel tries to run the command specified by the init= command line

parameter if available.
• Otherwise, it tries to run /sbin/init, /etc/init, /bin/init and /bin/sh.
• In the case of an initramfs, it will only look for /init. Another path can be supplied

by the rdinit= kernel argument.
• If none of this works, the kernel panics and the boot process is stopped.
• The init application is responsible for starting all other user space applications and

services, and for acting as a universal parent for processes whose parent terminate
before they do.

▶ A shell, to implement scripts, automate tasks, and allow a user to interact with the system
▶ Basic UNIX executables, for use in system scripts or in interactive shells: mv, cp, mkdir,

cat, modprobe, mount, ip, etc.
▶ These basic components have to be integrated into the root filesystem to make it usable

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 242/533

https://en.wikipedia.org/wiki/Init

Overall booting process

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 243/533

Overall booting process with initramfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/533

BusyBox

BusyBox

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/533

Why BusyBox?

▶ A Linux system needs a basic set of programs to work
• An init program
• A shell
• Various basic utilities for file manipulation and system configuration

▶ In normal GNU/Linux systems, these programs are provided by different projects
• coreutils, bash, grep, sed, tar, wget, modutils, etc. are all different projects
• A lot of different components to integrate
• Components not designed with embedded systems constraints in mind: they are not

very configurable and have a wide range of features
▶ BusyBox is an alternative solution, extremely common on embedded systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 246/533

General purpose toolbox: BusyBox

https://www.busybox.net/
▶ Rewrite of many useful UNIX command line utilities

• Created in 1995 to implement a rescue and installer system
for Debian, fitting in a single floppy disk (1.44 MB)

• Integrated into a single project, which makes it easy to work
with

• Great for embedded systems: highly configurable, no
unnecessary features

• Called the Swiss Army Knife of Embedded Linux
▶ License: GNU GPLv2
▶ Alternative: Toybox, BSD licensed

(https://en.wikipedia.org/wiki/Toybox)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 247/533

https://www.busybox.net/
https://en.wikipedia.org/wiki/Toybox

BusyBox in the root filesystem

▶ All the utilities are compiled into a single
executable, /bin/busybox

• Symbolic links to /bin/busybox are created for
each application integrated into BusyBox

▶ For a fairly featureful configuration, less than 500
KB (statically compiled with uClibc) or less than 1
MB (statically compiled with glibc).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 248/533

BusyBox - Most commands in one binary
[, [[, acpid, add-shell, addgroup, adduser, adjtimex, arch, arp, arping, ash, awk, base64, basename, bc, beep, blkdiscard, blkid,
blockdev, bootchartd, brctl, bunzip2, bzcat, bzip2, cal, cat, chat, chattr, chgrp, chmod, chown, chpasswd, chpst, chroot, chrt,
chvt, cksum, clear, cmp, comm, conspy, cp, cpio, crond, crontab, cryptpw, cttyhack, cut, date, dc, dd, deallocvt, delgroup,
deluser, depmod, devmem, df, dhcprelay, diff, dirname, dmesg, dnsd, dnsdomainname, dos2unix, dpkg, dpkg-deb, du, dumpkmap,
dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid, ether-wake, expand, expr, factor, fakeidentd, fallocate, false,
fatattr, fbset, fbsplash, fdflush, fdformat, fdisk, fgconsole, fgrep, find, findfs, flock, fold, free, freeramdisk, fsck,
fsck.minix, fsfreeze, fstrim, fsync, ftpd, ftpget, ftpput, fuser, getopt, getty, grep, groups, gunzip, gzip, halt, hd, hdparm,
head, hexdump, hexedit, hostid, hostname, httpd, hush, hwclock, i2cdetect, i2cdump, i2cget, i2cset, i2ctransfer, id, ifconfig,
ifdown, ifenslave, ifplugd, ifup, inetd, init, insmod, install, ionice, iostat, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, ipneigh,
iproute, iprule, iptunnel, kbd_mode, kill, killall, killall5, klogd, last, less, link, linux32, linux64, linuxrc, ln, loadfont,
loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr, ls, lsattr, lsmod, lsof, lspci, lsscsi, lsusb, lzcat, lzma,
lzop, makedevs, makemime, man, md5sum, mdev, mesg, microcom, mim, mkdir, mkdosfs, mke2fs, mkfifo, mkfs.ext2, mkfs.minix, mkfs.vfat,
mknod, mkpasswd, mkswap, mktemp, modinfo, modprobe, more, mount, mountpoint, mpstat, mt, mv, nameif, nanddump, nandwrite,
nbd-client, nc, netstat, nice, nl, nmeter, nohup, nologin, nproc, nsenter, nslookup, ntpd, nuke, od, openvt, partprobe, passwd,
paste, patch, pgrep, pidof, ping, ping6, pipe_progress, pivot_root, pkill, pmap, popmaildir, poweroff, powertop, printenv, printf,
ps, pscan, pstree, pwd, pwdx, raidautorun, rdate, rdev, readahead, readlink, readprofile, realpath, reboot, reformime,
remove-shell, renice, reset, resize, resume, rev, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-init, run-parts, runlevel,
runsv, runsvdir, rx, script, scriptreplay, sed, sendmail, seq, setarch, setconsole, setfattr, setfont, setkeycodes, setlogcons,
setpriv, setserial, setsid, setuidgid, sh, sha1sum, sha256sum, sha3sum, sha512sum, showkey, shred, shuf, slattach, sleep, smemcap,
softlimit, sort, split, ssl_client, start-stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svc, svlogd, svok, swapoff,
swapon, switch_root, sync, sysctl, syslogd, tac, tail, tar, taskset, tc, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time,
timeout, top, touch, tr, traceroute, traceroute6, true, truncate, ts, tty, ttysize, tunctl, ubiattach, ubidetach, ubimkvol,
ubirename, ubirmvol, ubirsvol, ubiupdatevol, udhcpc, udhcpc6, udhcpd, udpsvd, uevent, umount, uname, unexpand, uniq, unix2dos,
unlink, unlzma, unshare, unxz, unzip, uptime, users, usleep, uudecode, uuencode, vconfig, vi, vlock, volname, w, wall, watch,
watchdog, wc, wget, which, who, whoami, whois, xargs, xxd, xz, xzcat, yes, zcat, zcip

Source: run /bin/busybox - July 2021 status
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 249/533

Configuring BusyBox

▶ Get the latest stable sources from https://busybox.net
▶ Configure BusyBox (creates a .config file):

• make defconfig
Good to begin with BusyBox.
Configures BusyBox with all options for regular users.

• make allnoconfig
Unselects all options. Good to configure only what you need.

▶ make menuconfig (text)
Same configuration interfaces as the ones used by the Linux kernel (though older
versions are used, causing make xconfig to be broken in recent distros).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 250/533

https://busybox.net

BusyBox make menuconfig

You can choose:
▶ the commands to compile,
▶ and even the command options and

features that you need!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 251/533

Compiling BusyBox

▶ Set the cross-compiler prefix in the configuration interface:
Settings -> Build Options -> Cross Compiler prefix
Example: arm-linux-

▶ Set the installation directory in the configuration interface:
Settings -> Installation Options
-> Destination path for 'make install'

▶ Add the cross-compiler path to the PATH environment variable:
export PATH=$HOME/x-tools/arm-unknown-linux-uclibcgnueabi/bin:$PATH

▶ Compile BusyBox:
make

▶ Install it (this creates a UNIX directory structure with symbolic links to the
busybox executable):
make install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 252/533

Applet highlight: BusyBox init

▶ BusyBox provides an implementation of an init program
▶ Simpler than the init implementation found on desktop/server systems (SysV init

or systemd)
▶ A single configuration file: /etc/inittab

• Each line has the form <id>::<action>:<process>

▶ Allows to start system services at startup, to control system shutdown, and to
make sure that certain services are always running on the system.

▶ See examples/inittab in BusyBox for details on the configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 253/533

https://elixir.bootlin.com/busybox/latest/source/examples/inittab

Applet highlight - BusyBox vi

▶ If you are using BusyBox, adding vi support
only adds about 20K

▶ You can select which exact features to compile
in.

▶ Users hardly realize that they are using a
lightweight vi version!

▶ Tip: you can learn vi on the desktop, by
running the vimtutor command.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 254/533

Practical lab - Tiny root filesystem built from scratch with BusyBox

▶ Setting up a kernel to boot your system on a
workstation directory exported by NFS

▶ Passing kernel command line parameters to
boot on NFS

▶ Creating the full root filesystem from scratch.
Populating it with BusyBox based utilities.

▶ System startup using BusyBox init

▶ Using the BusyBox HTTP server.
▶ Controlling the target from a web browser on

the PC host.
▶ Setting up shared libraries on the target and

compiling a sample executable.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/533

Accessing hardware devices

Accessing hardware
devices

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 256/533

Accessing hardware devices

Kernel drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 257/533

Typical software stack for hardware access
From the bottom to the top:
▶ A bus controller driver in the kernel drives an

I2C, SPI, USB, PCI controller
▶ A bus subsystem provides an API for drivers to

access a particular type of bus: I2C, SPI, PCI,
USB, etc.

▶ A device driver in the kernel drives a particular
device connected to a given bus

▶ A driver subsystem exposes features of certain
class of devices, through a standard
kernel/user-space interface

▶ An application can access the device through
this standard kernel/user-space interface either
directly or through a library.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/533

Stack illustrated with a GPIO expander

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 259/533

Standardized user-space interface

▶ Strong advantage of kernel drivers: they expose a standard kernel to user-space
interface

▶ All devices of the same class (e.g GPIO controllers) will expose the same kernel to
user-space interface

▶ Applications don’t have to know the details of the GPIO controller, they just need
to know the standard user-space interface valid for all GPIO controllers

▶ Applications can use existing open-source libraries that leverage this standard
user-space interface

▶ Such kernel drivers can also be used internally inside the kernel, for example if one
driver needs to control a GPIO directly (reset signal, interrupt signal, etc.)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/533

Numerous kernel subsystems for device classes

▶ Networking stack for Ethernet, WiFi,
CAN, 802.15.4, etc.

▶ GPIO
▶ Video4Linux for camera, video

encoders/decoders
▶ DRM for display controllers, GPU
▶ ALSA for audio
▶ IIO for ADC, DAC, gyroscopes,

sensors, and more
▶ MTD for flash memory
▶ PWM

▶ Input for keyboard, mouse,
touchscreen, joystick

▶ Watchdog
▶ RTC for real-time clocks
▶ remoteproc for auxilliary processors
▶ crypto for cryptographic accelerators
▶ hwmon for hardware monitoring

sensors
▶ block layer for block storage

and many more

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 261/533

Accessing devices directly from user-space

▶ Even though device drivers in the kernel are preferred, it is also possible to access
devices directly from user-space

▶ Especially useful for very specific devices that do not fit in any existing kernel
subsystems

▶ The kernel provides the following mechanisms, depending on the bus:
• I2C: i2c-dev
• SPI: spidev
• Memory-mapped: UIO
• USB: /dev/bus/usb, through libusb
• PCI: sysfs entries for PCI

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 262/533

https://docs.kernel.org/i2c/dev-interface.html
https://docs.kernel.org/spi/spidev.html
https://docs.kernel.org/driver-api/uio-howto.html
https://libusb.info/
https://docs.kernel.org/PCI/sysfs-pci.html

Accessing devices directly from user-space: GPIO example

This diagram shows what’s
not recommended to do →
for a GPIO controller, a
kernel driver is preferred

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 263/533

What can go wrong with a user-space driver?

▶ You write your GPIO driver in user-space: other kernel drivers cannot use GPIOs
from this GPIO controller

• Other devices that use GPIO signals from this controller for reset, interrupt, etc.
cannot control/configure those signals

• Your application is less portable: it will take many changes to support another type
of GPIO controller.

▶ You write your touchscreen driver in user-space: the standard Linux graphics stack
components cannot use your touchscreen

▶ You write your network driver in user-space
• You can probably send/receive packets
• But you cannot leverage the Linux kernel networking stack for IP, TCP, UDP, etc.
• And none of the Linux networking applications can use your network device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 264/533

Upstream drivers vs. out-of-tree drivers

▶ The upstream Linux kernel contains thousands of drivers
• This is the best place to look for drivers
• Drivers have been reviewed and approved by the community
• They comply with standard interfaces

▶ Vendor kernels often include additional drivers, directly in the kernel tree
▶ Device vendors sometimes also provide out of tree drivers

• Their source code is provided separately from the Linux kernel tree
• Quality is often dubious
• Compatibility issues when updating to newer kernel releases
• Not always use standard user-space interfaces
• Example: https://github.com/lwfinger/rtl8723ds
• Avoid them when possible!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/533

https://github.com/lwfinger/rtl8723ds

Finding Linux kernel drivers

▶ grep in the Linux kernel tree is your best friend
• For I2C, SPI and memory-mapped devices, matching of the driver is done based on

the device name → grep for variants of the device name and vendor
• For USB, PCI, matching is done either on the vendor ID/product ID, or the class →

grep for these
▶ Driver file names are sometimes named in a “generic” way, not necessarily

reflecting all devices they support.
• Example: drivers/gpio/gpio-pca953x.c supports much more than just PCA953x.

See the full list of devices supported by this driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 266/533

https://elixir.bootlin.com/linux/latest/source/drivers/gpio/gpio-pca953x.c
https://elixir.bootlin.com/linux/v5.19/source/drivers/gpio/gpio-pca953x.c#L1221

Finding Linux kernel drivers: an example

▶ You have a Maxim Integrated MAX7313 GPIO expander on I2C
▶ Search in the Linux kernel

git grep -i max7313
drivers/gpio/gpio-pca953x.c: { "max7313", 16 | PCA953X_TYPE | PCA_INT, },
drivers/gpio/gpio-pca953x.c: { .compatible = "maxim,max7313", .data = OF_953X(16, PCA_INT), },

▶ drivers/gpio/gpio-pca953x.c seems to support it
▶ Read drivers/gpio/Makefile to learn which kernel configuration option enables

this driver
drivers/gpio/Makefile

obj-$(CONFIG_GPIO_PCA953X) += gpio-pca953x.o

▶ Conclusion: you need to enable CONFIG_GPIO_PCA953X in your kernel configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 267/533

https://www.maximintegrated.com/en/products/interface/controllers-expanders/MAX7313.html
https://elixir.bootlin.com/linux/latest/source/drivers/gpio/gpio-pca953x.c
https://elixir.bootlin.com/linux/latest/source/drivers/gpio/Makefile
https://elixir.bootlin.com/linux/latest/source/drivers/gpio/Makefile
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_GPIO_PCA953X

Accessing hardware devices

User-space interfaces to drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 268/533

User-space interfaces for hardware devices

For a high-level perspective: three main interfaces to access hardware devices exposed
by the Linux kernel
▶ Device nodes in /dev

▶ Entries in the sysfs filesystem
▶ Network sockets and related APIs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 269/533

Devices in /dev/

▶ One of the kernel important roles is to allow applications to access hardware
devices

▶ In the Linux kernel, most devices are presented to user space applications through
two different abstractions

• Character device
• Block device

▶ Internally, the kernel identifies each device by a triplet of information
• Type (character or block)
• Major (typically the category of device)
• Minor (typically the identifier of the device)

▶ See Documentation/admin-guide/devices.txt for the official list of reserved
type/major/minor numbers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/533

https://elixir.bootlin.com/linux/latest/source/Documentation/admin-guide/devices.txt

Block vs. character devices

▶ Block devices
• A device composed of fixed-sized blocks, that can be read and written to store data
• Used for hard disks, USB keys, SD cards, etc.

▶ Character devices
• Originally, an infinite stream of bytes, with no beginning, no end, no size. The pure

example: a serial port.
• Used for serial ports, terminals, but also sound cards, video acquisition devices,

frame buffers
• Most of the devices that are not block devices are represented as character devices

by the Linux kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 271/533

Devices: everything is a file

▶ A very important UNIX design decision was to represent most system objects as
files

▶ It allows applications to manipulate all system objects with the normal file API
(open, read, write, close, etc.)

▶ So, devices had to be represented as files to the applications
▶ This is done through a special artifact called a device file
▶ It is a special type of file, that associates a file name visible to user space

applications to the triplet (type, major, minor) that the kernel understands
▶ All device files are by convention stored in the /dev directory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 272/533

Device files examples

Example of device files in a Linux system

$ ls -l /dev/ttyS0 /dev/tty1 /dev/sda /dev/sda1 /dev/sda2 /dev/sdc1 /dev/zero
brw-rw---- 1 root disk 8, 0 2011-05-27 08:56 /dev/sda
brw-rw---- 1 root disk 8, 1 2011-05-27 08:56 /dev/sda1
brw-rw---- 1 root disk 8, 2 2011-05-27 08:56 /dev/sda2
brw-rw---- 1 root disk 8, 32 2011-05-27 08:56 /dev/sdc
crw------- 1 root root 4, 1 2011-05-27 08:57 /dev/tty1
crw-rw---- 1 root dialout 4, 64 2011-05-27 08:56 /dev/ttyS0
crw-rw-rw- 1 root root 1, 5 2011-05-27 08:56 /dev/zero

Example C code that uses the usual file API to write data to a serial port
int fd;
fd = open("/dev/ttyS0", O_RDWR);
write(fd, "Hello", 5);
close(fd);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 273/533

Creating device files

▶ Before Linux 2.6.32, on basic Linux systems, the device files had to be created
manually using the mknod command

• mknod /dev/<device> [c|b] major minor
• Needs root privileges
• Coherency between device files and devices handled by the kernel was left to the

system developer
▶ The devtmpfs virtual filesystem can be mounted on /dev → the kernel

automatically creates/removes device files
• CONFIG_DEVTMPFS_MOUNT → asks the kernel to mount devtmpfs automatically at

boot time (except when booting on an initramfs).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 274/533

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT

Better handling of device files: udev and mdev

▶ devtmpfs is great, but its capabilities are limited, so complementary solutions exist
▶ udev

• daemon that receives events from the kernel about devices appearing/disappearing
• can create/remove device files (but that’s done by devtmpfs now), adjust

permission/ownership, load kernel modules automatically, create symbolic links to
devices

• according to rules files in /lib/udev/rules.d and /etc/udev/rules.d
• used in almost all desktop Linux distributions
• https://en.wikipedia.org/wiki/Udev

▶ mdev
• lightweight implementation of udev, part of Busybox
• https://wiki.gentoo.org/wiki/Mdev

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 275/533

https://en.wikipedia.org/wiki/Udev
https://wiki.gentoo.org/wiki/Mdev

Examples of user-space interfaces in /dev

▶ Serial-ports: /dev/ttyS*, /dev/ttyUSB*, /dev/ttyACM*, etc.
▶ GPIO controllers (modern interface): /dev/gpiochipX

▶ Block storage devices: /dev/sd*, /dev/mmcblk*, /dev/nvme*
▶ Flash storage devices: /dev/mtd*

▶ Display controllers and GPUs: /dev/dri/*

▶ Audio devices: /dev/snd/*

▶ Camera devices: /dev/video*

▶ Watchdog devices: /dev/watchdog*

▶ Input devices: /dev/input/*

▶ and many more...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 276/533

sysfs filesystem
▶ block/, symlinks to all block devices, in /sys/devices

▶ bus/, one sub-folder by type of bus
▶ class/, one sub-folder per class (category of devices): input, leds, pwm, etc.
▶ dev/

• block/, one symlink per block device, named after major/minor
• char/, one symlink per character device, named after major/minor

▶ devices/, all devices in the system, organized in a slightly chaotic way, see this
article

▶ firmware/, representation of firmware data
• devicetree/, directory and file representation of Device Tree nodes and properties

▶ fs/, properties related to filesystem drivers
▶ kernel/, properties related to various kernel subsystems
▶ module/, properties about kernel modules
▶ power/, power-management related properties

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 277/533

https://lwn.net/Articles/646617/
https://lwn.net/Articles/646617/

sysfs filesystem example

▶ /sys/bus/i2c/drivers: all device drivers for devices connected on I2C busses
[...]
edt_ft5x06
stpmic1
[...]

▶ /sys/bus/i2c/devices: all devices in the system connected to I2C busses
0-002a -> ../../../devices/platform/soc/40012000.i2c/i2c-0/0-002a
0-0039 -> ../../../devices/platform/soc/40012000.i2c/i2c-0/0-0039
0-004a -> ../../../devices/platform/soc/40012000.i2c/i2c-0/0-004a
1-0028 -> ../../../devices/platform/soc/5c002000.i2c/i2c-1/1-0028
1-0033 -> ../../../devices/platform/soc/5c002000.i2c/i2c-1/1-0033
i2c-0 -> ../../../devices/platform/soc/40012000.i2c/i2c-0
i2c-1 -> ../../../devices/platform/soc/5c002000.i2c/i2c-1
i2c-2 -> ../../../devices/platform/soc/40012000.i2c/i2c-0/i2c-2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 278/533

sysfs filesystem example

/sys/bus/i2c/devices/0-002a/
lrwxrwxrwx driver -> ../../../../../../bus/i2c/drivers/edt_ft5x06
-rw-r--r-- gain
drwxr-xr-x input
-r--r--r-- modalias
-r--r--r-- name
lrwxrwxrwx of_node -> ../../../../../../firmware/devicetree/base/soc/i2c@40012000/touchscreen@2a
-rw-r--r-- offset
-rw-r--r-- offset_x
-rw-r--r-- offset_y
drwxr-xr-x power
-rw-r--r-- report_rate
lrwxrwxrwx subsystem -> ../../../../../../bus/i2c
-rw-r--r-- threshold
-rw-r--r-- uevent

▶ driver, symlink to the driver directory in /sys/bus/i2c/drivers

▶ of_node, symlink to the directory for the Device Tree node describing this device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 279/533

Example of driver interfaces in sysfs

▶ All devices are visible in sysfs, whether they have an interface in /dev or not
• Usually /dev is to access the device
• /sys is more about properties of the devices

▶ However, some devices only have a sysfs interface
• LED: /sys/class/leds, see documentation
• PWM: /sys/class/pwm, see documentation
• IIO: /sys/class/iio, see documentation
• etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 280/533

https://docs.kernel.org/leds/leds-class.html
https://docs.kernel.org/driver-api/pwm.html#using-pwms-with-the-sysfs-interface
https://docs.kernel.org/driver-api/iio/index.html

Accessing GPIOs

A class of devices worth mentioning is GPIOs (General Purpose Input Output)
▶ The GPIOs can be accessed through a legacy interface in /sys/class/gpios

• You will find many instructions on the Internet about how to drive GPIOs through
this interface.

• However, this interface is deprecated and has multiple shortcomings:
GPIOs remain exported if the process using them crashes
Need to compute the GPIO numbers, such numbers are not stable

▶ A new interface recommended: libgpiod
• Based on /dev/gpiochipx character devices
• Implementing advanced features not possible with the legacy interface
• Of course, this is a C library
• But it also provides command line utilities: gpiodetect, gpioset, gpioget...
• The only constraint is to cross-compile them for your target (the legacy interface

could be used without any additional software).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 281/533

https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/

Other virtual filesystems

▶ debugfs
• Conventionally mounted in /sys/kernel/debug
• Contains lots of debug information from the kernel, including device related
• /sys/kernel/debug/pinctrl for pin-mux debugging, /sys/kernel/debug/gpio for

GPIO debugging, /sys/kernel/debug/pwm for PWM debugging, etc.
• https://www.kernel.org/doc/html/latest/filesystems/debugfs.html

▶ configfs
• Conventionally mounted in /sys/kernel/config
• Allows to manage configuration of advanced kernel mechanisms
• Example: configuration of USB gadget functionalities
• Documentation/filesystems/configfs/configfs.txt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 282/533

https://www.kernel.org/doc/html/latest/filesystems/debugfs.html
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/configfs/configfs.txt

Accessing hardware devices

Using kernel modules

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 283/533

Why kernel modules?

▶ Primary reason: keep the kernel image minimal, and
load drivers on-demand depending on the hardware
detected

• Needed to create a generic kernel configuration that
works on many platforms

• Used by all desktop/server Linux distributions
▶ But also useful for

• Driver development: allows to modify, build and test a
driver without rebooting

• Boot time reduction: allows to defer the initialization of
a driver after user-space has started critical applications

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 284/533

Module installation and metadata

▶ As discussed earlier, modules are installed in /lib/modules/<kernel-version>/

▶ Compiled kernel modules are stored in .ko (Kernel Object) files
▶ Metadata files:

• modules.dep
• modules.alias
• modules.symbols
• modules.builtin

▶ Each file has a corresponding .bin version, which is an optimized version of the
corresponding text file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 285/533

Module dependencies: modules.dep

▶ Some kernel modules can depend on other modules, based on the symbols
(functions and data structures) that they use.

▶ Example: the ubifs module depends on the ubi and mtd modules.
• mtd and ubi need to be loaded before ubifs

▶ These dependencies are described both in
/lib/modules/<kernel-version>/modules.dep and in
/lib/modules/<kernel-version>/modules.dep.bin

▶ Will be used by module loading tools.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 286/533

Module alias: modules.alias

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 287/533

Module utilities: modinfo

▶ modinfo <module_name>, for modules in /lib/modules

▶ modinfo /path/to/module.ko

modinfo usb_storage
filename: /lib/modules/5.18.13-200.fc36.x86_64/kernel/drivers/usb/storage/usb-storage.ko.xz
license: GPL
description: USB Mass Storage driver for Linux
author: Matthew Dharm <mdharm-usb@one-eyed-alien.net>
alias: usb:v*p*d*dc*dsc*dp*ic08isc06ip50in*
alias: usb:v*p*d*dc*dsc*dp*ic08isc05ip50in*
alias: usb:v*p*d*dc*dsc*dp*ic08isc04ip50in*
[...]
intree: Y
name: usb_storage
[...]
parm: option_zero_cd:ZeroCD mode (1=Force Modem (default), 2=Allow CD-Rom (uint)
parm: swi_tru_install:TRU-Install mode (1=Full Logic (def), 2=Force CD-Rom, 3=Force Modem) (uint)
parm: delay_use:seconds to delay before using a new device (uint)
parm: quirks:supplemental list of device IDs and their quirks (string)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 288/533

Module utilities: lsmod
▶ Lists currently loaded kernel modules
▶ Includes

• The reference count: incremented when the module is used by another module or by
a user-space process, prevents from unloading modules that are in-use

• Dependant modules: modules that depend on us
▶ Information retrieved through /proc/modules

$ lsmod
Module Size Used by
tun 61440 2
tls 118784 0
rfcomm 90112 4
snd_seq_dummy 16384 0
snd_hrtimer 16384 1
wireguard 94208 0
curve25519_x86_64 36864 1 wireguard
libcurve25519_generic 49152 2 curve25519_x86_64,wireguard
ip6_udp_tunnel 16384 1 wireguard

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 289/533

Module utilities: insmod and rmmod

▶ Basic tools to:
• load a module: insmod
• unload a module: rmmod

▶ Basic because:
• Need a full path to the module .ko file
• Do not handle module dependencies

insmod /lib/modules/`uname -r`/kernel/fs/fuse/cuse.ko.xz
rmmod cuse

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 290/533

Module utilities: modprobe
▶ modprobe is the more advanced tool for loading/unloading modules
▶ Takes just a module name as argument: modprobe <module-name>
▶ Takes care of dependencies automatically, using the modules.dep file
▶ Supports removing modules using modprobe -r, including its no longer used

dependencies

modinfo fat_test | grep depends
depends: kunit,fat
lsmod | grep -E "^(kunit|fat|fat_test)"
fat 86016 1 vfat
modprobe fat_test
lsmod | grep -E "^(kunit|fat|fat_test)"
fat_test 24576 0
kunit 36864 1 fat_test
fat 86016 2 fat_test,vfat
sudo modprobe -r fat_test
lsmod | grep -E "^(kunit|fat|fat_test)"
fat 86016 1 vfat

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 291/533

Passing parameters to modules
▶ Some modules have parameters to adjust their behavior
▶ Mostly for debugging/tweaking, as parameters are global to the module, not per-device

managed by the module
▶ Through insmod or modprobe:

insmod ./usb-storage.ko delay_use=0
modprobe usb-storage delay_use=0

▶ modprobe supports configuration files: /etc/modprobe.conf or in any file in
/etc/modprobe.d/:
options usb-storage delay_use=0

▶ Through the kernel command line, when the module is built statically into the kernel:
usb-storage.delay_use=0

• usb-storage is the module name
• delay_use is the module parameter name. It specifies a delay before accessing a

USB storage device (useful for rotating devices).
• 0 is the module parameter value

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 292/533

Modules in sysfs

▶ All modules are visible in sysfs, under /sys/module/<name>
▶ Lots of information available about each module
▶ For example, the /sys/module/<name>/parameters directory contains one file

per module parameter
▶ Can read the current value of module parameters
▶ Some of them can even be changed at runtime (determined by the module code)
▶ Example:

echo 0 > /sys/module/usb_storage/parameters/delay_use

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 293/533

Accessing hardware devices

Describing non-discoverable hardware: Device
Tree

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 294/533

Describing non-discoverable hardware

1. Directly in the
OS/bootloader
code

2. Using ACPI tables
3. Using a Device Tree

▶ Using compiled data structures, typically in C
▶ How it was done on most embedded platforms in Linux,

U-Boot.
▶ Considered not maintainable/sustainable on ARM32,

which motivated the move to another solution.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 295/533

Describing non-discoverable hardware

1. Directly in the
OS/bootloader
code

2. Using ACPI tables

3. Using a Device Tree

▶ On x86 systems, but also on a subset of ARM64
platforms

▶ Tables provided by the firmware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 295/533

Describing non-discoverable hardware

1. Directly in the
OS/bootloader
code

2. Using ACPI tables

3. Using a Device Tree

▶ Originates from OpenFirmware, defined by Sun, used
on SPARC and PowerPC

• That’s why many Linux/U-Boot functions related to
DT have a of_ prefix

▶ Now used by most embedded-oriented CPU
architectures that run Linux: ARC, ARM64, RISC-V,
ARM32, PowerPC, Xtensa, MIPS, etc.

▶ Writing/tweaking a DT is necessary when porting Linux
to a new board, or when connecting additional
peripherals

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 295/533

Device Tree: from source to blob

▶ A tree data structure describing the hardware is written
by a developer in a Device Tree Source file, .dts

▶ Processed by the Device Tree Compiler, dtc
▶ Produces a more efficient representation: Device Tree

Blob, .dtb
▶ Additional C preprocessor pass
▶ .dtb → accurately describes the hardware platform in

an OS-agnostic way.
▶ .dtb ≈ few dozens of kilobytes
▶ DTB also called FDT, Flattened Device Tree, once

loaded into memory.
• fdt command in U-Boot
• fdt_ APIs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 296/533

dtc example

$ cat foo.dts
/dts-v1/;

/ {
welcome = <0xBADCAFE>;
bootlin {

webinar = "great";
demo = <1>, <2>, <3>;

};
};

$ dtc -I dts -O dtb -o foo.dtb foo.dts
$ ls -l foo.dt*
-rw-r--r-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r-- 1 thomas thomas 102 ... foo.dts

$ dtc -I dtb -O dts foo.dtb
/dts-v1/;

/ {
welcome = <0xbadcafe>;

bootlin {
webinar = "great";
demo = <0x01 0x02 0x03>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 297/533

dtc example

$ cat foo.dts
/dts-v1/;

/ {
welcome = <0xBADCAFE>;
bootlin {

webinar = "great";
demo = <1>, <2>, <3>;

};
};

$ dtc -I dts -O dtb -o foo.dtb foo.dts
$ ls -l foo.dt*
-rw-r--r-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r-- 1 thomas thomas 102 ... foo.dts

$ dtc -I dtb -O dts foo.dtb
/dts-v1/;

/ {
welcome = <0xbadcafe>;

bootlin {
webinar = "great";
demo = <0x01 0x02 0x03>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 297/533

dtc example

$ cat foo.dts
/dts-v1/;

/ {
welcome = <0xBADCAFE>;
bootlin {

webinar = "great";
demo = <1>, <2>, <3>;

};
};

$ dtc -I dts -O dtb -o foo.dtb foo.dts
$ ls -l foo.dt*
-rw-r--r-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r-- 1 thomas thomas 102 ... foo.dts

$ dtc -I dtb -O dts foo.dtb
/dts-v1/;

/ {
welcome = <0xbadcafe>;

bootlin {
webinar = "great";
demo = <0x01 0x02 0x03>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 297/533

Device Tree: using the blob

▶ Can be linked directly inside a bootloader
binary

• For example: U-Boot, Barebox
▶ Can be passed to the operating system by the

bootloader
• Most common mechanism for the Linux kernel
• U-Boot:

boot[z,i,m] <kernel-addr> - <dtb-addr>
• The bootloader can adjust the DTB before

passing it to the kernel
▶ The DTB parsing can be done using libfdt,

or ad-hoc code

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 298/533

Where are Device Tree Sources located?

▶ Even though they are OS-agnostic, no central and OS-neutral place to host
Device Tree sources and share them between projects

• Often discussed, never done
▶ In practice, the Linux kernel sources can be considered as the canonical location

for Device Tree Source files
• arch/<ARCH>/boot/dts/<vendor>/
• arch/arm/boot/dts (on ARM 32 architecture before Linux 6.5)
• ≈ 4500 Device Tree Source files (.dts and .dtsi) in Linux as of 6.0.

▶ Duplicated/synced in various projects
• U-Boot, Barebox, TF-A

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 299/533

Device Tree base syntax

▶ Tree of nodes
▶ Nodes with properties
▶ Node ≈ a device or IP block
▶ Properties ≈ device characteristics
▶ Notion of cells in property values
▶ Notion of phandle to point to other

nodes
▶ dtc only does syntax checking, no

semantic validation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 300/533

DT overall structure: simplified example

/ {
#address-cells = <1>;
#size-cells = <1>;
model = "STMicroelectronics STM32MP157C-DK2 Discovery Board";
compatible = "st,stm32mp157c-dk2", "st,stm32mp157";

cpus { ... };
memory@0 { ... };
chosen { ... };
intc: interrupt-controller@a0021000 { ... };
soc {

i2c1: i2c@40012000 { ... };
ethernet0: ethernet@5800a000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/533

DT overall structure: simplified example

/ {
cpus {

#address-cells = <1>;
#size-cells = <0>;
cpu0: cpu@0 {
compatible = "arm,cortex-a7";
clock-frequency = <650000000>;
device_type = "cpu";
reg = <0>;

};

cpu1: cpu@1 {
compatible = "arm,cortex-a7";
clock-frequency = <650000000>;
device_type = "cpu";
reg = <1>;

};
};

memory@0 { ... };
chosen { ... };
intc: interrupt-controller@a0021000 { ... };
soc {

i2c1: i2c@40012000 { ... };
ethernet0: ethernet@5800a000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/533

DT overall structure: simplified example

/ {
cpus { ... };
memory@0 {

device_type = "memory";
reg = <0x0 0x20000000>;

};

chosen {
bootargs = "";
stdout-path = "serial0:115200n8";

};
intc: interrupt-controller@a0021000 { ... };
soc {

i2c1: i2c@40012000 { ... };
ethernet0: ethernet@5800a000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/533

DT overall structure: simplified example

/ {
cpus { ... };
memory@0 { ... };
chosen { ... };

intc: interrupt-controller@a0021000 {
compatible = "arm,cortex-a7-gic";
#interrupt-cells = <3>;
interrupt-controller;
reg = <0xa0021000 0x1000>,

<0xa0022000 0x2000>;
};

soc {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;

i2c1: i2c@40012000 { ... };
ethernet0: ethernet@5800a000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/533

DT overall structure: simplified example

/ {
cpus { ... };
memory@0 { ... };
chosen { ... };
intc: interrupt-controller@a0021000 { ... };
soc {

i2c1: i2c@40012000 {
compatible = "st,stm32mp15-i2c";
reg = <0x40012000 0x400>;
interrupts = <GIC_SPI 31 IRQ_TYPE_LEVEL_HIGH>,

<GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>;
#address-cells = <1>;
#size-cells = <0>;
status = "okay";

cs42l51: cs42l51@4a {
compatible = "cirrus,cs42l51";
reg = <0x4a>;
reset-gpios = <&gpiog 9 GPIO_ACTIVE_LOW>;
status = "okay";

};
};
ethernet0: ethernet@5800a000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/533

DT overall structure: simplified example

/ {
cpus { ... };
memory@0 { ... };
chosen { ... };
intc: interrupt-controller@a0021000 { ... };
soc {

compatible = "simple-bus";
...
interrupt-parent = <&intc>;
i2c1: i2c@40012000 { ... };

ethernet0: ethernet@5800a000 {
compatible = "st,stm32mp1-dwmac", "snps,dwmac-4.20a";
reg = <0x5800a000 0x2000>;
interrupts-extended = <&intc GIC_SPI 61 IRQ_TYPE_LEVEL_HIGH>;
status = "okay";

mdio0 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "snps,dwmac-mdio";
phy0: ethernet-phy@0 {

reg = <0>;
};

};
};

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/533

Device Tree inheritance

▶ Device Tree files are not monolithic, they can be split in several files, including
each other.

▶ .dtsi files are included files, while .dts files are final Device Trees
• Only .dts files are accepted as input to dtc

▶ Typically, .dtsi will contain
• definitions of SoC-level information
• definitions common to several boards

▶ The .dts file contains the board-level information
▶ The inclusion works by overlaying the tree of the including file over the tree of

the included file, according to the order of the #include directives.
▶ Allows an including file to override values specified by an included file
▶ Uses the C pre-processor #include directive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 302/533

Device Tree inheritance example

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 303/533

Inheritance and labels

Doing:
soc.dtsi
/ {
soc {

usart1: serial@5c000000 {
compatible = "st,stm32h7-uart";
reg = <0x5c000000 0x400>;
status = "disabled";

};
};

};

board.dts
#include "soc.dtsi"

/ {
soc {

serial@5c000000 {
status = "okay";

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 304/533

Inheritance and labels

Doing:
soc.dtsi
/ {
soc {

usart1: serial@5c000000 {
compatible = "st,stm32h7-uart";
reg = <0x5c000000 0x400>;
status = "disabled";

};
};

};

board.dts
#include "soc.dtsi"

/ {
soc {

serial@5c000000 {
status = "okay";

};
};

};

Is exactly equivalent to:
soc.dtsi
/ {
soc {
usart1: serial@5c000000 {
compatible = "st,stm32h7-uart";
reg = <0x5c000000 0x400>;
status = "disabled";

};
};

};

board.dts
#include "soc.dtsi"

&usart1 {
status = "okay";

};

→ this solution is now often preferred

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 304/533

DT inheritance in STM32MP1 support

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 305/533

Device Tree design principles

▶ Describe hardware (how the hardware is), not configuration (how I choose to
use the hardware)

▶ OS-agnostic
• For a given piece of HW, Device Tree should be the same for U-Boot, FreeBSD or

Linux
• There should be no need to change the Device Tree when updating the OS

▶ Describe integration of hardware components, not the internals of hardware
components

• The details of how a specific device/IP block is working is handled by code in device
drivers

• The Device Tree describes how the device/IP block is connected/integrated with the
rest of the system: IRQ lines, DMA channels, clocks, reset lines, etc.

▶ Like all beautiful design principles, these principles are sometimes violated.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 306/533

Device Tree specifications

▶ How to write the correct nodes/properties to describe a
given hardware platform ?

▶ DeviceTree Specifications → base Device Tree syntax
+ number of standard properties.

• https://www.devicetree.org/specifications/
• Not sufficient to describe the wide variety of hardware.

▶ Device Tree Bindings → documents that each specify
how a piece of HW should be described

• Documentation/devicetree/bindings/ in Linux kernel
sources

• Reviewed by DT bindings maintainer team
• Legacy: human readable documents
• New norm: YAML-written specifications

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 307/533

https://www.devicetree.org/specifications/
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/

Device Tree binding: old style

Documentation/devicetree/bindings/mtd/spear_smi.txt
This IP is not used on STM32MP1.

* SPEAr SMI

Required properties:
- compatible : "st,spear600-smi"
- reg : Address range of the mtd chip
- #address-cells, #size-cells : Must be present if the device has sub-nodes
representing partitions.

- interrupts: Should contain the STMMAC interrupts
- clock-rate : Functional clock rate of SMI in Hz

Optional properties:
- st,smi-fast-mode : Flash supports read in fast mode

Example:

smi: flash@fc000000 {
compatible = "st,spear600-smi";
#address-cells = <1>;
#size-cells = <1>;
reg = <0xfc000000 0x1000>;
interrupt-parent = <&vic1>;
interrupts = <12>;
clock-rate = <50000000>; /* 50MHz */

flash@f8000000 {
st,smi-fast-mode;
...

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 308/533

https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/mtd/spear_smi.txt

Device Tree binding: YAML style
Documentation/devicetree/bindings/i2c/st,stm32-i2c.yaml

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2

$id: http://devicetree.org/schemas/i2c/st,stm32-i2c.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#

title: I2C controller embedded in STMicroelectronics STM32 I2C platform

maintainers:
- Pierre-Yves MORDRET <pierre-yves.mordret@st.com>

properties:
compatible:
enum:

- st,stm32f4-i2c
- st,stm32f7-i2c
- st,stm32mp15-i2c

reg:
maxItems: 1

interrupts:
items:

- description: interrupt ID for I2C event
- description: interrupt ID for I2C error

resets:
maxItems: 1

clocks:
maxItems: 1

dmas:
items:

- description: RX DMA Channel phandle
- description: TX DMA Channel phandle

...

clock-frequency:
description: Desired I2C bus clock frequency in Hz. If not specified,

the default 100 kHz frequency will be used.
For STM32F7, STM32H7 and STM32MP1 SoCs, if timing
parameters match, the bus clock frequency can be from
1Hz to 1MHz.

default: 100000
minimum: 1
maximum: 1000000

required:
- compatible
- reg
- interrupts
- resets
- clocks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 309/533

https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/i2c/st,stm32-i2c.yaml

Device Tree binding: YAML style example

examples:
- |
//Example 3 (with st,stm32mp15-i2c compatible on stm32mp)
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/clock/stm32mp1-clks.h>
#include <dt-bindings/reset/stm32mp1-resets.h>

i2c@40013000 {
compatible = "st,stm32mp15-i2c";
#address-cells = <1>;
#size-cells = <0>;
reg = <0x40013000 0x400>;
interrupts = <GIC_SPI 33 IRQ_TYPE_LEVEL_HIGH>,

<GIC_SPI 34 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&rcc I2C2_K>;
resets = <&rcc I2C2_R>;
i2c-scl-rising-time-ns = <185>;
i2c-scl-falling-time-ns = <20>;
st,syscfg-fmp = <&syscfg 0x4 0x2>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 310/533

Validating Device Tree in Linux

▶ dtc only does syntactic validation
▶ YAML bindings allow to do semantic validation
▶ Linux kernel make rules:

• make dt_binding_check
verify that YAML bindings are valid

• make dtbs_check
validate DTs currently enabled against YAML bindings

• make DT_SCHEMA_FILES=Documentation/devicetree/bindings/trivial-
devices.yaml dtbs_check
validate DTs against a specific YAML binding

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 311/533

The compatible property
▶ Is a list of strings

• From the most specific to the least specific
▶ Describes the specific binding to which the node complies.
▶ It uniquely identifies the programming model of the device.
▶ Practically speaking, it is used by the operating system to find the appropriate

driver for this device.
▶ When describing real hardware, the typical form is vendor,model
▶ Examples:

• compatible = "arm,armv7-timer";
• compatible = "st,stm32mp1-dwmac", "snps,dwmac-4.20a";
• compatible = "regulator-fixed";
• compatible = "gpio-keys";

▶ Special value: simple-bus → bus where all sub-nodes are memory-mapped
devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 312/533

compatible property and Linux kernel drivers

▶ Linux identifies as platform devices:
• Top-level DT nodes with a compatible string
• Sub-nodes of simple-bus

Instantiated automatically at boot time
▶ Sub-nodes of I2C controllers → I2C devices
▶ Sub-nodes of SPI controllers → SPI devices
▶ Each Linux driver has a table of compatible

strings it supports
• struct of_device_id[]

▶ When a DT node compatible string matches a
given driver, the device is bound to that driver.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 313/533

https://elixir.bootlin.com/linux/latest/ident/of_device_id

Matching with drivers in Linux: platform driver

drivers/tty/serial/stm32-usart.c

static const struct of_device_id stm32_match[] = {
{ .compatible = "st,stm32-uart", .data = &stm32f4_info},
{ .compatible = "st,stm32f7-uart", .data = &stm32f7_info},
{ .compatible = "st,stm32h7-uart", .data = &stm32h7_info},
{},

};
MODULE_DEVICE_TABLE(of, stm32_match);

...

static struct platform_driver stm32_serial_driver = {
.probe = stm32_serial_probe,
.remove = stm32_serial_remove,
.driver = {

.name = DRIVER_NAME,

.pm = &stm32_serial_pm_ops,

.of_match_table = of_match_ptr(stm32_match),
},

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 314/533

https://elixir.bootlin.com/linux/latest/source/drivers/tty/serial/stm32-usart.c

Matching with drivers in Linux: I2C driver

sound/soc/codecs/cs42l51.c

const struct of_device_id cs42l51_of_match[] = {
{ .compatible = "cirrus,cs42l51", },
{ }

};
MODULE_DEVICE_TABLE(of, cs42l51_of_match);

sound/soc/codecs/cs42l51-i2c.c

static struct i2c_driver cs42l51_i2c_driver = {
.driver = {

.name = "cs42l51",

.of_match_table = cs42l51_of_match,

.pm = &cs42l51_pm_ops,
},
.probe = cs42l51_i2c_probe,
.remove = cs42l51_i2c_remove,
.id_table = cs42l51_i2c_id,

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 315/533

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/cs42l51.c
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/cs42l51-i2c.c

reg property

▶ Most important property after compatible
▶ Memory-mapped devices: base physical address and size of the memory-mapped

registers. Can have several entries for multiple register areas.

sai4: sai@50027000 {
reg = <0x50027000 0x4>, <0x500273f0 0x10>;

};

▶ I2C devices: address of the device on the I2C bus.
▶ SPI devices: chip select number
▶ The unit address must be the address of the first reg entry.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/533

reg property
▶ Most important property after compatible
▶ Memory-mapped devices: base physical address and size of the memory-mapped

registers. Can have several entries for multiple register areas.
▶ I2C devices: address of the device on the I2C bus.

&i2c1 {
hdmi-transmitter@39 {

reg = <0x39>;
};
cs42l51: cs42l51@4a {

reg = <0x4a>;
};

};

▶ SPI devices: chip select number
▶ The unit address must be the address of the first reg entry.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/533

reg property
▶ Most important property after compatible
▶ Memory-mapped devices: base physical address and size of the memory-mapped

registers. Can have several entries for multiple register areas.
▶ I2C devices: address of the device on the I2C bus.
▶ SPI devices: chip select number

&qspi {
flash0: mx66l51235l@0 {

reg = <0>;
};
flash1: mx66l51235l@1 {

reg = <1>;
};

};

▶ The unit address must be the address of the first reg entry.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/533

reg property

▶ Most important property after compatible
▶ Memory-mapped devices: base physical address and size of the memory-mapped

registers. Can have several entries for multiple register areas.
▶ I2C devices: address of the device on the I2C bus.
▶ SPI devices: chip select number
▶ The unit address must be the address of the first reg entry.

sai4: sai@50027000 {
reg = <0x50027000 0x4>, <0x500273f0 0x10>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/533

Status property

▶ The status property indicates if the device is really in use or not
• okay or ok → the device is really in use
• any other value, by convention disabled → the device is not in use

▶ In Linux, controls if a device is instantiated
▶ In .dtsi files describing SoCs: all devices that interface to the outside world have

status = "disabled";

▶ Enabled on a per-device basis in the board .dts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 317/533

Resources: interrupts, clocks, DMA, reset lines, ...

▶ Common pattern for resources shared
by multiple hardware blocks

• Interrupt lines
• Clock controllers
• DMA controllers
• Reset controllers
• ...

▶ A Device Tree node describing the
controller as a device

▶ References from other nodes that use
resources provided by this controller

intc: interrupt-controller@a0021000 {
compatible = "arm,cortex-a7-gic";
#interrupt-cells = <3>;
interrupt-controller;
reg = <0xa0021000 0x1000>, <0xa0022000 0x2000>;

};

rcc: rcc@50000000 {
compatible = "st,stm32mp1-rcc", "syscon";
reg = <0x50000000 0x1000>;
#clock-cells = <1>;
#reset-cells = <1>;

};

dmamux1: dma-router@48002000 {
compatible = "st,stm32h7-dmamux";
reg = <0x48002000 0x1c>;
#dma-cells = <3>;
clocks = <&rcc DMAMUX>;
resets = <&rcc DMAMUX_R>;

};

spi3: spi@4000c000 {
interrupts = <GIC_SPI 51 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&rcc SPI3_K>;
resets = <&rcc SPI3_R>;
dmas = <&dmamux1 61 0x400 0x05>, <&dmamux1 62 0x400 0x05>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 318/533

Pin-muxing description

▶ Most modern SoCs, including the
STM32MP1, have more features than
they have pins to expose those
features to the outside world.

▶ Pins are muxed: a given pin can be
used for one function or another

▶ A specific IP block in the SoC controls
the muxing of pins: the pinmux
controller

▶ The Device Tree describes which pin
configurations are possible, and which
configurations are used by the
different devices.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 319/533

Pin-muxing controllers on STM32MP1

arch/arm/boot/dts/stm32mp151.dtsi

pinctrl: pin-controller@50002000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "st,stm32mp157-pinctrl";
...
gpioa: gpio@50002000 { ... };
gpiob: gpio@50003000 { ... };
gpioc: gpio@50004000 { ... };
gpiod: gpio@50005000 { ... };
gpioe: gpio@50006000 { ... };
gpiof: gpio@50007000 { ... };
...

};

pinctrl_z: pin-controller-z@54004000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "st,stm32mp157-z-pinctrl";
ranges = <0 0x54004000 0x400>;
...
gpioz: gpio@54004000 { };
...

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 320/533

https://elixir.bootlin.com/linux/v6.1/source/arch/arm/boot/dts/stm32mp151.dtsi

Pin-muxing configuration

arch/arm/boot/dts/stm32mp15-pinctrl.dtsi

&pinctrl {
...
i2c1_pins_a: i2c1-0 {

pins {
pinmux = <STM32_PINMUX('D', 12, AF5)>, /* I2C1_SCL */

<STM32_PINMUX('F', 15, AF5)>; /* I2C1_SDA */
bias-disable;
drive-open-drain;
slew-rate = <0>;

};
};
...
m_can1_pins_a: m-can1-0 {

pins1 {
pinmux = <STM32_PINMUX('H', 13, AF9)>; /* CAN1_TX */
slew-rate = <1>;
drive-push-pull;
bias-disable;

};
pins2 {

pinmux = <STM32_PINMUX('I', 9, AF9)>; /* CAN1_RX */
bias-disable;

};
};
...

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 321/533

https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/stm32mp15-pinctrl.dtsi

Pin-muxing configuration

Source: STM32MP157C datasheet. Note that I2C1_SDA is also available on pin PF15 (not shown here).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 321/533

https://www.st.com/resource/en/datasheet/stm32mp157c.pdf

Pin-muxing consumer

&i2c1 {
pinctrl-names = "default", "sleep";
pinctrl-0 = <&i2c1_pins_a>;
pinctrl-1 = <&i2c1_sleep_pins_a>;
...

};

▶ Typically board-specific, in .dts

▶ pinctrl-0, pinctrl-1, pinctrl-X provides the pin mux configurations for the
different states

▶ pinctrl-names gives a name to each state, mandatory even if only one state
▶ States are mutually exclusive
▶ The driver is responsible for switching between states
▶ default state is automatically set up when the device is probed

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 322/533

Example: LED and I2C device

▶ Let’s see how to describe an LED and an I2C device connected to the DK1
platform.

▶ Create arch/arm/boot/dts/stm32mp157a-dk1-custom.dts which includes
stm32mp157a-dk1.dts

#include "stm32mp157a-dk1.dts"

▶ Make sure stm32mp157a-dk1-custom.dts gets compiled to a DTB by changing
arch/arm/boot/dts/Makefile

dtb-$(CONFIG_ARCH_STM32) += \
...
stm32mp157a-dk1.dtb \
stm32mp157a-dk1-custom.dtb \

▶ make dtbs

DTC arch/arm/boot/dts/stm32mp157a-dk1-custom.dtb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 323/533

https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/Makefile

Example: describe an LED

stm32mp157a-dk1-custom.dts
#include "stm32mp157a-dk1.dts"

/ {
leds {

compatible = "gpio-leds";
webinar {

label = "webinar";
gpios = <&gpioe 1 GPIO_ACTIVE_HIGH>;

};
};

};

shell
echo 255 > /sys/class/leds/webinar/brightness

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 324/533

Example: connect I2C temperature, humidity and pressure sensor
stm32mp157a-dk1-custom.dts
&i2c5 {

status = "okay";
clock-frequency = <100000>;
pinctrl-names = "default", "sleep";
pinctrl-0 = <&i2c5_pins_a>;
pinctrl-1 = <&i2c5_pins_sleep_a>;

pressure@76 {
compatible = "bosch,bme280";
reg = <0x76>;

};
};

shell
cat /sys/bus/iio/devices/iio\:device2/in_humidityrelative_input
49147
cat /sys/bus/iio/devices/iio\:device2/in_pressure_input
101.567167968
cat /sys/bus/iio/devices/iio\:device2/in_temp_input
24380

Details at https://bootlin.com/blog/building-a-linux-system-for-the-
stm32mp1-connecting-an-i2c-sensor/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 325/533

https://bootlin.com/blog/building-a-linux-system-for-the-stm32mp1-connecting-an-i2c-sensor/
https://bootlin.com/blog/building-a-linux-system-for-the-stm32mp1-connecting-an-i2c-sensor/

Further details about the Device Tree

Check out our Device Tree 101 webinar, by Thomas Petazzoni (2021)
▶ Slides: https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/

▶ Video: https://youtu.be/a9CZ1Uk3OYQ

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 326/533

https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/
https://youtu.be/a9CZ1Uk3OYQ

Accessing hardware devices

Discoverable hardware: USB and PCI

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 327/533

Discoverable hardware

▶ Some busses have built-in hardware discoverability mechanisms
▶ Most common busses: USB and PCI
▶ Hardware devices can be enumerated, and their characteristics retrieved with just

a driver or the bus controller
▶ Useful Linux commands

• lsusb, lists all USB devices detected
• lspci, lists all PCI devices detected
• A detected device does not mean it has a kernel driver associated to it!

▶ Association with kernel drivers done based on product ID/vendor ID, or some
other characteristics of the device: device class, device sub-class, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 328/533

Practical lab - Accessing hardware devices

Time to start the practical lab!
▶ Exploring the contents of /dev and /sys and

the devices available on the embedded
hardware platform.

▶ Using GPIOs and LEDs.
▶ Modifying the Device Tree to control pin

multiplexing and declare an I2C-connected
joystick.

▶ Adding support for a USB audio card using
Linux kernel modules

▶ Adding support for the I2C-connected joystick
through an out-of-tree module.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 329/533

Block filesystems

Block filesystems

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 330/533

Block filesystems

Block devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 331/533

Block vs. raw flash

▶ Storage devices are classified in two main types: block devices and raw flash
devices

• They are handled by different subsystems and different filesystems
▶ Block devices can be read and written to on a per-block basis, in random order,

without erasing.
• Hard disks, RAM disks
• USB keys, SSD, SD cards, eMMC: these are based on flash storage, but have an

integrated controller that emulates a block device, managing the flash in a
transparent way.

▶ Raw flash devices are driven by a controller on the SoC. They can be read, but
writing requires prior erasing, and often occurs on a larger size than the “block”
size.

• NOR flash, NAND flash

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 332/533

Block device list

▶ The list of all block devices available in the system can be found in
/proc/partitions

$ cat /proc/partitions
major minor #blocks name

179 0 3866624 mmcblk0
179 1 73712 mmcblk0p1
179 2 3792896 mmcblk0p2
8 0 976762584 sda
8 1 1060258 sda1
8 2 975699742 sda2

▶ /sys/block/ also stores information about each block device, for example
whether it is removable storage or not.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 333/533

Partitioning

▶ Block devices can be partitioned to store different parts of a system
▶ The partition table is stored inside the device itself, and is read and analyzed

automatically by the Linux kernel
• mmcblk0 is the entire device
• mmcblk0p2 is the second partition of mmcblk0

▶ Two partition table formats:
• MBR, the legacy format
• GPT, the new format, now used by all modern operating systems, supporting disks

bigger than 2 TB.
▶ Numerous tools to create and modify the partitions on a block device: fdisk,

cfdisk, sfdisk, parted, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 334/533

Transfering data to a block device
▶ It is often necessary to transfer data to or from a block device in a raw way

• Especially to write a filesystem image to a block device
▶ This directly writes to the block device itself, bypassing any filesystem layer.
▶ The block devices in /dev/ allow such raw access
▶ dd (disk duplicate) is the tool of choice for such transfers:

• dd if=/dev/mmcblk0p1 of=testfile bs=1M count=16
Transfers 16 blocks of 1 MB from /dev/mmcblk0p1 to testfile

• dd if=testfile of=/dev/sda2 bs=1M seek=4
Transfers the complete contents of testfile to /dev/sda2, by blocks of 1 MB, but
starting at offset 4 MB in /dev/sda2

• Typical mistake: copying a file (which is not a filesystem image) to a filesystem
without mounting it first:
dd if=zImage of=/dev/sde1
Instead, you should use:
sudo mount /dev/sde1 /boot
cp zImage /boot/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 335/533

Block filesystems

Available block filesystems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 336/533

Ext2

One of the earliest Linux filesystem, introduced in 1993
▶ filesystems/ext2

▶ Still actively supported. Low metadata overhead, module size and RAM usage
▶ But risk of metadata corruption after an unclean shutdown. You then need to run

e2fsck, which takes time and may need operator intervention. Can’t reboot
autonomously.

▶ First successor: ext3 (2001), addressing this limitation with Journaling (see next
slides) but wasn’t scaling well. Now deprecated.

▶ It supports all features Linux needs in a root filesystem: permissions, ownership,
device files, symbolic links, etc.

▶ Date range: December 14, 1901 – January 18, 2038, because of 32 bit dates!
Not recommended for embedded systems today!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 337/533

https://www.kernel.org/doc/html/latest/filesystems/ext2.html

Journaled filesystems

▶ Unlike simpler filesystems (ext2, vfat...),
designed to stay in a coherent state even after
system crashes or a sudden poweroff.

▶ Writes are first described in the journal before
being committed to files (can be all writes, or
only metadata writes depending on the
configuration)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 338/533

Filesystem recovery after crashes

▶ Thanks to the journal, the recovery at boot
time is quick, since the operations in progress
at the moment of the unclean shutdown are
clearly identified. There’s no need for a full
filesystem check.

▶ Does not mean that the latest writes made it
to the storage: this depends on syncing the
changes to the filesystem.

See https://en.wikipedia.org/wiki/
Journaling_file_system for further details.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 339/533

https://en.wikipedia.org/wiki/Journaling_file_system
https://en.wikipedia.org/wiki/Journaling_file_system

Ext4

The modern successor of Ext2
▶ First introduced in 2006, filesystem with Journaling, without ext3 limitations.
▶ Still actively developed (new features added). However, considered in 2008 by Ted

Ts’o as a ”stop-gap” based on old technologies.
▶ The default filesystem choice for many GNU/Linux distributions (Debian, Ubuntu)
▶ The ext4 driver also supports ext2 and ext3 (one driver is sufficient).
▶ Noteworthy feature: transparent encryption (but compression not available).
▶ Minimum partition size to have a journal: 8MiB.
▶ Minimum partition size without a journal: 256KiB (only 32 inodes!).

https://en.wikipedia.org/wiki/Ext4

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 340/533

https://en.wikipedia.org/wiki/Ext4

XFS

A Journaling filesystem
▶ Since 1994 (started by Silicon Graphics for the IRIX OS)
▶ Actively maintained and developed by Red Hat now
▶ Features: variable block size, direct I/O, online growth...
▶ Minimum partition size: 16MiB (9.7MiB of free space)

https://en.wikipedia.org/wiki/XFS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 341/533

https://en.wikipedia.org/wiki/XFS

Btrfs

A copy-on-write filesystem
▶ Pronounced as ”better F S”, ”butter F S” or ”b-tree F S”, since 2009.
▶ A modern filesystem with many advanced features: volumes, snapshots,

transparent compression... Looks great for storage experts.
▶ Minimum partition size: 109MiB (only 32MiB of free space).
▶ However, big module size and long initialization time (bad for boot time)

https://en.wikipedia.org/wiki/Btrfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 342/533

https://en.wikipedia.org/wiki/Btrfs

F2FS — Flash-Friendly File System

A log-structured filesystem
▶ Since 2012 (started by Samsung, actively maintained)
▶ Designed from the start to take into account the characteristics of solid-state

based storage (eMMC, SD, SSD)
▶ In particular, trying to make most writes sequential (best on SSD)
▶ Support for transparent encryption and compression (LZO, LZ4, Zstd), possible

on a file by file (or file type) basis, through extended file attributes.
▶ Maximum partition size: 16TB, maximum file size: 3.94TB
▶ Minimum partition size: 52MiB (8MiB free space)

https://en.wikipedia.org/wiki/F2FS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 343/533

https://en.wikipedia.org/wiki/F2FS

SquashFS — A Read-Only and Compressed File System

The most popular choice for this usage
▶ Started by Phillip Lougher, since 2009 in the mainline kernel, actively maintained.
▶ Fine for parts of a filesystem which can be read-only (kernel, binaries...)
▶ Used in most live CDs and live USB distributions
▶ Supports several compression algorithms (Gzip, LZO, XZ, LZ4, Zstd)
▶ Supposed to give priority to compression ratio vs read performance
▶ Suitable for very small partitions

https://en.wikipedia.org/wiki/SquashFS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 344/533

https://en.wikipedia.org/wiki/SquashFS

EROFS — Enhanced Read-Only File System

A more recent read-only, compressed solution
▶ Started by Gao Xiang (Huawei), since 2019 in the mainline kernel.
▶ Used in particular in Android phones (Huawei, Xiaomi, Oppo...)
▶ Supposed to give priority to read performance vs compression ratio
▶ EROFS implements compression into fixed 4KB blocks (better for read

performance), while SquashFS uses fixed-sized blocks of uncompressed data.
▶ Unlike Squashfs, EROFS also allows for random access to files in directories.
▶ Development seems more active than on SquashFS.
▶ Suitable for very small partitions

https://en.wikipedia.org/wiki/EROFS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 345/533

https://en.wikipedia.org/wiki/EROFS

Our advice for choosing the best filesystem

▶ Some filesystems will work better than others depending on how you use them.
▶ Fortunately, filesystems are easy to benchmark, being transparent to applications:

• Format your storage with each filesystem
• Copy your data to it
• Run your system on it and benchmark its performance.
• Keep the one working best in your case.

▶ If you haven’t done benchmarks yet, a good default choice is ext4 for read/write
partitions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 346/533

Filesystem benchmarks

Boot
time 1

Mount
time

Read Seq.
read

Write Seq.
write

read
write
delete

Delete Space

ext4 very
good

very
good

fair good best very
good

good good good

xfs bad average fair good very
good

best average fair fair

btrfs worst good fair good good good fair worst good

f2fs fair average good good fair very
good

very
good

average worst

squashfs excel-
lent

best very
good

very
good

best

erofs best best best best very
good

1. Boot time = Module loading time + Mount time

See our presentation for more details and benchmarks (Linux 6.3, ARM32 BeagleBone Black):
https://bootlin.com/pub/conferences/2023/eoss/opdenacker-finding-best-block-filesystem/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 347/533

https://bootlin.com/pub/conferences/2023/eoss/opdenacker-finding-best-block-filesystem/

Compatibility filesystems

Linux also supports several other filesystem formats, mainly to be interoperable with
other operating systems:
▶ vfat (CONFIG_VFAT_FS) for compatibility with the FAT filesystem used in the

Windows world and on numerous removable devices
• Also convenient to store bootloader binaries (FAT easy to understand for ROM code)
• This filesystem does not support features like permissions, ownership, symbolic links,

etc. Cannot be used for a Linux root filesystem.
• Linux now supports the exFAT filesystem too (CONFIG_EXFAT_FS).

▶ ntfs (CONFIG_NTFS_FS) for compatibility with Windows NTFS filesystem.
▶ hfs (CONFIG_HFS_FS) for compatibility with the MacOS HFS filesystem.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 348/533

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_VFAT_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EXFAT_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NTFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_HFS_FS

tmpfs: filesystem in RAM

CONFIG_TMPFS

▶ Not a block filesystem of course!
▶ Perfect to store temporary data in RAM: system log files, connection data,

temporary files...
▶ More space-efficient than ramdisks: files are directly in the file cache, grows and

shrinks to accommodate stored files
▶ How to use: choose a name to distinguish the various tmpfs instances you have

(unlike in most other filesystems, each tmpfs instance is different). Examples:
mount -t tmpfs run /run
mount -t tmpfs shm /dev/shm

▶ See filesystems/tmpfs in kernel documentation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 349/533

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_TMPFS
https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html

Block filesystems

Using block filesystems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 350/533

Creating filesystems

▶ To create an empty ext4 filesystem on a block device or inside an already-existing
image file

• mkfs.ext4 /dev/sda3
• mkfs.ext4 disk.img

▶ To create a filesystem image from a directory containing all your files and
directories

• For some filesystems, there are utilities to create a filesystem image from an existing
directory:

ext2: genext2fs -d rootfs/ rootfs.img
squashfs: mksquashfs rootfs/ rootfs.sqfs (details later)
erofs: mkfs.erofs rootfs.erofs rootfs/

• For other (read-write) filesystems: create a disk image, format it, mount it (see next
slides), copy contents and umount.

• Your image is then ready to be transferred to your block device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 351/533

Mounting filesystem images

▶ Once a filesystem image has been created, one can access and modify its contents
from the development workstation, using the loop mechanism:

▶ Example:
mkdir /mnt/test
mount -t ext4 -o loop rootfs.img /mnt/test

▶ In the /mnt/test directory, one can access and modify the contents of the
rootfs.img file.

▶ This is possible thanks to loop, which is a kernel driver that emulates a block
device with the contents of a file.

▶ Note: -o loop no longer necessary with recent versions of mount from GNU
Coreutils. Not true with BusyBox mount.

▶ Do not forget to run umount before using the filesystem image!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 352/533

How to access partitions in a disk image
▶ You may have dumped a complete block device (with partitions) into a disk image.
▶ The losetup command allows to manually associate a loop device to a file, and

offers a --partscan option allowing to also create extra block device files for the
partitions inside the image:

$ sudo losetup -f --show --partscan disk.img
/dev/loop2

$ ls -la /dev/loop2*
brw-rw---- 1 root disk 7, 2 Jan 14 10:50 /dev/loop2
brw-rw---- 1 root disk 259, 11 Jan 14 10:50 /dev/loop2p1
brw-rw---- 1 root disk 259, 12 Jan 14 10:50 /dev/loop2p2

▶ Each partition can then be accessed individually, for example:

$ mount /dev/loop2p2 /mnt/rootfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 353/533

Creating squashfs filesystems

▶ Need to install the squashfs-tools package
▶ Can only create an image: creating an empty squashfs filesystem would be

useless, since it’s read-only.
▶ To create a squashfs image:

• mksquashfs data/ data.sqfs -noappend
• -noappend: re-create the image from scratch rather than appending to it

▶ Examples mounting a squashfs filesystem:
• Same way as for other block filesystems
• mount -o loop data.sqfs /mnt (filesystem image on the host)
• mount /dev/<device> /mnt (on the target)

▶ Similar commands exist for EROFS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 354/533

Mixing read-only and read-write filesystems

Good idea to split your block storage into:
▶ A compressed read-only partition (SquashFS)

Typically used for the root filesystem (binaries, kernel...).
Compression saves space. Read-only access protects your system
from mistakes and data corruption.

▶ A read-write partition with a journaled filesystem (like ext4)
Used to store user or configuration data.
Journaling guarantees filesystem integrity after power off or
crashes.

▶ Ram storage for temporary files (tmpfs)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 355/533

Issues with flash-based block storage

▶ Flash storage made available only through a block interface.
▶ Hence, no way to access a low level flash interface and use the Linux filesystems

doing wear leveling.
▶ No details about the layer (Flash Translation Layer) they use. Details are kept as

trade secrets, and may hide poor implementations.
▶ Not knowing about the wear leveling algorithm, it is highly recommended to limit

the number of writes to these devices.
▶ Using industrial grade storage devices (MMC/SD, USB) is also recommended.

See the Optimizing Linux with cheap flash drives article from Arnd Bergmann and try
his flashbench tool (http://git.linaro.org/people/arnd/flashbench.git/about/)
for finding out the erase block and page size for your storage, and optimizing your
partitions and filesystems for best performance. Note that some SD cards report their
erase block size, available in /sys/bus/mmc/devices/<dev>/preferred_erase_size.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 356/533

https://lwn.net/Articles/428584/
http://git.linaro.org/people/arnd/flashbench.git/about/

Practical lab - Block filesystems

▶ Creating further partitions on your SD card
▶ Booting a system with a mix of filesystems:

SquashFS for the root filesystem, ext4 for data,
and tmpfs for temporary system files.

▶ Loading everything from the SD card, including
the kernel and device tree.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 357/533

Flash storage and filesystems

Flash storage and
filesystems

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 358/533

Block devices vs raw flash devices: reminder

▶ Block devices:
• Allow for random data access using fixed size blocks
• Do not require special care when writing on the media
• Block size is relatively small (minimum 512 bytes, can be increased for performance

reasons)
• Considered as reliable (if the storage media is not, some hardware or software parts

are supposed to make it reliable)
▶ Raw flash devices:

• Flash chips directly driven by the flash controller on your SoC. You can control how
they are managed.

• Allow for random data access too, but require erasing before writing on the media.
• Read and write (for example 4 KiB) don’t use the same block size as erasing (for

example 128 KiB).
• Multiple flash technologies: NOR flash, NAND flash (Single Level Cell - SLC: 1 bit

per cell, MLC: multiple bits per cell).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 359/533

NAND flash storage: constraints

▶ Reliability
• Reliability depends on flash technology (SLC, MLC)
• Require mechanisms to recover from bit flips: ECC

(Error Correcting Code), stored in the OOB
(Out-Of-Band area)

▶ Lifetime
• Relatively short lifetime: between 1,000,000 (SLC) and

1,000 (MLC) erase cycles per block
• Wear leveling required to erase blocks evenly
• Bad block detection/handling required too

▶ Widely used anyway in embedded systems for several reasons:
low cost, high capacity, good read and write performance.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 360/533

The MTD subsystem

▶ MTD stands for Memory Technology
Devices

▶ Generic subsystem in Linux dealing
with all types of storage media that
are not fitting in the block subsystem

▶ Supported media types: RAM, ROM,
NOR flash, NAND flash, Dataflash...

▶ Independent of the communication
interface (drivers available for parallel,
SPI, direct memory mapping, ...)

▶ Abstract storage media characteristics
and provide a simple API to access
MTD devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 361/533

MTD partitioning

▶ MTD devices are usually partitioned
• It allows to use different areas of the flash for different purposes: read-only

filesystem, read-write filesystem, backup areas, bootloader area, kernel area, etc.
▶ Unlike block devices, which contains their own partition table, the partitioning of

MTD devices is described externally (don’t want to put it in a flash sector which
could become bad)

• Specified in the board Device Tree (default partitions, not always relevant)
• Specified through the kernel command line

▶ MTD partitions are defined through the mtdparts parameter in the kernel
command line

▶ U-Boot understands the Linux syntax via the mtdparts and mtdids variables

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 362/533

MTD partitions on Linux

▶ Each partition becomes a separate MTD device
▶ Different from block device labeling (sda3, mmcblk0p2)
▶ /dev/mtd0 is the first enumerated partition on the system
▶ /dev/mtd1 is the second enumerated partition on the system (either from a single

flash chip or from a different one).
▶ Note that the master MTD device (the device those partitions belong to) is not

exposed in /dev

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 363/533

Commands to manage NAND devices

▶ From U-Boot
• help nand to see all nand subcommands
• nand info, nand read, nand write, nand erase...

▶ From Linux
• mtdchar driver: one /dev/mtdX and /dev/mtdXro character device per partition.
• Accessed through ioctl() operations to erase and flash the storage.
• Used by these utilities: flash_eraseall, nandwrite

Provided by the mtd-utils package, also available in BusyBox
• There are also host commands in mtd-utils: mkfs.jffs2, mkfs.ubifs, ubinize...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 364/533

Flash wear leveling

▶ Wear leveling consists in distributing erases over the whole flash device to avoid
quickly reaching the maximum number of erase cycles on blocks that are written
really often

▶ Can be done in:
• the filesystem layer (JFFS2, YAFFS2, ...)
• an intermediate layer dedicated to wear leveling (UBI)

▶ The wear leveling implementation is what makes your flash lifetime good or not

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 365/533

Flash file-systems

▶ ’Standard’ file systems (ext2, ext4...) are meant to work on block devices
▶ Specific file systems have been developed to deal with flash constraints
▶ These file systems are relying on the MTD layer to access flash chips
▶ There are several legacy flash filesystems which might be useful for small

partitions: JFFS2, YAFFS2.
▶ Nowadays, UBI/UBIFS is the de facto standard for medium to large capacity

NANDs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 366/533

UBI (1)

UBI: Unsorted Block Images
▶ Design choices:

• Split the wear leveling and filesystem layers
• Add some flexibility
• Focus on scalability, performance and reliability

▶ Drawback: introduces noticeable space overhead,
especially when used on small devices or partitions.
JFFS2 still makes sense on small MTD partitions.

▶ Implements logical volumes on top of MTD devices (like
LVM for block devices)

▶ Allows wear leveling to operate on the whole storage,
not only on individual partitions.

http://www.linux-mtd.infradead.org/doc/ubi.html

Standard file
API

UBIFS
filesystem

MTD
driver

UBI

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 367/533

http://www.linux-mtd.infradead.org/doc/ubi.html

UBI (2)

When there is too much activity on an LEB, UBI can decide to move it to another
PEB with a lower erase count. Even read-only volumes participate to wear leveling!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 368/533

UBI: good practice

▶ UBI distributes erases all over the flash device: the more space you assign to a
partition attached to the UBI layer the more efficient wear leveling will be.

▶ If you need partitioning, use UBI volumes, not MTD partitions.
▶ Some partitions will still have to be MTD partitions: e.g. the bootloaders.
▶ U-Boot now even supports storing its environment in a UBI volume!
▶ If you do need extra MTD partitions, try to group them at the beginning of the

flash device (often more reliable area).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 369/533

UBI: bad and good practice

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 370/533

UBIFS

Unsorted Block Images File System
▶ http://www.linux-mtd.infradead.org/doc/ubifs.html

▶ Journaling file system providing better performance than its predecessor (JFFS2)
and addressing its scalability issues

▶ Can be mounted as the root filesystem too
▶ UBIFS filesystem images can be created using mkfs.ubifs from mtd-utils
▶ This image can then be flashed on a volume

or included in a UBI image (ubinize command).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 371/533

http://www.linux-mtd.infradead.org/doc/ubifs.html

ubinize for UBI image creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 372/533

Linux: Block emulation layers

▶ Sometimes needed to use read-only block filesystems such as Squashfs and EROFS
▶ Linux provides two block emulation layers:

• mtdblock (CONFIG_MTD_BLOCK): block devices emulated on top of MTD devices.
Named /dev/mtdblockX, one for each partition.
Originally the mount command wanted a block device to mount JFFS2 and YAFFS2.
Don’t write to mtdblock devices: bad blocks are not handled!

• ubiblock (CONFIG_MTD_UBI_BLOCK): read-only block devices emulated on top of
UBI volumes

Used on static (read-only) volumes
Usually named /dev/ubiblockX_Y, where X is the UBI device id and Y is the UBI
volume id (example: /dev/ubiblock0_3)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 373/533

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_MTD_BLOCK
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_MTD_UBI_BLOCK

Cross-compiling user-space libraries and applications

Cross-compiling
user-space libraries and
applications

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 374/533

Integrating user-space libraries and applications

▶ One of the advantages of embedded Linux is the wide range of third-party libraries
and applications that one can leverage in its product

▶ There’s much more than U-Boot, Linux and Busybox that we can re-use from the
open-source world

▶ Networking, graphics, multimedia, crypto, language interpreters, and more.
▶ Each of those additional software components needs to be cross-compiled and

installed for our target
▶ Including all their dependencies

• Which can be quite complex as open-source encourages code re-use

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 375/533

Concept of build system

▶ Each open-source software project comes with its own set of scripts/files to
control its configuration/compilation: its build system

• Detect if system requirements/dependencies are met
• Compile all source files, to generate applications/libraries, as well as documentation
• Installs build products

▶ Most common build systems:
• Hand-written Makefiles
• Autotools: autoconf, automake, libtool

https://en.wikipedia.org/wiki/GNU_Autotools
• CMake

https://cmake.org/
• Meson

https://mesonbuild.com/
• Language specific build systems for Python, Perl, Go, Rust, NodeJS, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 376/533

https://en.wikipedia.org/wiki/GNU_Autotools
https://cmake.org/
https://mesonbuild.com/

Target and staging spaces

▶ When manually cross-compiling software, we will distinguish two “copies” of the
root filesystem

1. The target root filesystem, which ends up on our embedded hardware, which
contains only what is needed for runtime

2. The staging space, which has a similar layout, but contains a lot more files than the
target root filesystem: headers, static libraries, documentation, binaries with
debugging symbols. Contains what’s needed for building code.

▶ Indeed, we want the root filesystem on the target to be as minimal as possible.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 377/533

Cross-compiling with hand-written Makefiles

▶ There is no general rule, as each project has a different set of Makefiles, that use
a different set of variables

▶ Though it is common to use make standard variables: CC (C compiler path), CXX
(C++ compiler path), LD (linker path), CFLAGS (C compiler flags), CXXFLAGS
(C++ compiler flags), LDFLAGS (linker flags)

▶ DESTDIR for installation destination, sometimes PREFIX for execution location
▶ Common sequence

$ make CC=arm-linux-gcc CFLAGS=-I/path/to/headers \
LDFLAGS=-L/path/to/libraries

$ make DESTDIR=/installation/path install

▶ Need to read the documentation (if any), read the Makefiles, and adapt to their
behavior.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 378/533

Example: uftp native compilation

Download and extract
$ wget http://sourceforge.net/projects/uftp-multicast/files/\

source-tar/uftp-5.0.tar.gz
$ tar xf uftp-5.0.tar.gz
$ cd uftp-5.0

Build and install
$ make
cc -g -Wall -Wextra [...] -c server_announce.c
[...]
cc -g -Wall -Wextra -o uftp uftp_common.o encrypt_openssl.o \

server_announce.o [...] server_main.o \
-lm -lcrypto -lpthread

$ make DESTDIR=/tmp/test install

Look at installed files
$ tree /tmp/test
/tmp/test/
��� usr

��� bin
� ��� uftp
� ��� uftpd
� ��� [...]
��� share

��� man
��� man1

��� uftp.1
��� [...]

$ file /tmp/test/usr/bin/uftp
/tmp/test/usr/bin/uftp: ELF 64-bit LSB executable, x86-64

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 379/533

Example: uftp cross-compilation
First attempt
$ export PATH=/xtools/gcc-arm-10.3-2021.07-x86_64-arm-none-linux-gnueabihf/bin:$PATH
$ make CC=arm-none-linux-gnueabihf-gcc
[...]
encryption.h:87:10: fatal error: openssl/rsa.h: No such file or directory

▶ Build fails because uftp uses OpenSSL
▶ This is an optional dependency that can be disabled using the special make

variable NO_ENCRYPTION

Second attempt
$ make CC=arm-none-linux-gnueabihf-gcc NO_ENCRYPTION=1
arm-none-linux-gnueabihf-gcc -g -Wall -Wextra [...] -c server_announce.c
[...]
arm-none-linux-gnueabihf-gcc -g -Wall -Wextra -o uftp uftp_common.o \

encrypt_none.o server_announce.o [...] -lm -lpthread
$ make DESTDIR=/tmp/target NO_ENCRYPTION=1 install
$ file /tmp/target/usr/bin/uftp
/tmp/target/usr/bin/uftp: ELF 32-bit LSB executable, ARM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 380/533

Example: OpenSSL cross-compilation

OpenSSL has a hand-written Configure
shell script that needs to be invoked before
the build.
Download/extract
$ wget https://www.openssl.org/source/openssl-1.1.1q.tar.gz
$ tar xf openssl-1.1.1q.tar.gz
$ cd openssl-1.1.1q

Configuration/build
$ CC=arm-none-linux-gnueabihf-gcc ./Configure --prefix=/usr \

linux-generic32 no-asm
$ make
$ make DESTDIR=/tmp/staging install

Installed files
$ tree /tmp/staging
��� usr

��� bin
� ��� openssl
��� include
� ��� openssl
� � ��� rsa.h
� � ��� [...]
��� lib
� ��� libcrypto.a
� ��� libcrypto.so -> libcrypto.so.1.1
� ��� libcrypto.so.1.1
� ��� [...]
� ��� pkgconfig
� ��� libcrypto.pc
� ��� [...]
��� share

��� doc
� ��� openssl
��� man

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 381/533

Example: uftp with OpenSSL support

$ make CC=arm-none-linux-gnueabihf-gcc
encryption.h:87:10: fatal error: openssl/rsa.h:

No such file or directory
[...]

It cannot find the header, let’s add CFLAGS

pointing to where OpenSSL headers are
installed.
$ make CC=arm-none-linux-gnueabihf-gcc \

CFLAGS=-I/tmp/staging/usr/include
[... build OK, but at link time ...]
ld: cannot find -lcrypto

Compilation of object files work, but link fails
as the linker cannot find the OpenSSL library.
Let’s add LDFLAGS pointing to where the
OpenSSL libraries are installed.

$ make CC=arm-none-linux-gnueabihf-gcc \
CFLAGS=-I/tmp/staging/usr/include \
LDFLAGS=-L/tmp/staging/usr/lib

[... builds OK! ...]
$ make DESTDIR=/tmp/target install

Now it builds and installs fine!
$ arm-none-linux-gnueabihf-readelf -d /tmp/target/usr/bin/uftp
[...]
0x00000001 (NEEDED) Shared library: [libm.so.6]
0x00000001 (NEEDED) Shared library: [libcrypto.so.1.1]
0x00000001 (NEEDED) Shared library: [libpthread.so.0]
0x00000001 (NEEDED) Shared library: [libc.so.6]

[...]

We can indeed see that uftp is linked against
the libcrypto.so.1.1 shared library.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 382/533

Autotools

▶ A family of tools, which associated together form a complete and extensible build
system

• autoconf is used to handle the configuration of the software package
• automake is used to generate the Makefiles needed to build the software package
• libtool is used to handle the generation of shared libraries in a system-independent

way
▶ Most of these tools are old and relatively complicated to use
▶ But they are used by a large number of software components, even though Meson

is gaining significant traction as a replacement today
▶ See also Bootlin Autotools training materials

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 383/533

https://bootlin.com/doc/training/autotools/

automake / autoconf / autoheader

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 384/533

automake / autoconf

▶ Files written by the developer
• configure.in describes the configuration options and the checks done at configure

time
• Makefile.am describes how the software should be built

▶ The configure script and the Makefile.in files are generated by autoconf and
automake respectively.

• They should never be modified directly
• Software downloaded as a tarball: usually shipped pre-generated in the tarball
• Software downloaded from Git: no pre-generated files under version control, so they

must be generated
▶ The Makefile files are generated at configure time, before compiling

• They are never shipped in the software package.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 385/533

autotools usage: four steps

1. Only if needed: generate configure and Makefile.in. Either using autoreconf
tool, or sometimes an autogen.sh script is provided by the package

2. Configuration: ./configure
• ./configure --help is very useful
• --prefix: execution location
• --host: target machine when cross-compiling, if not provided, auto-detected. Also

used as the cross-compiler prefix.
• Often --enable-<foo>, --disable-<foo>, --with-<foo>, --without-<foo> for

optional features.
• CC, CXX, CFLAGS, CXXFLAGS, LDFLAGS and many more variables

3. Build: make

4. Installation: make install
• DESTDIR variable for diverted installation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 386/533

Example: can-utils native compilation

Download
$ git clone https://github.com/linux-can/can-utils.git
$ cd can-utils/
$ git checkout v2021.08.0
$ ls -1 configure* *makefile*
configure.ac
GNUmakefile.am

No configure and GNUmakefile.in,
autoreconf needed.
Autoreconf
$ autoreconf -i
$ ls -1 configure* *makefile*
configure
configure.ac
GNUmakefile.am
GNUmakefile.in

Configuration
$./configure --prefix=/usr
$ ls -1 *makefile*
GNUmakefile
GNUmakefile.am
GNUmakefile.in

We now have the GNUmakefile, we can build
and install.
Build/install
$ make
$ make DESTDIR=/tmp/test install
$ file /tmp/test/usr/bin/candump
/tmp/test/usr/bin/candump: ELF 64-bit LSB executable, x86-64

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 387/533

Example: can-utils cross-compilation

$ export PATH=/xtools/gcc-arm-10.3-2021.07-x86_64-arm-none-linux-gnueabihf/bin:$PATH
$./configure --prefix=/usr --host=arm-none-linux-gnueabihf
$ make
$ make DESTDIR=/tmp/target install
$ file /tmp/target/usr/bin/candump
/tmp/target/usr/bin/candump: ELF 32-bit LSB executable, ARM

Note: This is a simple example, as can-utils does not have any dependency other than
the C library, and has a simple configure.ac file.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 388/533

CMake
https://en.wikipedia.org/wiki/CMake

▶ More modern build system, started in 1999, maintained by a company called
Kitware

▶ Used by Qt 6, KDE, and many projects which didn’t like autotools
▶ Perhaps losing traction these days in favor of Meson
▶ Needs cmake installed on your machine
▶ Based on:

• CMakeLists.txt files that describe what the dependencies are and what to build
and install

• cmake, a tool that processes CMakeLists.txt to generate either Makefiles (default)
or Ninja files (covered later)

▶ Typical sequence, when using the Makefile backend:
1. cmake .
2. make
3. make install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 389/533

https://en.wikipedia.org/wiki/CMake

Example: cJSON native compilation

Download
$ git clone https://github.com/DaveGamble/cJSON.git
$ cd cJSON
$ git checkout v1.7.15

Configure, build, install
$ cmake -DCMAKE_INSTALL_PREFIX=/usr .
$ make
$ make DESTDIR=/tmp/test install

Installed files
$ tree /tmp/test
/tmp/test/
��� usr

��� include
� ��� cjson
� ��� cJSON.h
��� lib64

��� cmake
� ��� cJSON
� ��� cjson.cmake
� ��� cJSONConfig.cmake
� ��� cJSONConfigVersion.cmake
� ��� cjson-noconfig.cmake
��� libcjson.so -> libcjson.so.1
��� libcjson.so.1 -> libcjson.so.1.7.15
��� libcjson.so.1.7.15
��� pkgconfig

��� libcjson.pc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 390/533

Example: cJSON cross-compilation

cJSON has no dependency on any other library, so cross-compiling it is very easy as
only the C cross-compiler needs to be specified:

$ cmake -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_C_COMPILER=arm-none-linux-gnueabihf-gcc .
$ make
$ make DESTDIR=/tmp/target install
$ file /tmp/target/usr/lib/libcjson.so.1.7.15
/tmp/target/usr/lib/libcjson.so.1.7.15: ELF 32-bit LSB shared object, ARM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 391/533

CMake toolchain file

▶ When cross-compiling with CMake, the number of arguments to pass to specify
the paths to all cross-compiler tools, libraries, headers, and flags can become quite
long.

▶ They can be grouped into a toolchain file, which defines CMake variables
▶ Can then be used with

cmake -DCMAKE_TOOLCHAIN_FILE=/path/to/toolchain-file.txt

▶ Such a toolchain file is commonly provided by embedded Linux build systems:
Buildroot, Yocto, etc.

▶ Facilitates cross-compilation using CMake
▶ https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 392/533

https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html

Meson

https://en.wikipedia.org/wiki/Meson_(software)

▶ The most modern one, written in Python
▶ Gaining big traction in lots of major open-source projects
▶ Processes meson.build + meson_options.txt and generates Ninja files
▶ Ninja is an alternative to make, with much shorter build times
▶ Needs meson and ninja installed on your machine
▶ Meson requires an out-of-tree build: the build directory must be distinct from the

source directory
1. mkdir build
2. cd build
3. meson ..
4. ninja
5. ninja install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 393/533

https://en.wikipedia.org/wiki/Meson_(software)

Example: ipcalc native compilation

Download
$ git clone https://gitlab.com/ipcalc/ipcalc.git
$ cd ipcalc
$ git checkout 1.0.1

Configuration, build, installation
$ mkdir build
$ cd build
$ meson --prefix /usr ..
$ ninja
$ DESTDIR=/tmp/test ninja install

Installed files
$ tree /tmp/test
/tmp/test/
��� usr

��� bin
��� ipcalc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 394/533

Meson cross file

▶ In a similar manner to CMake’s
toolchain file, Meson has a concept of
cross file

▶ Small text file that contains variable
definitions telling Meson all details
needed for cross-compilation

▶ Can be created manually, or may be
provided by an embedded Linux build
systems such as Buildroot or Yocto.

▶ --cross-file option of Meson

Cross file example
[binaries]
c = 'arm-none-linux-gnueabihf-gcc'
strip = 'arm-none-linux-gnueabihf-strip'

[host_machine]
system = 'linux'
cpu_family = 'arm'
cpu = 'cortex-a9'
endian = 'little'

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 395/533

Example: ipcalc cross-compilation

$ cat cross-file.txt
[binaries]
c = 'arm-none-linux-gnueabihf-gcc'
strip = 'arm-none-linux-gnueabihf-strip'

[host_machine]
system = 'linux'
cpu_family = 'arm'
cpu = 'cortex-a9'
endian = 'little'
$ mkdir build-cross
$ cd build-cross
$ meson --cross-file ../cross-file.txt --prefix /usr ..
$ ninja
$ DESTDIR=/tmp/target ninja install
$ file /tmp/target/usr/bin/ipcalc
/tmp/target/usr/bin/ipcalc: ELF 32-bit LSB executable, ARM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 396/533

Distinction between prefix and DESTDIR

▶ There is often a confusion between
prefix and DESTDIR

▶ Distinction is very important in
cross-compilation context

▶ prefix: where the software will be
executed from on the target

▶ DESTDIR: where the software is
installed by the build system
installation procedure. Allows to
install in a different place than
prefix, when creating a root
filesystem for a different machine.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 397/533

pkg-config

▶ pkg-config is a tool that allows to query a small database to get information on
how to compile programs that depend on libraries

▶ https://people.freedesktop.org/~dbn/pkg-config-guide.html

▶ The database is made of .pc files, installed by default in
<prefix>/lib/pkgconfig/.

▶ pkg-config is often used by autotools, CMake, Meson to find libraries
▶ By default, pkg-config looks in /usr/lib/pkgconfig for the *.pc files, and

assumes that the paths in these files are correct.
▶ PKG_CONFIG_LIBDIR allows to set another location for the *.pc files.
▶ PKG_CONFIG_SYSROOT_DIR allows to prepend a directory to the paths mentioned

in the .pc files and appearing in the pkg-config output.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 398/533

https://people.freedesktop.org/~dbn/pkg-config-guide.html

pkg-config example for native compilation

$ pkg-config --list-all
openssl OpenSSL - Secure Sockets Layer and cryptography libraries and tools
zlib zlib - zlib compression library
blkid blkid - Block device id library
cairo-script cairo-script - script surface backend for cairo graphics library
cairo-pdf cairo-pdf - PDF surface backend for cairo graphics library
xcb-xinput XCB XInput - XCB XInput Extension (EXPERIMENTAL)
libcurl libcurl - Library to transfer files with ftp, http, etc.
[...]
$ pkg-config --cflags --libs openssl
-lssl -lcrypto
$ pkg-config --cflags --libs cairo-script
-I/usr/include/cairo -I/usr/include/libpng16 -I/usr/include/freetype2 -I/usr/include/harfbuzz
[...] -lcairo -lz

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 399/533

pkg-config example for cross-compilation

Use PKG_CONFIG_LIBDIR

$ export PKG_CONFIG_LIBDIR=/tmp/staging/usr/lib/pkgconfig
$ pkg-config --list-all
openssl OpenSSL - Secure Sockets Layer and cryptography libraries and tools
libssl OpenSSL-libssl - Secure Sockets Layer and cryptography libraries
libcrypto OpenSSL-libcrypto - OpenSSL cryptography library
$ pkg-config --cflags --libs openssl
-I/usr/include -L/usr/lib -lssl -lcrypto

The -L/usr/lib is incorrect, we need to use PKG_CONFIG_SYSROOT_DIR.
Use PKG_CONFIG_SYSROOT_DIR

$ export PKG_CONFIG_SYSROOT_DIR=/tmp/staging/
$ pkg-config --cflags --libs openssl
-I/tmp/staging/usr/include -L/tmp/staging/usr/lib -lssl -lcrypto

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 400/533

Practical lab - Cross-compiling applications and libraries

Time to start the practical lab!
▶ Manual cross-compilation of several

open-source libraries and applications for an
embedded platform.

▶ Learning about common pitfalls and issues, and
their solutions.

▶ This includes compiling alsa-utils package, and
using its speaker-test program to test that
audio works on the target.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 401/533

Embedded system building tools

Embedded system
building tools

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 402/533

Approaches

Three main approaches to build your embedded Linux system:
1. Cross-compile everything manually from source
2. Use an embedded Linux build system that automates the cross-compilation

process
3. Use a binary distribution such as Debian, Ubuntu or Fedora

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 403/533

Approaches pros and cons

Pros Cons
Building everything manually Full flexibility

Learning experience
Dependency hell
Need to understand a lot of details
Version compatibility
Lack of reproducibility

Binary distribution
Debian, Ubuntu, Fedora, etc.

Easy to create and extend
Extensive set of packages
Usually excellent security maintenance

Hard to customize
Hard to optimize (boot time, size)
Hard to rebuild the full system from source
Large system
Uses native compilation (slow)
No well-defined mechanism to generate an
image
Lots of mandatory dependencies
Not available for all architectures

Build systems
Buildroot, Yocto, PTXdist, OpenWrt, etc.

Nearly full flexibility
Built from source: customization and op-
timization are easy
Fully reproducible
Uses cross-compilation
Have embedded specific packages not nec-
essarily in desktop distros
Make more features optional

Not as easy as a binary distribution
Build time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 404/533

Embedded system building tools

Embedded Linux build systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 405/533

Embedded Linux build system: principle

▶ Building from source → lot of flexibility
▶ Cross-compilation → leveraging fast build machines
▶ Recipes for building components → easy

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 406/533

Build systems vs. Embedded Linux build systems

▶ Possible confusion between build system
(Makefiles, autotools, CMake, Meson) and
embedded Linux build systems (Buildroot,
Yocto/OpenEmbedded, OpenWrt, etc.)

▶ Build systems are used by individual software
components, to control the build process of
each source file into a library, executable,
documentation, etc.

▶ Embedded Linux build systems are tools that
orchestrate the build of all software
components one after the other. They invoke
the build system of each software component.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 407/533

Buildroot: introduction

▶ Allows to build a toolchain, a root filesystem image with many
applications and libraries, a bootloader and a kernel image

• Or any combination of the previous items
▶ Supports using uClibc, glibc and musl toolchains, either built by

Buildroot, or external
▶ Over 2800 applications or libraries integrated, from basic utilities

to more elaborate software stacks: Wayland, GStreamer, Qt,
Gtk, WebKit, Python, PHP, NodeJS, Go, Rust, etc.

▶ Good for small to medium size embedded systems, with a fixed
set of features

• No support for generating packages (.deb or .ipk)
• Needs complete rebuild for most configuration changes.

▶ Active community, releases published every 3 months. One LTS
release made every year (YYYY.02 so far).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 408/533

Buildroot: configuration and build

▶ Configuration takes place through a *config
interface similar to the kernel
make menuconfig

▶ Allows to define
• Architecture and specific CPU
• Toolchain configuration
• Set of applications and libraries to integrate
• Filesystem images to generate
• Kernel and bootloader configuration

▶ Build:
make

▶ Useful build results in output/images/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 409/533

Buildroot: adding a new package

▶ A package allows to integrate a user application or library to Buildroot
▶ Can be used to integrate

• Additional open-source libraries or applications
• But also your own proprietary libraries and applications → fully integrated build

process
▶ Each package has its own directory (such as package/jose). This directory

contains:
• A Config.in file (mandatory), describing the configuration options for the package.

At least one is needed to enable the package. This file must be sourced from
package/Config.in

• A jose.mk file (mandatory), describing how the package is built.
• A jose.hash file (optional, but recommended), containing hashes for the files to

download, and for the license file.
• Patches (optional). Each file of the form *.patch will be applied as a patch.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 410/533

Buildroot: adding a new package, Config.in

package/jose/Config.in
config BR2_PACKAGE_JOSE

bool "jose"
depends on BR2_TOOLCHAIN_HAS_THREADS
select BR2_PACKAGE_ZLIB
select BR2_PACKAGE_JANSSON
select BR2_PACKAGE_OPENSSL
help
C-language implementation of Javascript Object Signing and
Encryption.

https://github.com/latchset/jose

package/Config.in
[...]
source "package/jose/Config.in"
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 411/533

Buildroot: adding new package, .mk file

package/jose/jose.mk
JOSE_VERSION = 11
JOSE_SOURCE = jose-$(JOSE_VERSION).tar.xz
JOSE_SITE = https://github.com/latchset/jose/releases/download/v$(JOSE_VERSION)
JOSE_LICENSE = Apache-2.0
JOSE_LICENSE_FILES = COPYING
JOSE_INSTALL_STAGING = YES
JOSE_DEPENDENCIES = host-pkgconf zlib jansson openssl

$(eval $(meson-package))

▶ The package directory and the prefix of all variables must be identical to the suffix
of the main configuration option BR2_PACKAGE_JOSE

▶ The meson-package infrastructure knows how to build Meson packages. Many
other infrastructures exist, for different build systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 412/533

Buildroot resources

▶ Official site: https://buildroot.org/

▶ Buildroot manual: https://buildroot.org/
downloads/manual/manual.html

▶ Complete Buildroot system development
training course from Bootlin

• https://bootlin.com/training/buildroot/
• Freely available training materials

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 413/533

https://buildroot.org/
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://bootlin.com/training/buildroot/

Yocto Project / OpenEmbedded

▶ OpenEmbedded
• Started in 2003
• Goal is to build custom Linux distributions for

embedded devices
• Back then, no stable releases, limited/no

documentation, difficult to use for products
▶ Yocto Project

• Started in 2011
• By the Linux Foundation
• Goal is to industrialize OpenEmbedded
• Funds the development of OpenEmbedded,

makes regular stable releases, QA effort,
extensive documentation

• One Long Term Support release every 2 years,
supported for 4 years.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 414/533

Yocto Project overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 415/533

Yocto Project concepts

▶ Terminology
• Layer: Git repository containing a collection of recipes, machines, etc.
• Recipe: metadata that describes how to build a particular software component, the

contents of an image to generate
• Machine: a specific hardware platform
• bitbake: the orchestration tool that processes recipes to generate the final products

▶ Yocto/OpenEmbedded generate a distribution
• For each recipe, it produces one or several binary packages (deb, rpm, ipk)
• A selection of these binary packages are installed to create a root filesystem image

that can be flashed
• The other packages can be installed at runtime on the system using a package

management system: apt, dnf, opkg

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 416/533

Public layers (1/2)

▶ Core layers
• bitbake, not really a layer, but the core build orchestration tool
• openembedded-core, the very core recipes, to build the most common software

packages: Linux, BusyBox, toolchain, systemd, mesa3d, X.org, Wayland
bootloaders. Supports only QEMU machines.

• poky, a layer from the Yocto Project that combines openembedded-core, bitbake,
that defines the Poky distribution, a reference distribution. Supports a few more
machines. In practice not useful for real projects.

• meta-openembedded, community maintained additional recipes from the
OpenEmbedded project

▶ BSP layers, provided by HW vendors or the community, to support additional
hardware platforms: recipes for building custom Linux kernel, bootloaders, for
HW-related software components

• meta-intel, meta-arm, meta-ti, meta-xilinx, meta-freescale, meta-atmel,
meta-st-stm32mp, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 417/533

https://git.openembedded.org/bitbake/
https://git.openembedded.org/openembedded-core
https://git.yoctoproject.org/poky/
http://cgit.openembedded.org/meta-openembedded/
https://git.yoctoproject.org/meta-intel/
https://git.yoctoproject.org/meta-arm/
https://git.yoctoproject.org/meta-ti/
https://git.yoctoproject.org/meta-xilinx/
https://git.yoctoproject.org/meta-freescale/
https://github.com/linux4sam/meta-atmel
https://github.com/STMicroelectronics/meta-st-stm32mp

Public layers (2/2)

▶ Additional software layers: recipes for building additional software components,
not in openembedded-core

• meta-qt6, meta-virtualization, meta-rauc, meta-swupdate, etc.
▶ Layer index: https://layers.openembedded.org/

▶ Each layer normally has a branch matching the Yocto release you’re using
▶ Not all layers have the same level of quality/maintenance: third-party layers are

not necessarily reviewed by OpenEmbedded experts.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 418/533

https://code.qt.io/cgit/yocto/meta-qt6.git/
https://git.yoctoproject.org/meta-virtualization
https://github.com/rauc/meta-rauc
https://github.com/sbabic/meta-swupdate
https://layers.openembedded.org/

Combine layers

▶ For your project, you will typically combine a number of public layers
• At least the openembedded-core layer
• Possibly one or several BSP layers
• Possibly one or several additional software layers

▶ And you will create your own layer, containing recipes for:
• Machine definitions for your custom hardware platforms
• Image/distro definitions for your custom system(s)
• Recipes for your custom software

▶ A tool is often used to automate the retrieval of the necessary layers, at the right
version

• Google repo tool, the Yocto-specific Kas utility

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 419/533

https://gerrit.googlesource.com/git-repo/
https://kas.readthedocs.io

Yocto quick start: STM32MP1 example

Download bitbake and layers
$ git clone https://git.openembedded.org/openembedded-core -b kirkstone
$ git clone https://git.openembedded.org/meta-openembedded -b kirkstone
$ git clone https://git.openembedded.org/bitbake -b 2.0
$ git clone https://github.com/STMicroelectronics/meta-st-stm32mp.git -b kirkstone

Note: we’re not using a tool such as repo or Kas here, we are fetching each layer
manually.
Enter the build environment
$ source openembedded-core/oe-init-build-env

This automatically enters a directory called build/, with a few files/directories already
prepared.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 420/533

Yocto quick start: STM32MP1 example

Configure layers: conf/bblayers.conf
BBLAYERS ?= " \

/path/to/openembedded-core/meta \
/path/to/meta-st-stm32mp \
/path/to/meta-openembedded/meta-oe \
/path/to/meta-openembedded/meta-python \
"

Start the build
$ MACHINE=stm32mp1 bitbake core-image-minimal

▶ MACHINE=stm32mp1 will build images usable on all STM32MP1 platforms
▶ core-image-minimal builds a minimal image

Build results
$ ls tmp/deploy/images/stm32mp1/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 421/533

Yocto recipe example

openembedded-core/tree/meta/recipes-extended/libmnl/libmnl_1.0.5.bb

SUMMARY = "Minimalistic user-space Netlink utility library"
DESCRIPTION = "Minimalistic user-space library oriented to Netlink developers, providing \

functions for common tasks in parsing, validating, and constructing both the Netlink header and TLVs."
HOMEPAGE = "https://www.netfilter.org/projects/libmnl/index.html"
SECTION = "libs"
LICENSE = "LGPL-2.1-or-later"
LIC_FILES_CHKSUM = "file://COPYING;md5=4fbd65380cdd255951079008b364516c"

SRC_URI = "https://netfilter.org/projects/libmnl/files/libmnl-${PV}.tar.bz2"
SRC_URI[sha256sum] = "274b9b919ef3152bfb3da3a13c950dd60d6e2bcd54230ffeca298d03b40d0525"

inherit autotools pkgconfig

BBCLASSEXTEND = "native"

▶ Recipe to build libmnl
▶ Build system based on autotools → inherit autotools

▶ Available both for the target and the host → BBCLASSEXTEND = "native"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 422/533

https://git.openembedded.org/openembedded-core/tree/meta/recipes-extended/libmnl/libmnl_1.0.5.bb
https://www.netfilter.org/projects/libmnl/

Yocto resources

▶ Official website: https://www.yoctoproject.org/

▶ Release information:
https://wiki.yoctoproject.org/wiki/Releases

▶ Official documentation:
https://docs.yoctoproject.org/

• Maintained by Bootlin engineers!
▶ Complete Yocto Project and OpenEmbedded

system development training course from Bootlin
• https://bootlin.com/training/yocto/
• Freely available training materials

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 423/533

https://www.yoctoproject.org/
https://wiki.yoctoproject.org/wiki/Releases
https://docs.yoctoproject.org/
https://bootlin.com/training/yocto/

Buildroot vs. Yocto: a few key differences

▶ What it builds
• Yocto: builds a distribution, with binary packages and a package management

system
• Buildroot: builds a fixed functionality root filesystem, no binary packages
• Note: binary packages are not necessarily a good thing for embedded!

▶ Configuration
▶ Build strategy
▶ Ecosystem
▶ Complexity/learning curve
▶ And also a matter of personal taste/preference, as often when choosing tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/533

Buildroot vs. Yocto: a few key differences

▶ What it builds
▶ Configuration

• Yocto: flexible, powerful but complex configuration description
• Buildroot: very simple configuration system, but sometimes limited

▶ Build strategy
▶ Ecosystem
▶ Complexity/learning curve
▶ And also a matter of personal taste/preference, as often when choosing tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/533

Buildroot vs. Yocto: a few key differences

▶ What it builds
▶ Configuration
▶ Build strategy

• Yocto: complex and heavy logic, but with efficient caching of artifacts and “rebuild
only what’s needed” features

• Buildroot: simple but somewhat dumb logic, no caching of built artifacts, full
rebuilds needed for some config changes

▶ Ecosystem
▶ Complexity/learning curve
▶ And also a matter of personal taste/preference, as often when choosing tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/533

Buildroot vs. Yocto: a few key differences

▶ What it builds
▶ Configuration
▶ Build strategy
▶ Ecosystem

• Yocto: (relatively) small common base in OpenEmbedded, lots of features
supported in third party layers → lots of things, but varying quality

• Buildroot: everything in one tree → perhaps less things, but more consistent quality

▶ Complexity/learning curve
▶ And also a matter of personal taste/preference, as often when choosing tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/533

Buildroot vs. Yocto: a few key differences

▶ What it builds
▶ Configuration
▶ Build strategy
▶ Ecosystem
▶ Complexity/learning curve

• Yocto: admittedly steep learning curve, bitbake remains a magic black box for most
people

• Buildroot: much smoother and shorter learning curve, the tool is simple to
approach, and reasonably simple to understand

▶ And also a matter of personal taste/preference, as often when choosing tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/533

Buildroot vs. Yocto: a few key differences

▶ What it builds
▶ Configuration
▶ Build strategy
▶ Ecosystem
▶ Complexity/learning curve
▶ And also a matter of personal taste/preference, as often when choosing tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/533

OpenWrt

▶ Another Embedded Linux build system
▶ Derived from Buildroot a very long time ago

• Now completely different, except for the use of Kconfig and make
▶ Targeted at building firmware for WiFi routers and other networking equipments
▶ Unlike Buildroot or Yocto that leave a lot of flexibility to the user in defining the

system architecture, OpenWrt makes a lot of set in stone decisions:
• musl is the C library
• an OpenWrt specific init system
• an OpenWrt specific inter-process communication bus
• a Web UI specific to OpenWrt

▶ The aim of OpenWrt is to build a final product out of the box, with support for
popular networking products and development boards

▶ https://openwrt.org/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 425/533

Embedded system building tools

Working with distributions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 426/533

Binary distributions

▶ Many popular Linux desktop/server distributions have support for embedded
architectures

• Debian: ARMv5, ARMv7, ARM64, i386, x86-64, MIPS, PowerPC, RISC-V in
progress

• Ubuntu: ARMv7, ARM64, x86-64, RISC-V (initial support), PowerPC64 little-endian
• Fedora: ARMv7, ARM64, x86-64, MIPS little-endian, PowerPC64 little-endian,

RISC-V
▶ Some more specialized Linux distributions as well

• Raspberry Pi OS, a Debian derivative targeted at RaspberryPi platforms
• Alpine Linux, a lightweight distribution, based on musl and Busybox, ARMv7,

ARM64, i386, x86-64, PowerPC64 little-endian

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 427/533

https://www.debian.org
https://www.ubuntu.com
https://getfedora.org
https://www.raspberrypi.com/software/
https://www.alpinelinux.org/

Binary distributions pitfalls

▶ Be careful when using a binary distribution on how you create your system image,
and how reproducible this process is

▶ We have seen projects use the following (bad) procedure:
• Install a binary distribution manually on their target hardware
• Install all necessary packages by hand
• Compile the final applications on the target
• Tweak configuration files directly on the target
• Then duplicate the resulting SD card for all other boards

▶ This process is really bad as:
• it is not reproducible
• it requires installing many more things on the target than needed (development

tools), increasing the footprint, the attack surface and the maintenance effort
▶ If you end up using a binary distribution in production, make sure you have an

automated and reproducible process to generate the complete image, ready to
flash on your target.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 428/533

Debian/Ubuntu image building tools
ELBE
▶ E.mbedded L.inux B.uild E.nvironment
▶ Implemented in Python
▶ Uses an XML file as input to describe the

system to generate
▶ Can use pre-built packages from

Debian/Ubuntu repositories, but can also
cross-compile and install additional packages

▶ https://elbe-rfs.org/

▶ Building Embedded Debian and Ubuntu
Systems with ELBE talk

▶ ELBE: automated building of Ubuntu images
for a Raspberry Pi 3B

DebOS
▶ Debian OS images builder
▶ Implemented in Go
▶ Uses a YAML file as input to

describe the system to
generate

▶ Creating Debian-Based
Embedded Systems in the
Cloud Using Debos talk

▶ https://github.com/go-
debos/debos

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 429/533

https://elbe-rfs.org/
https://www.youtube.com/watch?v=BwHzyCGB7As
https://www.youtube.com/watch?v=BwHzyCGB7As
https://bootlin.com/blog/elbe-automated-building-of-ubuntu-images-for-a-raspberry-pi-3b/
https://bootlin.com/blog/elbe-automated-building-of-ubuntu-images-for-a-raspberry-pi-3b/
https://www.youtube.com/watch?v=_NZrSR3prwk
https://www.youtube.com/watch?v=_NZrSR3prwk
https://www.youtube.com/watch?v=_NZrSR3prwk
https://github.com/go-debos/debos
https://github.com/go-debos/debos

Android
▶ The obviously highly popular mobile operating system
▶ Uses the Linux kernel
▶ Most of the user-space is completely different from a normal embedded Linux

system
• Most components rewritten by Google
• bionic C library
• Custom init system and device management
• Custom IPC mechanism, custom display stack, custom multimedia stack
• Custom build system

▶ Android pitfalls for industrial embedded systems
• Large footprint, and resource hungry
• Complexity and build time
• Maintenance issues: difficult to upgrade to newer releases due to increasing hardware

requirements
▶ Embedded Android Training course from Opersys, with freely available training

materials
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 430/533

https://www.opersys.com/training/embedded-android-training/
https://www.opersys.com

Automotive Grade Linux, Tizen
▶ Industry groups collaborate around the creation of embedded Linux distributions

targeting specific markets
• These are regular embedded Linux systems, usually based on Yocto, with a selection

of relevant open-source software components
• Fund the development of missing features in existing components, or development of

new software components
▶ Automotive Grade Linux

• Linux Foundation project
• Collaborative open source project that is bringing together automakers, suppliers and

technology companies to accelerate the development and adoption of a fully open
software stack for the connected car

• https://www.automotivelinux.org/

▶ Tizen
• Linux Foundation project too
• Operating system targeting TVs, wearables, phones, in-vehicle infotainment, based

on HTML5 applications.
• https://www.tizen.org/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 431/533

https://www.automotivelinux.org/
https://www.tizen.org/

Practical lab - System build with Buildroot

Time to start the practical lab!
▶ Using Buildroot to rebuild the same basic

system plus a sound playing server (MPD) and
a client to control it (mpc).

▶ Overlaying the root filesystem built by
Buildroot

▶ Driving music playback, directly from the
target, and then remotely through an MPD
client on the host machine.

▶ Analyzing dependencies between packages.
▶ Building evtest and using it to test the

Nunchuk device driver.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 432/533

Open source licenses and compliance

Open source licenses
and compliance

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 433/533

Open source licenses and compliance

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 434/533

Free software vs. open-source

▶ Free software: term defined by the Free Software Foundation, grants 4 freedoms
• Freedom to use
• Freedom to study
• Freedom to copy
• Freedom to modify and distribute modified copies
• See https://www.gnu.org/philosophy/free-sw.html

▶ Open Source: term defined by the Open Source Initiative, with 10 criterias
• See https://www.opensource.org/docs/osd

▶ Free Software movement insists more on ethics, while Open Source insists more
on the technical advantages

▶ From a freedom standpoint, they are similar.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 435/533

https://www.gnu.org/philosophy/free-sw.html
https://www.opensource.org/docs/osd

Open source licenses

▶ All free software/open-source licenses rely on copyright law
▶ Those licenses fall in two main categories

• The copyleft licenses
• The non-copyleft licenses, also called permissive licenses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 436/533

Non-Copyleft VS Copyleft licenses

Non-Copyleft
(BSD, MIT, Apache, X11…)

You can
Use

Modify
Redistribute

You must
Provide license text

Attribution

Copyleft
(GPL, LGPL, AGPL…)

You can
Use

Modify
Redistribute

You must
Provide license text

Attribution
Make source code available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 437/533

What is copyleft

▶ The concept of copyleft is to ask for reciprocity in the freedoms given to a user.
▶ You receive software under a copyleft license and redistribute it, modified or not

→ you must do so under the same license
• Same freedoms to the new users
• Incentive, but no obligation, to contribute back your changes instead of keeping

them secret
▶ Copyleft is not the opposite of copyright!
▶ Non-copyleft licenses have no such requirements: modified versions can be made

proprietary, but they still require attribution
▶ https://en.wikipedia.org/wiki/Copyleft

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 438/533

https://en.wikipedia.org/wiki/Copyleft

Open source licenses and compliance

Non-copyleft licenses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 439/533

Most common non-copyleft licenses

▶ MIT, BSD 2 CLAUSE
• Very simple
• Require to preserve the copyright notice

▶ BSD 3 CLAUSE
• Adds a non-endorsement clause

▶ Apache
• More complex
• Includes a patent grant, a mechanism to prevent users of the licensed project from

suing others based on patents related to the project

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 440/533

https://en.wikipedia.org/wiki/MIT_License
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://www.apache.org/licenses/LICENSE-2.0

Open source licenses and compliance

Copyleft licenses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 441/533

GPL: GNU General Public License
▶ The flagship license of the GNU project
▶ Used by Linux, BusyBox, U-Boot, Barebox, GRUB, many projects from GNU
▶ Is a copyleft license

• Requires derivative works to be released under the same license
• Source code must be redistributed, including modifications
• If GPL code is integrated in your code, your code must now be GPL-licensed
• Only applies when redistribution takes place

▶ Also called strong copyleft license
• Programs linked with a library released under the GPL must also be released under

the GPL
• Does not prevent GPL programs and non-GPL programs from co-existing in the

same system or to communicate
▶ https://www.gnu.org/licenses/gpl-2.0.en.html

▶ https://www.gnu.org/licenses/gpl-3.0.en.html

▶ https://en.wikipedia.org/wiki/GNU_General_Public_License

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 442/533

https://www.gnu.org/licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://en.wikipedia.org/wiki/GNU_General_Public_License

LGPL: GNU Lesser General Public License

▶ Used by glibc, uClibc, and many libraries
▶ Derived from the GPL license
▶ Also a copyleft license
▶ But a weaker copyleft license

• Programs linked against a library under the LGPL do not need to be released under
the LGPL and can be kept proprietary.

• However, the user must keep the ability to update the library independently from the
program.

• Requires using dynamic linking, or in the case of static linking, to provide the object
files to relink with the library

▶ https://www.gnu.org/licenses/lgpl-2.1.en.html

▶ https://www.gnu.org/licenses/lgpl-3.0.en.html

▶ https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 443/533

https://www.gnu.org/licenses/lgpl-2.1.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License

GPL/LGPL: redistribution

▶ No obligation when the software is not distributed
• You can keep your modifications secret until the product delivery

▶ It is then authorized to distribute binary versions, if one of the following
conditions is met:

• Convey the binary with a copy of the source on a physical medium
• Convey the binary with a written offer valid for 3 years that indicates how to fetch

the source code
• Convey the binary with the network address of a location where the source code can

be found
▶ In all cases, the attribution and the license must be preserved

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 444/533

GPL/LGPL: version 2 vs version 3

▶ GPLv2/LGPLv2 published in 1991, widely used in the open-source world for major
projects

▶ GPLv3/LGPLv3 published in 2007, and adopted by some projects
▶ Main differences

• More legalese and definitions to clarify the license
• Explicit patent grant
• Grace period of 30 days to get back into compliance instead of immediate

termination
• Anti-Tivoization clause

▶ Anti-Tivoization
• Requirement that the user must be able to run the modified versions on the device
• Need to provide installation instructions
• Only required for User products, i.e. consumer devices
• On-going debate on how strong this requirement is, and how difficult it is to comply

with

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 445/533

GPL: v2, v3, v2 or later, v3 or later

▶ Some projects are released under GPLv2 only
• Examples: Linux kernel, U-Boot

▶ Some projects are released under GPLv3 only
▶ Some projects are released under GPLv2 or later

• The recipient can chose to apply either the terms of GPLv2, GPLv3 or any later
version

▶ Some projects are released under GPLv3 or later
• The recipient can chose to apply the terms of GPLv3 or any later version (none of

which exists today)
• Examples: GCC, Samba, Bash, GRUB

▶ Note: this logic applies similarly to the LGPL license.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 446/533

Dual licensing

▶ Some companies use a dual licensing business model, mainly for software libraries
▶ Their software is offered under two licenses:

• A strong copyleft license, typically GPL, to encourage adoption of the software by
the open-source world, allow the development and distribution of GPL licensed
applications based on this library

• A commercial license, offered against a fee, which allows to develop and distribute
proprietary applications based on this library.

▶ Examples: Qt (only parts), MySQL, wolfSSL, Asterisk, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 447/533

Is this free software?

▶ Most of the free software projects are covered by about 10 well-known licenses, so
it is fairly easy for the majority of projects to get a good understanding of the
license

▶ Check Free Software Foundation’s opinion
https://www.fsf.org/licensing/licenses/

▶ Check Open Source Initiative’s opinion
https://www.opensource.org/licenses

▶ Check the simplified license description on tl;drLegal
https://www.tldrlegal.com

▶ Otherwise, read the license text

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 448/533

https://www.fsf.org/licensing/licenses/
https://www.opensource.org/licenses
https://www.tldrlegal.com

Licensing: examples

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 449/533

Open source licenses and compliance

Best practices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 450/533

Respect free software licenses

▶ Free Software is not public domain software, the distributors have obligations due
to the licenses

▶ Before using a free software component, make sure the license matches your
project constraints

▶ Make sure to keep your modifications and adaptations well-separated from the
original version.

▶ Make sure to keep a complete list of the free software packages you use, and the
version in use

▶ Buildroot and Yocto Project can generate this list for you!
• Buildroot: make legal-info
• Yocto: see the project documentation

▶ Conform to the license requirements before shipping the product to the customers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 451/533

https://docs.yoctoproject.org/dev-manual/licenses.html#maintaining-open-source-license-compliance-during-your-product-s-lifecycle

Keeping changes separate

▶ When integrating existing open-source components in your project, it is
sometimes needed to make modifications to them

• Better integration, reduced footprint, bug fixes, new features, etc.
▶ Instead of mixing these changes, it is much better to keep them separate from the

original component version
• If the component needs to be upgraded, easier to know what modifications were

made to the component
• If support from the community is requested, important to know how different the

component we’re using is from the upstream version
• Makes contributing the changes back to the community possible

▶ It is even better to keep the various changes made on a given component separate
• Easier to review and to update to newer versions

▶ If possible, use the same version control system as the upstream project to
maintain your changes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 452/533

Overview of major embedded Linux software stacks

Overview of major
embedded Linux
software stacks

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 453/533

D-Bus

▶ Message-oriented middleware mechanism that allows
communication between multiple processes running concurrently
on the same machine

▶ Relies on a daemon to pass messages between applications
▶ Mainly used by system daemons to offer services to client

applications
▶ Example: a network configuration daemon, running as root,

offers a D-Bus API that CLI and GUI clients can use to
configure networking

▶ Several busses
• One system bus, accessible by all users, for system services
• One session bus for each user logged in

▶ Object model: interfaces, objects, methods, signals
▶ https://www.freedesktop.org/wiki/Software/dbus/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 454/533

https://www.freedesktop.org/wiki/Software/dbus/

systemd (1)

▶ Modern init system used by almost all Linux desktop/server distributions
▶ Much more complex than Busybox init, but also much more powerful
▶ Only supported with glibc, not with uClibc and Musl
▶ Provides features such as

• Parallel startup of services, taking into account dependencies
• Monitoring of services
• On-demand startup of services, through socket activation
• Resource-management of services: CPU limits, memory limits

▶ Configuration based on unit files
• Declarative language, instead of shell scripts used in other init systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 455/533

systemd (2)

▶ Systemd also provides
• journald, logging daemon, replacement for syslogd
• networkd, network configuration management
• udevd, hotplugging and /dev management
• logind, login management
• systemctl, tool to control/monitor systemd
• And many, many other things

▶ https://systemd.io/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 456/533

https://systemd.io/

systemd service unit file example

/usr/lib/systemd/system/sshd.service
[Unit]
Description=OpenSSH server daemon
Documentation=man:sshd(8) man:sshd_config(5)
After=network.target sshd-keygen.service
Wants=sshd-keygen.service

[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStart=/usr/sbin/sshd -D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s

[Install]
WantedBy=multi-user.target

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 457/533

Example systemctl/journalctl commands

▶ systemctl status, status of all services
▶ systemctl status <service>, status of one service
▶ systemctl [start|stop] <service>, start or stop a service
▶ systemctl [enable|disable] <service>, enable or disable a service, i.e.

whether it should start at boot time
▶ systemctl list-units, list all available units
▶ journalctl -a, all logs
▶ journalctl -f, show the last entries, and keep printing new entries as they arrive
▶ journalctl -u, logs from a particular service

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 458/533

Linux graphics stack overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 459/533

Display controller support

▶ Deprecated Linux kernel subsystem: fbdev
• Still a few old graphics drivers only available in this subsystem
• If possible, don’t use!
• https://en.wikipedia.org/wiki/Linux_framebuffer

▶ Modern Linux kernel subsystem: DRM
• Supports display controllers of SoC or graphics cards, and all types of display panels

and bridges: parallel, LVDS, DSI, HDMI, DisplayPort, etc.
• Also supports small display panels connected over I2C or SPI
• Devices exposed as /dev/dri/cardX
• Companion user-space library: libdrm, includes a very handy test tool: modetest
• https://en.wikipedia.org/wiki/Direct_Rendering_Manager

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 460/533

https://en.wikipedia.org/wiki/Linux_framebuffer
https://en.wikipedia.org/wiki/Direct_Rendering_Manager

GPU support: OpenGL acceleration

▶ Open-source
• A kernel driver in the DRM subsystem to send commands to the GPU and manage

memory
• mesa3d user-space library implementing the various OpenGL APIs, contains massive

GPU-specific logic
• More and more GPUs supported
• https://www.mesa3d.org/

▶ Proprietary
• Many embedded GPUs used to be supported only through proprietary blobs →

long-term maintenance issues
• A kernel driver provided out-of-tree by the vendor → they are not accepted upstream

if the user-space is closed source
• A (huge) closed-source user-space binary blob implementing the various OpenGL

APIs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 461/533

https://www.mesa3d.org/

Concept of display servers

▶ The Linux kernel does not handle the
multiplexing of the display and input
devices between applications

• Only one user-space application can use a
display and a given set of input devices

▶ Display servers are special user-space
applications that multiplex display/input
by:

• Allowing multiple client GUI applications
to submit their window contents

• Composing the final frame visible on the
screen, based on contents submitted by
applications, window visibility and layering

• Propagating input events to the
appropriate clients, based on focus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 462/533

X11 and X.org

▶ X.org is the historical display server on UNIX systems, including
Linux

▶ Implements the X11 protocol, used between clients and the
server

• UNIX socket for local clients, TCP for remote clients
▶ On modern Linux, works on top of DRM or fbdev for graphics,

input subsystem for input events
▶ Still maintained, but now legacy.
▶ X11 license
▶ https://www.x.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 463/533

https://www.x.org

Wayland

▶ Communication protocol that specifies the communication
between a display server and its clients, as well as a C library
implementation of that protocol

▶ A display server using the Wayland protocol is called a Wayland
compositor

▶ Modern replacement for the aging X11 protocol
▶ More heavily based on OpenGL technologies
▶ https://wayland.freedesktop.org/

▶ https://en.wikipedia.org/wiki/Wayland_(display_server_
protocol)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 464/533

https://wayland.freedesktop.org/
https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)
https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)

Wayland compositors

▶ Weston
• The reference compositor
• https://gitlab.freedesktop.org/wayland/weston

▶ Mutter, used by the GNOME desktop environment
https://gitlab.gnome.org/GNOME/mutter

▶ wlroots, a Wayland compositor library, used by
• Cage, a Wayland kiosk-style compositor

https://github.com/Hjdskes/cage
• swayWM, a tiling Wayland compositor

https://swaywm.org/

▶ And many more
https://wiki.archlinux.org/title/wayland#Compositors

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 465/533

https://gitlab.freedesktop.org/wayland/weston
https://gitlab.gnome.org/GNOME/mutter
https://github.com/Hjdskes/cage
https://swaywm.org/
https://wiki.archlinux.org/title/wayland#Compositors

Concept of graphics toolkits

▶ The X11 and Wayland protocols are very low-level
protocols

▶ While possible, developing applications directly using
those protocols or their corresponding client libraries
would be painful

▶ Existence of toolkits
• Some of them work only on top of a display server: X11

or Wayland
• Some of them can work directly on top of DRM +

input, for single full-screen applications
▶ Widget-oriented toolkits, with APIs to create windows,

buttons, text fields, drop-down lists, etc.
▶ Game/multimedia-oriented toolkits, with no pre-defined

widget API

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 466/533

Qt
▶ Highly popular and well-documented development

framework, providing:
• Core libraries: data structures, event handling, XML,

databases, networking, etc.
• Graphics libraries: widgets and more

▶ Standard API is C++, but bindings to other languages
available

▶ Works as
• Single application with DRM with OpenGL, or fbdev

with no acceleration
• Multiple applications on top of X11 or Wayland

▶ Multiplatform: Linux, MacOS, Windows.
▶ Somewhat complex licensing, with a mix of LGPLv3,

GPLv2, GPLv3, and an (expensive) commercial license
▶ https://www.qt.io/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 467/533

https://www.qt.io/

Gtk

▶ Toolkit used as the base for the GNOME desktop environment,
the most popular desktop environment for Linux desktop
distributions, but loosing traction in embedded projects.

▶ Composed of glib (core library), pango (text handling), cairo
(vector graphics), gtk (widget library)

▶ Standard API in C, but bindings exist for many languages
▶ Requires a display server: X11 or Wayland
▶ License: LGPLv2
▶ Version 3.x the most deployed currently, 4.x is a new major

release
▶ Multiplatform: Linux, MacOS, Windows.
▶ https://www.gtk.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 468/533

https://www.gtk.org

Flutter

▶ Cross-platform UI application development: Linux, Android, iOS,
Windows, MacOS

▶ Developed and maintained by Google
▶ Applications must be developed using the Dart programming

language
▶ Applications can run in the Dart virtual machine, or be natively

compiled for better performance.
▶ License: BSD-3-Clause
▶ https://flutter.dev

Read our blog post: https://bootlin.com/blog/flutter-nvidia-
jetson-openembedded-yocto/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 469/533

https://flutter.dev
https://bootlin.com/blog/flutter-nvidia-jetson-openembedded-yocto/
https://bootlin.com/blog/flutter-nvidia-jetson-openembedded-yocto/

SDL

▶ Cross-platform development library designed to provide low level
access to audio, keyboard, mouse, joystick, and graphics
hardware

▶ Implemented in C, lightweight
▶ Does not provide a widget library
▶ Games, media players, custom UIs
▶ License: zlib license (simple permissive license)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 470/533

Other graphical toolkits

▶ Enlightenment Foundation Libraries (EFL) / Elementary
• Lightweight and very powerful, but a lot less popular
• Work on top of X or Wayland.
• License: LGPLv2.1
• https://www.enlightenment.org/about-efl.md

▶ LVGL
• Very lightweight, mostly targeted at micro-controllers, but also runs on Linux
• License: MIT
• https://lvgl.io/

▶ See https://en.wikipedia.org/wiki/List_of_widget_toolkits

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 471/533

https://www.enlightenment.org/about-efl.md
https://lvgl.io/
https://en.wikipedia.org/wiki/List_of_widget_toolkits

Further details on Linux graphics

▶ Bootlin Understanding the Linux graphics stack
▶ A complete course focused exclusively on this

topic
▶ Freely available training materials
▶ https://bootlin.com/training/graphics

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 472/533

https://bootlin.com/training/graphics

Linux multimedia stack overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 473/533

Audio stack

▶ Kernel-side: the ALSA subsystem, Advanced Linux Sound Architecture
• Includes drivers for audio interfaces and audio codecs
• Exposes audio devices in /dev/snd/
• https://alsa-project.org

▶ Companion user-space library: alsa-lib
▶ Audio servers

• Needed when multiple applications share audio devices: mix audio stream, route
audio stream from specific applications to specific devices

• JACK: mainly for professional audio
• pulseaudio: mainly for regular desktop Linux audio
• pipewire: modern replacement for both pulseaudio and JACK, already adopted by

some Linux distributions
• https://pipewire.org/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 474/533

https://alsa-project.org
https://pipewire.org/

Video stack

▶ Kernel-side: Video4Linux subsystem, or V4L in short
• Supports camera devices: webcams as well as camera interfaces of SoCs and camera

sensors (parallel, CSI, etc.)
• Also used to support video encoding/decoding HW accelerators: H264, H265, etc.
• Exposes video devices as /dev/videoX
• https://www.linuxtv.org/

▶ Traditional user-space library: libv4l
▶ New user-space library, more modern, with many more features, under adoption:

libcamera
▶ Supported in lots of multimedia stacks/software: GStreamer, ffmpeg, VLC, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 475/533

https://www.linuxtv.org/

GStreamer
▶ Library for constructing graphs of media-handling components
▶ Allows to create pipelines to transform, convert, stream, display, capture

multimedia streams, both audio and video
▶ Composed of a vast amounts of plugins: video capture/display, audio

capture/playback, encoding/decoding, scaling, filtering, and more.
▶ https://gstreamer.freedesktop.org/

▶ An interesting alternative is ffmpeg

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 476/533

https://gstreamer.freedesktop.org/

Linux networking stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 477/533

Web accessible UI

▶ Very common in embedded systems to use a Web interface for device
configuration/monitoring

▶ Needs a web server: Busybox httpd for very simple needs, lighttpd, nginx, apache
for more complex needs

▶ Can use PHP, NodeJS or other interpreted languages, or simple CGI shell scripts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 478/533

Web browsers: rendering engines

To add HTML rendering capability to your device
▶ WebKit

• Started by Apple, used in iOS, Safari
• Open source project: LGPLv2.1 and BSD-2-Clause
• https://webkit.org/
• Integrated with Gtk: WebKitGTK
• Integrated with Qt: QtWebKit
• Port optimized for embedded devices: WPE WebKit

▶ Blink
• Forked from WebKit
• Developed by Google, used in Chrome
• https://en.wikipedia.org/wiki/Blink_(browser_engine)
• Integrated with Qt: QtWebEngine
• Used by Electron

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 479/533

https://webkit.org/
https://webkitgtk.org/
https://wiki.qt.io/Qt_WebKit
https://wpewebkit.org/
https://en.wikipedia.org/wiki/Blink_(browser_engine)
https://wiki.qt.io/QtWebEngine
https://www.electronjs.org/

Web-based UIs

▶ An alternative to native GUI applications is to create a GUI based on Web
technologies

▶ Run a Web browser full-screen, and use popular Web technologies to develop the
application

▶ Some possible options
• Cog, a simple launcher for the WPE Webkit port
• Electron, a way to package a NodeJS application with a web rendering engine, into a

self-contained application
▶ Beware of the footprint and performance impact: a web rendering engine is a

massive and resource-consuming piece of software

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 480/533

https://github.com/Igalia/cog
https://www.electronjs.org/

Programming languages

▶ Wide range of languages and frameworks available, not just C/C++
▶ Beware of footprint and performance implications
▶ Natively compiled languages

• Rust
• Go
• Ada
• Fortran

▶ Interpreted languages
• Python
• Javascript, NodeJS
• Lua
• Shell scripts
• Perl, Ruby, PHP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 481/533

Practical lab - Integration of additional software stacks

▶ Integration of systemd as an init system
▶ Use udev built in systemd for automatic

module loading

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 482/533

Embedded Linux application development

Embedded Linux
application development

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 483/533

Contents

▶ Application development
• Developing applications on embedded Linux
• Building your applications

▶ Debugging and analysis tools
• Debuggers
• Remote debugging
• Tracing and profiling

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 484/533

Embedded Linux application development

Developing applications on embedded Linux

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 485/533

Application development

▶ An embedded Linux system is just a normal Linux system, with usually a smaller
selection of components

▶ In terms of application development, developing on embedded Linux is exactly the
same as developing on a desktop Linux system

▶ All existing skills can be re-used, without any particular adaptation
▶ All existing libraries, either third-party or in-house, can be integrated into the

embedded Linux system
• Taking into account, of course, the limitation of the embedded systems in terms of

performance, storage and memory
▶ Application development could start on x86, even before the hardware is available.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 486/533

Leverage existing libraries and languages

▶ Many developers getting started with embedded Linux limit themselves to C,
sometimes C++, and the C/C++ standard library.

▶ However, there are a lot of libraries and languages that can help you accelerate
and simplify your application development

• Compiled languages like Rust and Go are increasingly popular
• Interpreted languages, especially Python
• Higher-level libraries: Qt, Glib, Boost, and many more

▶ Make sure to evaluate what is the right choice for your project, but pay attention
to

• Footprint and performance on low-end platforms
• Use well-maintained and well-known technologies

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 487/533

Building your applications/libraries

▶ Even for simple applications or libraries, make use of a build system
• CMake
• Meson

▶ This will simplify
• the build process of your application
• the life of developers joining your project
• the packaging of your application into an embedded Linux build system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 488/533

https://cmake.org/
https://mesonbuild.com/

Getting started with meson

Minimal meson.build

project('example', 'c')
executable('demo', 'main.c')

meson.build for multiple programs and source files

project('example', 'c')
src_demo1 = ['demo1.c', 'foo1.c']
executable('demo1', src_demo1)
src_demo2 = ['demo2.c', 'foo2.c']
executable('demo2', src_demo2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 489/533

Options with meson

meson_options.txt

option('demo-debug', type : 'feature', value : 'disabled')

meson.build

project('tutorial', 'c')
demo_c_args = []
if get_option('demo-debug').enabled()

demo_c_args += '-DDEBUG'
endif
executable('demo', 'main.c', c_args: demo_c_args)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 490/533

Library dependencies with meson

meson.build

project('tutorial', 'c')
gtkdep = dependency('gtk+-3.0')
executable('demo', 'main.c', dependencies : gtkdep)

The dependency gtk+-3.0 is searched using pkg-config.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 491/533

Embedded Linux application development

Debugging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 492/533

GDB: GNU Project Debugger

▶ The debugger on GNU/Linux, available for most embedded
architectures.

▶ Supported languages: C, C++, Pascal, Objective-C, Fortran,
Ada...

▶ Command-line interface
▶ Integration in many graphical IDEs
▶ Can be used to

• control the execution of a running program, set breakpoints or
change internal variables

• to see what a program was doing when it crashed: post mortem
analysis

▶ https://www.gnu.org/software/gdb/
▶ https://en.wikipedia.org/wiki/Gdb
▶ New alternative: lldb (https://lldb.llvm.org/)

from the LLVM project.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 493/533

https://www.gnu.org/software/gdb/
https://en.wikipedia.org/wiki/Gdb
https://lldb.llvm.org/

GDB crash course (1/3)

▶ GDB is used mainly to debug a process by starting it with gdb
• $ gdb <program>

▶ GDB can also be attached to running processes using the program PID
• $ gdb -p <pid>

▶ When using GDB to start a program, the program needs to be run with
• (gdb) run [prog_arg1 [prog_arg2] ...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 494/533

GDB crash course (2/3)

A few useful GDB commands
▶ break foobar (b)

Put a breakpoint at the entry of function foobar()

▶ break foobar.c:42
Put a breakpoint in foobar.c, line 42

▶ print var, print $reg or print task->files[0].fd (p)
Print the variable var, the register $reg or a more complicated reference. GDB can also
nicely display structures with all their members

▶ info registers
Display architecture registers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 495/533

GDB crash course (3/3)

▶ continue (c)
Continue the execution after a breakpoint

▶ next (n)
Continue to the next line, stepping over function calls

▶ step (s)
Continue to the next line, entering into subfunctions

▶ stepi (si)
Continue to the next instruction

▶ finish
Execute up to function return

▶ backtrace (bt)
Display the program stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 496/533

Embedded Linux application development

Remote debugging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 497/533

Remote debugging

▶ In a non-embedded environment, debugging takes place using gdb or one of its
front-ends.

▶ gdb has direct access to the binary and libraries compiled with debugging symbols.
▶ However, in an embedded context, the target platform environment is often too

limited to allow direct debugging with gdb (2.4 MB on x86).
▶ Remote debugging is preferred

• ARCH-linux-gdb is used on the development workstation, offering all its features.
• gdbserver is used on the target system (only 400 KB on arm).

ARCH-linux-gdb
gdbserver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 498/533

Remote debugging: architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 499/533

Remote debugging: target setup

▶ On the target, run a program through gdbserver.
Program execution will not start immediately.
gdbserver :<port> <executable> <args>
gdbserver /dev/ttyS0 <executable> <args>

▶ Otherwise, attach gdbserver to an already running program:
gdbserver --attach :<port> <pid>

▶ You can also start gdbserver without passing any program to start or attach (and
set the target program later, on client side):
gdbserver --multi :<port>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 500/533

Remote debugging: host setup

▶ Then, on the host, start ARCH-linux-gdb <executable>,
and use the following gdb commands:

• To tell gdb where shared libraries are:
gdb> set sysroot <library-path> (typically path to build space without lib/)

• To connect to the target:
gdb> target remote <ip-addr>:<port> (networking)
gdb> target remote /dev/ttyUSB0 (serial link)

Make sure to replace target remote with target extended-remote if you have
started gdbserver with the --multi option

• If you did not set the program to debug on gdbserver commandline:
gdb> set remote exec-file <path_to_program_on_target>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 501/533

Coredumps for post mortem analysis

▶ When an application crashes due to a segmentation fault and the application was
not under control of a debugger, we get no information about the crash

▶ Fortunately, Linux can generate a core file that contains the image of the
application memory at the moment of the crash in the ELF format. gdb can use
this core file to let us analyze the state of the crashed application

▶ On the target
• Use ulimit -c unlimited in the shell starting the application, to enable the

generation of a core file when a crash occurs
• The output name for the coredump file can be modified using

/proc/sys/kernel/core_pattern.
• See man core(5)

▶ On the host
• After the crash, transfer the core file from the target to the host, and run

ARCH-linux-gdb -c core-file application-binary

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 502/533

https://man7.org/linux/man-pages/man5/core.5.html

minicoredumper

▶ Coredumps can be huge for complex applications
▶ minicoredumper is a userspace tool based on the standard core dump feature

• Based on the possibility to redirect the core dump output to a user space program
via a pipe

▶ Based on a JSON configuration file, it can:
• save only the relevant sections (stack, heap, selected ELF sections)
• compress the output file
• save additional information from /proc

▶ https://github.com/diamon/minicoredumper
▶ “Efficient and Practical Capturing of Crash Data on Embedded Systems”

• Presentation by minicoredumper author John Ogness
• Video: https://www.youtube.com/watch?v=q2zmwrgLJGs
• Slides: elinux.org/images/8/81/Eoss2023_ogness_minicoredumper.pdf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 503/533

https://github.com/diamon/minicoredumper
https://www.youtube.com/watch?v=q2zmwrgLJGs
https://elinux.org/images/8/81/Eoss2023_ogness_minicoredumper.pdf

Embedded Linux application development

Tracing and profiling

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 504/533

strace

System call tracer - https://strace.io
▶ Available on all GNU/Linux systems

Can be built by your cross-compiling toolchain generator or by
your build system.

▶ Allows to see what any of your processes is doing: accessing files,
allocating memory... Often sufficient to find simple bugs.

▶ Usage:
strace <command> (starting a new process)
strace -f <command> (follow child processes too)
strace -p <pid> (tracing an existing process)
strace -c <command> (time statistics per system call)
strace -e <expr> <command> (use expression for advanced
filtering)

See the strace manual for details. Image credits: https://strace.io/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 505/533

https://strace.io
https://man7.org/linux/man-pages/man1/strace.1.html
https://strace.io/

strace example output
> strace cat Makefile
[...]
fstat64(3, {st_mode=S_IFREG|0644, st_size=111585, ...}) = 0
mmap2(NULL, 111585, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb7f69000
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
open("/lib/tls/i686/cmov/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\320h\1\0004\0\0\0\344"..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1442180, ...}) = 0
mmap2(NULL, 1451632, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb7e06000
mprotect(0xb7f62000, 4096, PROT_NONE) = 0
mmap2(0xb7f66000, 9840, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xb7f66000
close(3) = 0
[...]
openat(AT_FDCWD, "Makefile", O_RDONLY) = 3
newfstatat(3, "", {st_mode=S_IFREG|0644, st_size=173, ...}, AT_EMPTY_PATH) = 0
fadvise64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = 0
mmap(NULL, 139264, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f7290d28000
read(3, "ifneq ($(KERNELRELEASE),)\nobj-m "..., 131072) = 173
write(1, "ifneq ($(KERNELRELEASE),)\nobj-m "..., 173ifneq ($(KERNELRELEASE),)

Hint: follow the open file descriptors returned by open(). This tells you what files are
handled by further system calls.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 506/533

strace -c example output

> strace -c cheese
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 36.24 0.523807 19 27017 poll
 28.63 0.413833 5 75287 115 ioctl
 25.83 0.373267 6 63092 57321 recvmsg
 3.03 0.043807 8 5527 writev
 2.69 0.038865 10 3712 read
 2.14 0.030927 3 10807 getpid
 0.28 0.003977 1 3341 34 futex
 0.21 0.002991 3 1030 269 openat
 0.20 0.002889 2 1619 975 stat
 0.18 0.002534 4 568 mmap
 0.13 0.001851 5 356 mprotect
 0.10 0.001512 2 784 close
 0.08 0.001171 3 461 315 access
 0.07 0.001036 2 538 fstat
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 507/533

ltrace

A tool to trace shared library calls used by a program and all the signals it receives
▶ Very useful complement to strace, which shows only system calls.
▶ Of course, works even if you don’t have the sources
▶ Allows to filter library calls with regular expressions, or just by a list of function

names.
▶ With the -S option it shows system calls too!
▶ Also offers a summary with its -c option.
▶ Manual page: https://linux.die.net/man/1/ltrace

▶ Works better with glibc. ltrace used to be broken with uClibc (now fixed), and is
not supported with Musl (Buildroot 2022.11 status).

See https://en.wikipedia.org/wiki/Ltrace for details

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 508/533

https://linux.die.net/man/1/ltrace
https://en.wikipedia.org/wiki/Ltrace

ltrace example output

ltrace ffmpeg -f video4linux2 -video_size 544x288 -input_format mjpeg -i /dev
/video0 -pix_fmt rgb565le -f fbdev /dev/fb0
__libc_start_main(["ffmpeg", "-f", "video4linux2", "-video_size"...] <unfinished ...>
setvbuf(0xb6a0ec80, nil, 2, 0) = 0
av_log_set_flags(1, 0, 1, 0) = 1
strchr("f", ':') = nil
strlen("f") = 1
strncmp("f", "L", 1) = 26
strncmp("f", "h", 1) = -2
strncmp("f", "?", 1) = 39
strncmp("f", "help", 1) = -2
strncmp("f", "-help", 1) = 57
strncmp("f", "version", 1) = -16
strncmp("f", "buildconf", 1) = 4
strncmp("f", "formats", 1) = 0
strlen("formats") = 7
strncmp("f", "muxers", 1) = -7
strncmp("f", "demuxers", 1) = 2
strncmp("f", "devices", 1) = 2
strncmp("f", "codecs", 1) = 3
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 509/533

ltrace summary
Example summary at the end of the ltrace output (-c option)

% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
52.64 5.958660 5958660 1 __libc_start_main
20.64 2.336331 2336331 1 avformat_find_stream_info
14.87 1.682895 421 3995 strncmp
7.17 0.811210 811210 1 avformat_open_input
0.75 0.085290 584 146 av_freep
0.49 0.055150 434 127 strlen
0.29 0.033008 660 50 av_log
0.22 0.025090 464 54 strcmp
0.20 0.022836 22836 1 avformat_close_input
0.16 0.017788 635 28 av_dict_free
0.15 0.016819 646 26 av_dict_get
0.15 0.016753 440 38 strchr
0.13 0.014536 581 25 memset

...
------ ----------- ----------- --------- --------------------
100.00 11.318773 4762 total

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 510/533

ftrace

▶ In-kernel tracing functionality
▶ Can trace

• Well-defined trace locations in the kernel, called tracepoints, identifying important
events in the kernel: scheduling, interrupts, etc.

• Arbitrary functions in the kernel
• Arbitrary functions in user-space applications

▶ Low-overhead and optimized tracing
▶ Accessible using the dedicated tracefs filesystem
▶ trace-cmd is a higher-level CLI tool to use ftrace
▶ Can be used to understand overall system activity (what is my system doing?) as

well as narrow down specific performance issues
▶ https://www.kernel.org/doc/Documentation/trace/ftrace.txt

▶ https://www.trace-cmd.org/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 511/533

https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.trace-cmd.org/

kernelshark

▶ Visualization tool for ftrace traces
▶ https://kernelshark.org/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 512/533

https://kernelshark.org/

perf

▶ instrument CPU performance counters, tracepoints, kprobes, and uprobes
▶ Directly included in the Linux kernel source code: tools/perf

▶ Began as a tool for using the performance counters in Linux, and has had various
enhancements to add tracing capabilities

▶ Supports a list of measurable events: hardware events (cycle count, L1 cache
hits/miss, page faults), software events (tracepoints)

▶ https://perf.wiki.kernel.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 513/533

https://elixir.bootlin.com/linux/latest/source/tools/perf
https://perf.wiki.kernel.org

perf examples

▶ List all currently known events
perf list

▶ List scheduler tracepoints
perf list 'sched:*'

▶ CPU counter statistics for the specified command
perf stat <command>

▶ CPU counter statistics for the entire system, for 5 seconds
perf stat -a sleep 5

▶ Profiling: sample on-CPU functions for the specified command, at 99 Hertz
perf record -F 99 <command>

▶ Tracing: trace all context-switches via sched tracepoint, until Ctrl-C
perf record -e sched:sched_switch -a

▶ Many more at https://www.brendangregg.com/perf.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 514/533

https://www.brendangregg.com/perf.html

perf GUI: hotspot

▶ Hotspot - the Linux perf GUI
for performance analysis

▶ The main feature of hotspot
is visualizing a perf.data file
graphically

▶ github.com/KDAB/hotspot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 515/533

https://github.com/KDAB/hotspot

gprof

▶ Application-level profiler
▶ Part of binutils
▶ Requires passing gcc -pg option at build/link time
▶ Run your program normally, it automatically generates a gmon.out file when

exiting
▶ Use the gprof tool on gmon.out to extract profiling data
▶ http://sourceware.org/binutils/docs/gprof/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 516/533

http://sourceware.org/binutils/docs/gprof/

gprof example

$./test-gprof
$ gprof test-gprof gmon.out
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
35.31 7.46 7.46 1 7.46 13.92 func1
34.03 14.65 7.19 1 7.19 7.19 func2
30.57 21.11 6.46 1 6.46 6.46 new_func1
0.09 21.13 0.02 main

[...]

main
100.00%
(0.09%)

func1
65.88%
(35.31%)
1×

65.88%
1×

func2
34.03%
(34.03%)
1×

34.03%
1×

new_func1
30.57%
(30.57%)
1×

30.57%
1×

Generated with gprof2dot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 517/533

https://github.com/jrfonseca/gprof2dot

Embedded Linux application development

Memory debugging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 518/533

Valgrind

https://valgrind.org/
▶ instrumentation framework for building dynamic analysis tools

• detect many memory management and threading bugs
• profile programs

▶ Supported architectures: x86, x86-64, ARMv7, ARMv8, mips32,
s390, ppc32 and ppc64

▶ Very popular tool especially for debugging memory issues
▶ Runs your program on a synthetic CPU → significant

performance impact (100 x slower on SAMA5D3!), but very
detailed instrumentation

▶ Runs on the target. Easy to build with Yocto Project or
Buildroot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 519/533

https://valgrind.org/

Valgrind tools

▶ Memcheck: detects memory-management problems
▶ Cachegrind: cache profiler, detailed simulation of the I1, D1 and L2 caches in your

CPU and so can accurately pinpoint the sources of cache misses in your code
▶ Callgrind: extension to Cachegrind, provides extra information about call graphs
▶ Massif: performs detailed heap profiling by taking regular snapshots of a

program’s heap
▶ Helgrind: thread debugger which finds data races in multithreaded programs.

Looks for memory locations accessed by multiple threads without locking.
▶ More at https://valgrind.org/info/tools.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 520/533

https://valgrind.org/info/tools.html

Valgrind examples

▶ Memcheck
$ valgrind --leak-check=yes <program>

==19182== Invalid write of size 4
==19182== at 0x804838F: f (example.c:6)
==19182== by 0x80483AB: main (example.c:11)
==19182== Address 0x1BA45050 is 0 bytes after a block of size 40 alloc'd
==19182== at 0x1B8FF5CD: malloc (vg_replace_malloc.c:130)
==19182== by 0x8048385: f (example.c:5)
==19182== by 0x80483AB: main (example.c:11)

▶ Callgrind
$ valgrind --tool=callgrind --dump-instr=yes --simulate-cache=yes --collect-jumps=yes <program>
$ ls callgrind.out.*
callgrind.out.1234
$ callgrind_annotate callgrind.out.1234

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 521/533

Kcachegrind - Visualizing Valgrind profiling data

https://github.com/KDE/kcachegrind

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 522/533

https://github.com/KDE/kcachegrind

Debugging resources

▶ Brendan Gregg Systems performance book
▶ Brendan Gregg Linux Performance page
▶ Bootlin’s ”Linux debugging, profiling, tracing and

performance analysis” training course and free
training materials (250 pages):
https://bootlin.com/training/debugging/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 523/533

https://www.brendangregg.com/systems-performance-2nd-edition-book.html
https://www.brendangregg.com/linuxperf.html
https://bootlin.com/training/debugging/

Practical lab - Application development and debugging

▶ Creating an application that uses an
I2C-connected joystick to control an audio
player.

▶ Setting up an IDE to develop and remotely
debug an application.

▶ Using strace, ltrace, gdbserver and perf to
debug/investigate buggy applications on the
embedded board.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 524/533

Useful resources

Useful resources

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 525/533

Books

▶ Mastering Embedded Linux Programming, 3rd Edition 1

By Chris Simmonds, Packt Publishing, May 2021
An up-to-date resource covering most aspects of embedded Linux
development.

▶ The Linux Programming Interface 2

Michael Kerrisk (maintainer of Linux manual pages), 2010, No Starch Press
A gold mine about Linux system programming

1
https://www.packtpub.com/product/mastering-embedded-linux-programming-third-edition/9781789530384

2
https://man7.org/tlpi/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 526/533

https://www.packtpub.com/product/mastering-embedded-linux-programming-third-edition/9781789530384
https://man7.org/tlpi/

Web sites

▶ ELinux.org, https://elinux.org, a Wiki entirely dedicated to embedded Linux.
Lots of topics covered: real-time, filesystems, multimedia, tools, hardware
platforms, etc. Interesting to explore to discover new things.

▶ LWN, https://lwn.net, very interesting news site about Linux in general, and
specifically about the kernel. Weekly edition, available for free after one week for
non-paying visitors.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 527/533

https://elinux.org
https://lwn.net

International conferences (1)

▶ Embedded Linux Conference:
• https://embeddedlinuxconference.com/
• Organized by the Linux Foundation
• Once per year, alternating North America/Europe
• Very interesting kernel and user space topics for embedded

systems developers. Many kernel and embedded project
maintainers are present.

• Presentation slides and videos freely available on
https://elinux.org/ELC_Presentations

▶ Linux Plumbers
• https://linuxplumbersconf.org
• About the low-level plumbing of Linux: kernel, audio, power

management, device management, multimedia, etc.
• Not really a conventional conference with formal presentations,

but rather a place where contributors on each topic meet, share
their progress and make plans for work ahead.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 528/533

https://embeddedlinuxconference.com/
https://elinux.org/ELC_Presentations
https://linuxplumbersconf.org

International conferences (2)

▶ FOSDEM: https://fosdem.org
• Brussels (Belgium), February
• Community-oriented conference, free, during the

week-end
• Many developer rooms, including on low-level,

embedded and hardware topics
▶ Embedded Recipes: https://embedded-recipes.org

• Paris (France), September
• 2-day conference about all embedded Linux topics
• Well attended by known contributors
• Very affordable conference, thanks to sponsors (like

Bootlin).
▶ Most conferences are now also accessible on-line, which

makes them much more affordable.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 529/533

https://fosdem.org
https://embedded-recipes.org

Last slides

Last slides

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 530/533

Evaluation and final quiz

▶ Rate this training session and provide your feedback:
https://bootlin.com/doc/training/sessions/online.embedded-

linux.apr2024/survey.html

▶ Fill in the final quiz to assess your level of knowledge on the topics covered in this
course. At least 50% of correct answers are needed to get the training certificate:
https://bootlin.com/doc/training/sessions/online.embedded-

linux.apr2024/quiz-after.html

The training certificate is sent within two weeks after completing the quiz.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 531/533

https://bootlin.com/doc/training/sessions/online.embedded-linux.apr2024/survey.html
https://bootlin.com/doc/training/sessions/online.embedded-linux.apr2024/survey.html
https://bootlin.com/doc/training/sessions/online.embedded-linux.apr2024/quiz-after.html
https://bootlin.com/doc/training/sessions/online.embedded-linux.apr2024/quiz-after.html

Last slide

Thank you!
And may the Source be with you

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 532/533

Rights to copy

© Copyright 2004-2024, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of this work.
▶ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 533/533

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

Extra slides

Extra slides

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/2

Linux connectivity stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/2

	About Bootlin
	Generic course information
	Introduction to Embedded Linux
	A few examples of embedded systems running Linux
	Embedded hardware for Linux systems
	Embedded Linux system architecture

	Embedded Linux development environment
	Cross-compiling toolchains
	Definition and Components
	Toolchain Options
	Obtaining a Toolchain

	Bootloaders and firmware
	Introduction
	Booting on x86 platforms
	Booting on embedded platforms
	Bootloaders
	Trusted firmware
	Example boot sequences on ARM
	The U-boot bootloader
	TF-A: Trusted Firmware

	Linux kernel introduction
	Linux versioning scheme and development process
	Linux kernel sources
	Kernel configuration
	Compiling and installing the kernel
	Booting the kernel

	Linux Root Filesystem
	Principle and solutions
	Contents
	Pseudo Filesystems
	Minimal filesystem

	BusyBox
	Accessing hardware devices
	Kernel drivers
	User-space interfaces to drivers
	Using kernel modules
	Describing non-discoverable hardware: Device Tree
	Discoverable hardware: USB and PCI

	Block filesystems
	Block devices
	Available block filesystems
	Using block filesystems

	Flash storage and filesystems
	Cross-compiling user-space libraries and applications
	Embedded system building tools
	Embedded Linux build systems
	Working with distributions

	Open source licenses and compliance
	Introduction
	Non-copyleft licenses
	Copyleft licenses
	Best practices

	Overview of major embedded Linux software stacks
	Embedded Linux application development
	Developing applications on embedded Linux
	Debugging
	Remote debugging
	Tracing and profiling
	Memory debugging

	Useful resources
	Last slides
	Appendix
	Extra slides

