Embedded Linux system development

Embedded Linux system

development bootl l'n

© Copyright 2004-2022, Bootlin
Creative Commons BY-SA 3.0 license.
Latest update: March 01, 2022

Document updates and sources
https: //boot1in. con/doc/training/embedded- linux

Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering
Send them to feedback@bootlin.com

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/375

https://bootlin.com/doc/training/embedded-linux
mailto:feedback@bootlin.com

a Thomas Petazzoni
o)

o%e]

Co-owner and CEO at Bootlin
Embedded Linux/Linux kernel engineer and trainer

Co-maintainer of Buildroot, an open-source, simple and fast embedded Linux
build system. Contributor since 2008, 4700+ patches contributed.

Contributor to the Linux kernel, especially ARM platform support. 900+ patches
contributed.

Program committee member and regular speaker at the Embedded Linux
Conference

Living in Toulouse, south west of France

thomas@bootlin.com

https://bootlin.com/company/staff/thomas-petazzoni/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/375

https://bootlin.com/company/staff/thomas-petazzoni/

Rights t
Q@ ights to copy

o%e]

© Copyright 2004-2022, Bootlin

License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work
Under the following conditions:
Attribution. You must give the original author credit.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/375

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

60 Electronic copies of these documents
o0

g

Electronic copies of your particular version of the materials are available on:
https://bootlin.com/doc/training/sessions/hp-online.embedded-1linux.mar2022/

You can download and open these documents to follow lectures and labs, to look
for explanations given earlier by the trainer and to copy and paste text during labs.
This specific URL will remaing available for a long time. This way, you can always
access the exact instructions corresponding to the labs performed in this session.
If you are interested in the latest versions of our training materials, visit the
description of each course on https://bootlin.com/training/.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/375

https://bootlin.com/doc/training/sessions/hp-online.embedded-linux.mar2022/
https://bootlin.com/training/

4@} Hyperlinks in the document

There are many hyperlinks in the document

> Regular hyperlinks:
https://kernel.org/

> Kernel documentation links:
dev-tools/kasan

> Links to kernel source files and directories:
drivers/input/
include/linux/fb.h

> Links to the declarations, definitions and instances of kernel symbols (functions,
types, data, structures):
platform_get_irq()
GFP_KERNEL
struct file_operations

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/375

https://kernel.org/
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://elixir.bootlin.com/linux/latest/source/drivers/input/
https://elixir.bootlin.com/linux/latest/source/include/linux/fb.h
https://elixir.bootlin.com/linux/latest/ident/platform_get_irq
https://elixir.bootlin.com/linux/latest/ident/GFP_KERNEL
https://elixir.bootlin.com/linux/latest/ident/file_operations

Company at a glance

4
> Engineering company created in 2004, b Ootl l n

named "Free Electrons” until Feb. 2018.

No.1 unkn(lmn 140019(12;5:)
No.2 Intel 94806(16.
. . No.3 Red Hat 78140(8.52%)
> Main locations: Toulouse, Lyon (France) flold Hobbyises e
No.6 IBM 35085(3.82%
» Serving customers all around the world R i
g xo::? gengsas Electronics }ﬁgglg;;
No.12 Samsung 17514(1.91%)
» Head count: 13 - Only Free Software enthusiasts! Rorly et e
No:1a i Tox Tectnotosies 8310(0.57%)
. . . No.17 Academics 8560(0.93%
» Focus: Embedded Linux, Linux kernel, build systems and low Rorlp Somsuteants e
[No.26 Bootlin 7611(6.83%) |
level Free and Open Source Software for embedded and - e
real-time systems. o:25 Lino Foundation S365(0.60%
No.26 Code Aurora Forum 6280(0.68%]
L.))) No:28 VISION Engroving and Routing Systanss0is(s,66s)
> Feb. 2021: Bootlin is the 20th all-time Linux kernel contributor for28 fuslon, pevices iats sen
No.31 QUALCOMM 4903(0.53%]
- . . . No.33 WokTeon Wicroelectronics i1s0(o- 400
Activities: development, training, consulting, technical support. tlo:34 Marvell :é%ﬁ::;,
No.36 Cisco o
No38 Tasginetion Technologies Tt
> Added value: get the best of the user and development 13 recebok iauto 3
. . No.41 ST Microelectronics 3188(0.35%
community and the resources it offers. llo-42 Astaro o

Top Linux contributors since git (2005)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/375

Q}Bootlm on-line resources
» All our training materials and technical
presentations ,q stodon

https://bootlin.com/docs/

» Technical blog:
https://bootlin.com/
» Quick news (Mastodon):
https://fosstodon.org/@bootlin
» Quick news (Twitter):
https://twitter.com/bootlincom
» Quick news (LinkedIn): Mastodon is a free and decentralized

https: social network created in the best

//www.linkedin.com/company/bootlin interests of its users.

> E||X|r - brOWSE LinUX kernel sources On'“nE: Image credits: Jin Nguyen - https://frama.link/bQwcWHTP
https://elixir.bootlin.com

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/375

https://bootlin.com/docs/
https://bootlin.com/
https://fosstodon.org/@bootlin
https://twitter.com/bootlincom
https://www.linkedin.com/company/bootlin
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com
https://frama.link/bQwcWHTP

Generic course information

Generic course bOOtIl'n

information

© C ight 2004-2022, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/375

4@3 Supported hardware

STMicroelectronics STM32MP157D-DK1 Discovery board

» STM32MP157D (Dual Cortex-A7 + Cortex-M4) CPU
from STMicroelectronics

512 MB DDR3L RAM

Gigabit Ethernet port

4 USB 2.0 host ports

1 USB-C OTG port

1 Micro SD slot

On-board ST-LINK/V2-1 debugger

Misc: buttons, LEDs, Audio codec
Currently sold at 65 EUR + VAT at Mouser

vV V VvV VvV VvV VY

Board and CPU documentation, design files, software:
https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/375

https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html

ao Shopping list: hardware for this course

Jo3e!

STMicroelectronics STM32MP157D-DK1 Discovery kit - Available
from Mouser (65 EUR + VAT)

USB-C cable for the power supply

USB-A to micro B cable for the serial console

RJ45 cable for networking

A standard USB audio headset. We're using Logitech USB H340 *
A micro SD card with at least 128 MB of capacity

1 .
https://support.logitech.com/en_us/product/usb-headset-h340

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/375

https://support.logitech.com/en_us/product/usb-headset-h340

%Labs proposed on another platform

After this course, you can also run all labs on the
Microchip SAMA5D3 Xplained ARM board.

In addition, you will also have real-time and NAND
flash labs!

Lab instructions available on https://bootlin.com/doc/training/embedded-1inux/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

11/375

https://bootlin.com/doc/training/embedded-linux/

ao Labs proposed on another platform

o%e]

After this course, you can also run most labs on the
QEMU emulated ARM Versatile Express Cortex A9
board

Lab instructions available on
https://bootlin.com/doc/training/embedded-1inux-qgemu/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/375

https://bootlin.com/doc/training/embedded-linux-qemu/

a Training quiz and certificate
b

o%e]

You have been given a quiz to test your knowledge on the topics covered by the
course. That's not too late to take it if you haven't done it yet!

At the end of the course, we will submit this quiz to you again. That time, you
will see the correct answers.

It allows Bootlin to assess your progress thanks to the course. That's also a kind
of challenge, to look for clues throughout the lectures and labs / demos, as all the
answers are in the course!

Another reason is that we only give training certificates to people who achieve at
least a 50% score in the final quiz and who attended all the sessions.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/375

Participate!
9o

o%e]

During the lectures...

Don't hesitate to ask questions. Other people in the audience may have similar
questions too.

Don't hesitate to share your experience too, for example to compare Linux with
other operating systems you know.

Your point of view is most valuable, because it can be similar to your colleagues’
and different from the trainer's.

In on-line sessions, please keep your camera on too if you have one.

All this helps the trainer to engage with participants, see when something needs
clarifying and make the session more interactive, enjoyable and useful for everyone.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/375

Collaborate!
o

o
@ ¢ embedded-inuc-nov2020

QD -

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
Use the dedicated Matrix channel for this session to add
questions.
If your session offers practical labs, you can also report issues,
share screenshots and command output there.
Don't hesitate to share your own answers and to help others
especially when the trainer is unavailable.

The Matrix channel is also a good place to ask questions outside
of training hours, and after the course is over.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/375

Introduction to Embedded Linux

y
Introduction to bOOtIln
Embedded Linux

© C ight 2004-2022, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/375

a Birth of Free Software

o)
1983, Richard Stallman, GNU project and the free
software concept. Beginning of the development of gcc,
gdb, glibc and other important tools

1991, Linus Torvalds, Linux kernel project, a UNIX-like
operating system kernel. Together with GNU software and
many other open-source components: a completely free
operating system, GNU /Linux

1995, Linux is more and more popular on server systems

2000, Linux is more and more popular on embedded

systems

2008, Linux is more and more popular on mobile devices Richard Stallman in 2019
Image credits (Wikipedia):

and phones https://frama.1ink/qC73jkk4

2012, Linux is available on cheap, extensible hardware:
Raspberry Pi, BeagleBone Black

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/375

https://frama.link/qC73jkk4

a Free software?
o)

o%e]

A program is considered free when its license offers to all its users the following
four freedoms

Freedom to run the software for any purpose
Freedom to study the software and to change it
Freedom to redistribute copies

Freedom to distribute copies of modified versions

These freedoms are granted for both commercial and non-commercial use

They imply the availability of source code, software can be modified and
distributed to customers

Good match for embedded systems!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/375

ao What is embedded Linux?

Embedded Linux is the usage of the Linux
kernel and various open-source components
in embedded systems

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Ability to reuse components

Many features, protocols and hardware are
supported. Allows to focus on the added
value of your product.

Low cost

No per-unit royalties. Development tools
free too. But of course deploying Linux
costs time and effort.

Full control

You decide when to update components
in your system. No vendor lock-in. This
secures your investment.

Easy testing of new features

No need to negotiate with third-party
vendors. Just explore new solutions
released by the community.

a@ Advantages of Linux and Open-Source in embedded systems

Quality

Your system is built on high-quality
foundations (kernel, compiler, C-library,
base utilities...). Many Open-Source
applications have good quality too.

Community support
Can get very good support from the
community if you approach it with a
constructive attitude.

Participation in community work
Possibility to collaborate with peers and
opportunites beyond corporate barriers.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

20/375

a@ Introduction to Embedded Linux

g

A few examples of embedded systems running
Linux

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Image credits: Evan Amos (https://bit.1ly/2JzDIkv)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/375

https://bit.ly/2JzDIkv

Video systems

o)

Image credits: https://bit.1ly/2HbwyVq

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/375

https://bit.ly/2HbwyVq

Product from BLOKS (http://bloks.de). Permission to use this picture only in this document, in updates and in translations.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/375

http://bloks.de

Robots

eduMIP robot (https://www.ucsdrobotics.org/edumip)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/375

https://www.ucsdrobotics.org/edumip

4% In space
A

SpaceX Starlink sat Mar Igenmt Hllcopter

elites

., & e

SpaceX Falcon 9 and Falcon Heavy rockets

Dlimx
om0 s

See the Linux on Mars: How the Perseverance Rover and Ingenuity
Helicopter Leveraged Linux to Accomplish their Mission presentation from

| dits: Wikipedi
mage credits fKipedia Tim Canham (JPL, NASA): https://youtu.be/0_GfMcBmbCg?t=111

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/375

https://youtu.be/0_GfMcBmbCg?t=111

ao Introduction to Embedded Linux

g

Embedded hardware for Linux systems

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

ao Processor and architecture (1)
o0

o%e]

The Linux kernel and most other architecture-dependent components support a wide
range of 32 and 64 bit architectures

x86 and x86-64, as found on PC platforms, but also embedded systems
(multimedia, industrial)

ARM, with hundreds of different System on Chips
(SoC: CPU + on-chip devices, for all sorts of products)

RISC-V, the rising architecture with a free instruction set
(from high-end cloud computing to the smallest embedded systems)

PowerPC (mainly real-time, industrial applications)

MIPS (mainly networking applications)

Microblaze (Xilinx), Nios Il (Altera): soft cores on FPGAs
Others: ARC, m68k, Xtensa, SuperH...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/375

ao Processor and architecture (2)
o0

o%e]

Both MMU and no-MMU architectures are supported, even though no-MMU
architectures have a few limitations.

Linux does not support small microcontrollers (8 or 16 bit)

Besides the toolchain, the bootloader and the kernel, all other components are
generally architecture-independent

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/375

RAM
Qo and storage

o%e]

RAM: a very basic Linux system can work within 8 MB of RAM, but a more
realistic system will usually require at least 32 MB of RAM. Depends on the type
and size of applications.
Storage: a very basic Linux system can work within 4 MB of storage, but usually
more is needed.
Block storage: SD/MMC/eMMC, USB mass storage, SATA, etc,
Raw flash storage is supported too, both NAND and NOR flash, with specific
filesystems
Not necessarily interesting to be too restrictive on the amount of RAM /storage:
having flexibility at this level allows to re-use as many existing components as
possible.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/375

a Communication
o)

g

The Linux kernel has support for many common communication buses

12C

SPI

1-wire

SDIO

PCI

UsB

CAN (mainly used in automotive)

And also extensive networking support

Ethernet, Wifi, Bluetooth, CAN, etc.
IPv4, IPv6, TCP, UDP, SCTP, DCCP, etc.
Firewalling, advanced routing, multicast

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/375

Types of hardware platforms (1)

Evaluation platforms from the SoC vendor. Usually
expensive, but many peripherals are built-in. Generally
unsuitable for real products, but best for product
development.

Component on Module, a small board with only
CPU/RAM /flash and a few other core components, with
connectors to access all other peripherals. Can be used to
build end products for small to medium quantities.

STM32MP157C-EV1

evaluation board
Image credits (st.com):
https://frama.link/NySnaxuV

PocketBeagle
Image credits (Beagleboard.org):
https://beagleboard.org/pocket

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

32/375

https://frama.link/NySnaxuV
https://beagleboard.org/pocket

%Types of hardware platforms (2)

» Community development platforms, to make a particular
SoC popular and easily available. These are ready-to-use Beaglebone Black Wireless
and low cost, but usually have fewer peripherals than board
evaluation platforms. To some extent, can also be used for
real products.

» Custom platform. Schematics for evaluation boards or
development platforms are more and more commonly freely
available, making it easier to develop custom platforms.

Olimex Open hardware
ARM laptop main board
Image credits (Olimex):
https://www.olimex.com/Products/
DTY-| anton

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/375

https://www.olimex.com/Products/DIY-Laptop/
https://www.olimex.com/Products/DIY-Laptop/

ao Criteria for choosing the hardware
o0

o%e]

Make sure the SoC you plan to use is already supported by the Linux kernel, and
has an open-source bootloader.

Having support in the official versions of the projects (kernel, bootloader) is a lot
better: quality is better, new versions are available, and Long Term Support
releases are available.

Some SoC vendors and/or board vendors do not contribute their changes back to
the mainline Linux kernel. Ask them to do so, or use another product if you can.
A good measurement is to see the delta between their kernel and the official one.

Between properly supported hardware in the official Linux kernel and
poorly-supported hardware, there will be huge differences in development
time and cost.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/375

a@ Introduction to Embedded Linux

g

Embedded Linux system architecture

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

_Qb Host and target

Development PC (host)

Embedded system (target)

Userspace

The bootloader disappears
after starting the kernel

v
DBOOtIN - Kernel, drivers and embedded Linux - Development, consulti

 training and support - https://bootlin.com

36/375

a Software components
b

o%e]

Cross-compilation toolchain
Compiler that runs on the development machine, but generates code for the target
Bootloader

Started by the hardware, responsible for basic initialization, loading and executing
the kernel

Linux Kernel

Contains the process and memory management, network stack, device drivers and
provides services to user space applications

C library

Of course, a library of C functions
Also the interface between the kernel and the user space applications

Libraries and applications
Third-party or in-house

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/375

ao Embedded Linux work

o%e]

Several distinct tasks are needed when deploying embedded Linux in a product:

Board Support Package development

A BSP contains a bootloader and kernel with the suitable device drivers for the
targeted hardware
Purpose of our Kernel Development course

System integration

Integrate all the components, bootloader, kernel, third-party libraries and
applications and in-house applications into a working system
Purpose of this course

Development of applications
Normal Linux applications, but using specifically chosen libraries

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

38/375

https://bootlin.com/training/kernel

ao Embedded Linux development environment
o0

g

Embedded Linux

development bOOtIl'n

environment

© C ight 2004-2022, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/375

a@ Embedded Linux solutions

o%e]

Two ways to switch to embedded Linux
Use solutions provided and supported by vendors like MontaVista, Wind River or
TimeSys. These solutions come with their own development tools and environment.
They use a mix of open-source components and proprietary tools.
Use community solutions. They are completely open, supported by the community.
In Bootlin training sessions, we do not promote a particular vendor, and therefore

use community solutions
However, knowing the concepts, switching to vendor solutions will be easy

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

40/375

ao OS for Linux development

We strongly recommend to use GNU/Linux as the desktop operating system to
embedded Linux developers, for multiple reasons.
All community tools are developed and designed to run on Linux. Trying to use
them on other operating systems (Windows, Mac OS X) will lead to trouble.
As Linux also runs on the embedded device, all the knowledge gained from using
Linux on the desktop will apply similarly to the embedded device.
If you are stuck with a Windows desktop, at least you should use GNU/Linux in a
virtual machine (such as VirtualBox which is open source), though there could be
a small performance penalty. With Windows 10, you can also run your favorite
native Linux distro through Windows Subsystem for Linux (WSL2)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/375

a@ Desktop Linux distribution

o%e]

Any good and sufficiently recent Linux desktop
distribution can be used for the development
workstation

Ubuntu, Debian, Fedora, openSUSE, Red Hat, etc.

We have chosen Ubuntu, derived from Debian, as it is a
widely used and easy to use desktop Linux
distribution.

The Ubuntu setup on the training laptops has
intentionally been left untouched after the normal
installation process. Learning embedded Linux is also
about learning the tools needed on the development
workstation!

ubuntu®

Image credits:
https://tinyurl.com/f4zxj5kw

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

42/375

https://tinyurl.com/f4zxj5kw

Host vs. target
s

o%e]

When doing embedded development, there is always a split between

The host, the development workstation, which is typically a powerful PC

The target, which is the embedded system under development
They are connected by various means: almost always a serial line for debugging
purposes, frequently a networking connection, sometimes a JTAG interface for
low-level debugging

Host Serial Target

A
Y

ARM, PowerPC, MIPS,
x86.. platform
Networking More minimalistic
Linux system

x86 or x86_64 PC
Full-featured Linux
desktop system

A

Y

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/375

Q}Serial line communication program
A

> An essential tool for embedded development is a serial line communication
program, like HyperTerminal in Windows.

> There are multiple options available in Linux: Minicom, Picocom, Gtkterm, Putty,
screen and the new tio (https://github.com/tio/tio).

> In this training session, we recommend using the simplest of them: Picocom

® |nstallation with sudo apt install picocom
® Run with picocom -b BAUD_RATE /dev/SERIAL_DEVICE.
® Exit with [Ctrl1][a] [Ctrl1][x]

P SERIAL_DEVICE is typically

® ttyUSBx for USB to serial converters
® ttySx for real serial ports

> Most frequent command: picocom -b 115200 /dev/ttyUSB0

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/375

https://github.com/tio/tio

a@ Practical lab - Training Setup

o%e]

Prepare your lab environment

Download and extract the lab archive

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/375

Cross-compiling toolchains

Cross-compiling bOOtIl'n

toolchains

© C ight 2004-2022, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/375

a Cross-compiling toolchains
o)

g

Definition and Components

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/375

ao Toolchain definition (1)

o%e]

The usual development tools available on a GNU/Linux workstation is a native
toolchain

This toolchain runs on your workstation and generates code for your workstation,
usually x86
For embedded system development, it is usually impossible or not interesting to
use a native toolchain

The target is too restricted in terms of storage and/or memory

The target is very slow compared to your workstation

You may not want to install all development tools on your target.

Therefore, cross-compiling toolchains are generally used. They run on your
workstation but generate code for your target.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/375

a@ Toolchain definition (2)

g

Source code

¢ ¢ Compilation
c " machine
Native toolchain ross—comPl e
toolchain
x86
_ ARM bi Execution
x86 binary Inary machine
86 ARM

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/375

a@ Machines in build procedures

g

Three machines must be distinguished when discussing toolchain creation

The build machine, where the toolchain is built.
The host machine, where the toolchain will be executed.
The target machine, where the binaries created by the toolchain are executed.

Four common build types are possible for toolchains

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/375

Different toolchain build procedures

Build Host Target

Native build

used to build the normal gcc
of a workstation

Build Host Target

Cross-native build

used to build a toolchain that runs on your
target and generates binaries for the target

Build Host Target

Cross build

used to build a toolchain that runs
on your workstation but generates
binaries for the target

The most common case in embedded development

Build Host Target

Canadian cross build
used to build on architecture A a
toolchain that runs on architecture B
and generates binaries for architecture C

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

51/375

ao Components of gcc toolchains
o0

Jo3e!

Binutils Kernel headers

C/C++ libraries C/C++ compiler

GDB debugger
(optional)

Cross-compilation toolchain

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/375

%Binutils

> Binutils is a set of tools to generate and manipulate binaries (usually with the
ELF format) for a given CPU architecture

as, the assembler, that generates binary code from assembler source code

1d, the linker

ar, ranlib, to generate .a archives (static libraries)

objdump, readelf, size, nm, strings, to inspect binaries. Very useful analysis tools!

objcopy, to modify binaries

strip, to strip parts of binaries that are just needed for debugging (reducing their

size).

> GNU Binutils: https://www.gnu.org/software/binutils/, GPL license

> The LLVM project now provides alternatives to GNU Binutils: 11vm-strip,
1lvm-readelf, 11d... (https://www.1lvm.org/docs/CommandGuide/)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/375

https://www.gnu.org/software/binutils/
https://www.llvm.org/docs/CommandGuide/

Kernel h 1
Q@ ernel headers (1)

o%e]

The C library and compiled programs needs to interact
with the kernel

Available system calls and their numbers
Constant definitions
Data structures, etc.

Therefore, compiling the C library requires kernel
headers, and many applications also require them.

Available in <linux/...> and <asm/...> and a few
other directories corresponding to the ones visible in
include/uapi/ and in arch/<arch>/include/uapi in
the kernel sources

The kernel headers are extracted from the kernel sources
using the headers_install kernel Makefile target.

Kernel

Kernel headers
A

C library

Application

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

54/375

https://elixir.bootlin.com/linux/latest/source/include/uapi/

%Kernel headers (2)

> System call numbers, in <asm/unistd.h>

#tdefine __NR_exit 1
#define __NR_fork 2
#tdefine __NR_read 3

> Constant definitions, here in <asm-generic/fcntl.h>, included from
<asm/fecntl.h>, included from <linux/fcntl.h>

#define O_RDWR 00000002
» Data structures, here in <asm/stat.h> (used by the stat command)
struct stat {
unsigned long st_dev;
unsigned long st_ino;
[...]
}

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/375

Kernel h
Qo ernel headers (3)

o%e]

The kernel to user space ABI is backward compatible
ABI = Application Binary Interface - It's about binary compatibility

Kernel developers are doing their best to never break existing programs when the

kernel is upgraded. Otherwise, users would stick to older kernels, which would be
bad for everyone.

Hence, binaries generated with a toolchain using kernel headers older than the
running kernel will work without problem, but won’t be able to use the new
system calls, data structures, etc.

Binaries generated with a toolchain using kernel headers newer than the running
kernel might work only if they don't use the recent features, otherwise they will
break.

What to remember: updating your kernel shouldn't break your programs; it's usually
fine to keep an old toolchain as long is it works fine for your project.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/375

C/C il
Q@ /C++ compiler

o%e]

GCC: GNU Compiler Collection, the famous free software
compiler

https://gcc.gnu.org/

Can compile C, C++, Ada, Fortran, Java, Objective-C,
Objective-C++, Go, etc. Can generate code for a large number
of CPU architectures, including x86, ARM, RISC-V, and many
others.

Available under the GPL license, libraries under the GPL with
linking exception.

Alternative: Clang / LLVM compiler
(https://clang.1llvm.org/) getting increasingly popular and
able to compile most programs (license: MIT/BSD type). It can
offer better optimizations and make errors easier to interpret.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/375

https://gcc.gnu.org/
https://clang.llvm.org/

%C library

» The C library is an essential component of a
Linux system

® Interface between the applications and the
kernel
® Provides the well-known standard C API to
ease application development
> Several C libraries are available: glibc, uClibc,
musl, klibc, newlib...

» The choice of the C library must be made at
cross-compiling toolchain generation time, as
the GCC compiler is compiled against a specific source: Wikipedia (https: //bit.1y/22r6ve2)

C library.
Comparing libcs by feature: https://www.etalabs.net/compare_libcs.html

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/375

https://bit.ly/2zrGve2
https://www.etalabs.net/compare_libcs.html

a Cross-compiling toolchains
o)

o%e]

C Libraries

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/375

a@ glibc

o%e]

License: LGPL
C library from the GNU project

Designed for performance, standards compliance and
portability

Found on all GNU / Linux host systems

Of course, actively maintained

By default, quite big for small embedded systems. On
armvT7hf, version 2.31: 1libc: 1.5 MB, libm: 432 KB,
source: https://toolchains.bootlin.com

But some features not needed in embedded systems can
be configured out (merged from the old eglibc project).

https://www.gnu.org/software/libc/

Image: https://bit.1ly/2EzH16m

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/375

https://toolchains.bootlin.com
https://www.gnu.org/software/libc/
https://bit.ly/2EzHl6m

Clibc-
Qo ibc-ng

https://uclibc-ng.org/

A continuation of the old uClibc project, license: LGPL

Lightweight C library for small embedded systems
High configurability: many features can be enabled or disabled through a
menuconfig interface.
Supports most embedded architectures, including MMU-less ones (ARM Cortex-M,
Blackfin, etc.). The only library supporting ARM noMMU.
No guaranteed binary compatibility. May need to recompile applications when the
library configuration changes.
Some features may be implemented later than on glibc (real-time, floating-point
operations...)
Focus on size rather than performance

Size on armv7hf, version 1.0.34: 1ibc: 712 KB, source:
https://toolchains.bootlin.com

Actively supported, but Yocto Project stopped supporting it.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/375

https://uclibc-ng.org/
https://toolchains.bootlin.com

| C lib
Q@ mus ibrary

https://www.musl-1libc.org/
A lightweight, fast and simple library for embedded systems
Created while uClibc's development was stalled
In particular, great at making small static executables

More permissive license (MIT), making it easier to release static
executables. We will talk about the requirements of the LGPL license
(glibc, uClibc) later.

Supported by build systems such as Buildroot and Yocto Project.
Used by the Alpine Linux lightweight distribution
(https://www.alpinelinux.org/)

Size on armv7hf, version 1.2.0: 1ibc: 748 KB, source:
https://toolchains.bootlin.com

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/375

https://www.musl-libc.org/
https://www.alpinelinux.org/
https://toolchains.bootlin.com

60 glibc vs uclibc-ng vs musl - small static executables
o0

o%e]

Let's compile and strip a hello.c program statically and compare the size
With musl 1.2.0:
9,084 bytes
With uclibc-ng 1.0.34 :
21,916 bytes.
With glibc 2.31:
431,140 bytes

Tests run with gcc 10.0.2 toolchains for armv7-eabihf
(from https://toolchains.bootlin.com)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/375

https://toolchains.bootlin.com

a@ glibc vs uclibc vs musl - more realistic example
o0

Let's compile and strip BusyBox 1.32.1 statically
(with the defconfig configuration) and compare the size

With musl 1.2.0:
1,176,744 bytes

With uclibc-ng 1.0.34 :
1,251,080 bytes.

With glibc 2.31:
1,852,912 bytes

Notes:
Tests run with gcc 10.0.2 toolchains for armv7-eabihf
BusyBox is automatically compiled with -0s and stripped.

Compiling with shared libraries will mostly eliminate size differences

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

64/375

a Other smaller C libraries
o)

o%e]

Several other smaller C libraries have been developed, but none of them have the
goal of allowing the compilation of large existing applications

They can run only relatively simple programs, typically to make very small static
executables and run in very small root filesystems.
Choices:

Newlib, https://sourceware.org/newlib/, maintained by Red Hat, used mostly in
Cygwin, in bare metal and in small POSIX RTOS.

Klibc, https://en.wikipedia.org/wiki/Klibc, from the kernel community,
designed to implement small executables for use in an initramfs at boot time.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/375

https://sourceware.org/newlib/
https://en.wikipedia.org/wiki/Klibc

ao Advise for choosing the C library

o%e]

Advice to start developing and debugging your applications with glibc, which is
the most standard solution, and is best supported by debugging tools (/trace not
supported by mus/ in Buildroot, for example).

Then, when everything works, if you have size constraints, try to compile your app
and then the entire filesystem with uClibc or musl.

If you run into trouble, it could be because of missing features in the C library.

In case you wish to make static executables, mus/ will be an easier choice in terms
of licensing constraints. The binaries will be smaller too. Note that static
executables built with a given C library can be used in a system with a different C
library.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/375

o%e]

a Cross-compiling toolchains
o)

Toolchain Options

bOOtIN - Kernel, drivers and embedded Linux - Deve

lopi

ment, consulting, training and support - https://bootlin.com

a@ ABI

o%e]

When building a toolchain, the ABI used to generate binaries needs to be defined

ABI, for Application Binary Interface, defines the calling conventions (how
function arguments are passed, how the return value is passed, how system calls
are made) and the organization of structures (alignment, etc.)
All binaries in a system are typically compiled with the same ABI, and the kernel
must understand this ABI.
On ARM, two main ABls: OABI and EABI

Nowadays everybody uses EABI
On MIPS, several ABls: 032, 064, n32, n64

https://en.wikipedia.org/wiki/Application_Binary_Interface

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/375

https://en.wikipedia.org/wiki/Application_Binary_Interface

a@ Floating point support

o%e]

Some processors have a floating point unit, some others do not.
For example, many ARMv4 and ARMv5 CPUs do not have a floating point unit.
Since ARMv7, a VFP unit is mandatory.
For processors having a floating point unit, the toolchain should generate hard
float code, in order to use the floating point instructions directly
For processors without a floating point unit, two solutions

Generate hard float code and rely on the kernel to emulate the floating point
instructions. This is very slow.

Generate soft float code, so that instead of generating floating point instructions,
calls to a user space library are generated

Decision taken at toolchain configuration time

Also possible to configure which floating point unit should be used

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/375

ao CPU optimization flags
&\ 4
GNU tools (gcc, binutils) can only be compiled for a specific target architecture at
a time (ARM, x86, RiscV...)
gcc offers further options:
-march allows to select a specific target instruction set
-mtune allows to optimize code for a specific CPU
For example: -march=armv7 -mtune=cortex-a8
-mcpu=cortex-a8 can be used instead to allow gcc to infer the target instruction set
(-march=armv7) and cpu optimizations (-mtune=cortex-a8)
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html
At the GNU toolchain compilation time, values can be chosen. They are used:
As the default values for the cross-compiling tools, when no other -march, -mtune,
-mcpu options are passed
To compile the C library
Even if the C library has been compiled for armv5t, it doesn't prevent from
compiling bare-metal programs or the kernel for armv7.

Note: LLVM (clang, Ild...) utilities support multiple target architectures at once.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/375

https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

a Cross-compiling toolchains
o)

o%e]

Obtaining a Toolchain

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a Building a toolchain manually
o)

o%e]

Building a cross-compiling toolchain by yourself is a difficult and painful task! Can
take days or weeks!
Lots of details to learn: many components to build, complicated configuration.
Need to be familiar with building and configuring tools.
Many decisions to make about the components (such as C library, gcc and binutils
versions, ABI, floating point mechanisms...). Not trivial to find working
combinations of such components!
Need to be familiar with current gcc issues and patches on your platform

See the Crosstool-NG docs/ directory for details on how toolchains are built.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/375

ao Get a pre-compiled toolchain
o0

Jo3e!

Solution that many people choose

Advantage: it is the simplest and most convenient solution
Drawback: you can't fine tune the toolchain to your needs

Make sure the toolchain you find meets your requirements: CPU, endianness, C
library, component versions, ABI, soft float or hard float, etc.
Possible choices

Toolchains packaged by your distribution

For example, Ubuntu toolchains (glibc only):

sudo apt install gcc-arm-linux-gnueabihf

Bootlin's GNU toolchains (for most architectures):
https://toolchains.bootlin.com

ARM GNU toolchains released by ARM (previously shipped by Linaro):
https://developer.arm.com/tools-and-software/open-source-
software/developer-tools/gnu-toolchain/gnu-a/downloads

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/375

https://toolchains.bootlin.com
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads

ao Toolchain building utilities

o%e]

Another solution is to use utilities that automate the process of building the
toolchain
Same advantage as the pre-compiled toolchains: you don't need to mess up with
all the details of the build process
But also offers more flexibility in terms of toolchain configuration, component
version selection, etc.
They also usually contain several patches that fix known issues with the different
components on some architectures
Multiple tools with identical principle: shell scripts or Makefile that automatically
fetch, extract, configure, compile and install the different components

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/375

ao Toolchain building utilities (2)

o%e]

Crosstool-ng

Rewrite of the older Crosstool, with a
menuconfig-like configuration system

Feature-full: supports uClibc, glibc and musl,
hard and soft float, many architectures

Actively maintained
https://crosstool-ng.github.io/

.config - crosstool-NG Configuration

Target options

Target Architecture (arm) --->
*** Options for arm ***
Default instruction set mode (arm) --->
[1 Use Thumb-interworking (READ HELP)
-*- Use EABI
[*] append 'hf' to the tuple (EXPERIMENTAL)
() Suffix to the arch-part
[] omit vendor part of the target tuple
*** Generic target options ***
[] Build a multilib toolchain (READ HELP!!!)
[*] Attempt to combine libraries into a single directory
[*] Use the MMU
Endianness: (Little endian) --->
Bitness: (32-bit) --->
*** Target optimisations ***
Ecortex-as? Enit assembli for cPU
vfpv4-d16) Use specific FPU
Floating point: (hardware (FPU)) --->
() Target CFLAGS
() Target LDFLAGS

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

75/375

https://crosstool-ng.github.io/

60 Toolchain building utilities (3)

o%e]

Many root filesystem build systems also allow the construction of a cross-compiling
toolchain
Buildroot
Makefile-based. Can build glibc, uClibc and musl based toolchains, for a wide range

of architectures. Use make sdk to only generate a toolchain.
https://buildroot.org

PTXdist
Makefile-based, maintained mainly by Pengutronix. It only supports uClibc and glibc
(version 2021.03 status)
https://www.ptxdist.org/
OpenEmbedded / Yocto Project
A featureful, but more complicated build system

https://www.openembedded.org/
https://www.yoctoproject.org/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/375

https://buildroot.org
https://www.ptxdist.org/
https://www.openembedded.org/
https://www.yoctoproject.org/

Q}Crosstool—NG: installation and usage

> Installation of Crosstool-NG can be done system-wide, or just locally in the source
directory. For local installation:

./configure --enable-local
make
make install

» Some sample configurations for various architectures are available in samples, they
can be listed using

./ct-ng list-samples
> To load a sample configuration
./ct-ng <sample-name>

> To adjust the configuration
./ct=ng menuconfig or ./ct-ng nconfig (according to your preference)

> To build the toolchain
./ct-ng build

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/375

a Toolchain contents
o)

o%e]

The cross compilation tool binaries, in bin/
This directory should be added to your PATH to ease usage of the toolchain
One or several sysroot, each containing
The C library and related libraries, compiled for the target
The C library headers and kernel headers
There is one sysroot for each variant: toolchains can be multilib if they have
several copies of the C library for different configurations (for example: ARMv4T,
ARMV5ST, etc.)
Old CodeSourcery ARM toolchains were multilib, the sysroots in:
arm-none-linux-gnueabi/libc/armv4t/
arm-none-linux-gnueabi/libc/thumb2/
Crosstool-NG toolchains can be multilib too (CT_MULTILIB configuration parameter)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/375

ao Practical lab - Using Crosstool-NG

o%e]

Time to build your toolchain
Configure Crosstool-NG

Run it to build your own cross-compiling
toolchain

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/375

Bootloaders

bootlin

Bootloaders

© C ight 2004-2022, Bootlin. . . .
opyrig ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/375

Bootloaders

Boot Sequence

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/375

a Bootloaders
o)

o%e]

The bootloader is a piece of code responsible for
Basic hardware initialization
Loading of an application binary, usually an operating system kernel, from flash
storage, from the network, or from another type of non-volatile storage.
Possibly decompression of the application binary
Execution of the application

Besides these basic functions, most bootloaders provide a shell with various
commands implementing different operations.
Loading of data from storage or network, memory inspection, hardware diagnostics
and testing, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

82/375

ao Bootloaders on BIOS-based x86 (1)

o%e]

The x86 processors are typically bundled on a board with a
non-volatile memory containing a program, the BIOS.

On old BIOS-based x86 platforms: the BIOS is responsible for
basic hardware initialization and loading of a very small piece of
code from non-volatile storage.

This piece of code is typically a 1st stage bootloader, which will
load the full bootloader itself.

It typically understands filesystem formats so that the kernel file
can be loaded directly from a normal filesystem.

This sequence is different for modern EFl-based systems.

BIOS
from ROM

l

Stage 1

512 bytes
from raw storage

l

Stage 2

from raw storage

l

Kernel

from filesystem

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

83/375

ao Bootloaders on x86 (2)

o%e]

GRUB, Grand Unified Bootloader, the most powerful one.
https://www.gnu.org/software/grub/
Can read many filesystem formats to load the kernel image and the configuration,
provides a powerful shell with various commands, can load kernel images over the
network, etc.
Syslinux, for network and removable media booting (USB key, CD-ROM)
https://kernel.org/pub/linux/utils/boot/syslinux/
Systemd-boot, a very simple UEFI boot manager (formerly Gumniboot)
Of course, not based on Systemd, but hosted by this project.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/375

https://www.gnu.org/software/grub/
https://kernel.org/pub/linux/utils/boot/syslinux/

a@ Booting on embedded CPUs: case 1

o%e]

Physical
memory

When powered, the CPU starts executing code at a fixed address

There is no other booting mechanism provided by the CPU

Execution

The hardware design must ensure that a NOR flash chip is wired starts =»| NOR
so that it is accessible at the address at which the CPU starts here
executing instructions

The first stage bootloader must be programmed at this address
in the NOR

NOR is mandatory, because it allows direct access from the CPU
(just like RAM), which NAND doesn't allow (external storage
that needs to be copied to RAM before executing). RAM

Not very common anymore (unpractical, and requires NOR
flash)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/375

a@ Booting on embedded CPUs: case 2

o%e]

The CPU has an integrated boot code in ROM

BootROM on AT91 CPUs, “ROM code” on OMAP, etc.
Exact details are CPU-dependent

This boot code is able to load a first stage bootloader from a storage device into
an internal SRAM (DRAM not initialized yet)

Storage device can typically be: MMC, NAND, SPI flash, UART (transmitting data
over the serial line), etc.
The first stage bootloader is
Limited in size due to hardware constraints (SRAM size)
Provided either by U-Boot (called Secondary Program Loader - SPL), or by the CPU
vendor (usually open-source).
This first stage bootloader must initialize DRAM and other hardware devices and
load a second stage bootloader into DRAM

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/375

o%e]

RomBoot

stored in ROM
in the CPU

l

U-Boot SPL

stored in MMC, NAND or SPI flash
runs from SRAM

l

U-Boot

stored in MMC, NAND or SPI flash
runs from DRAM

l

ao Booting on Microchip ARM SAMA5D3

RomBoot: tries to find a valid bootstrap image from various
storage sources, and load it into SRAM (DRAM not initialized
yet). Size limited to 64 KB. No user interaction possible in
standard boot mode.

U-Boot SPL: runs from SRAM. Initializes the DRAM, the NAND
or SPI controller, and loads the secondary bootloader into DRAM
and starts it. No user interaction possible.

U-Boot: runs from DRAM. Initializes some other hardware
devices (network, USB, etc.). Loads the kernel image from storage
or network to DRAM and starts it. Shell with commands provided.

Linux Kernel: runs from DRAM. Takes over the system
completely (the bootloader no longer exists).

Linux Kernel Note: same process on other Microchip AT91 SoCs, but the SRAM size

stored in MMC, NAND, network... is smaller on the older ones.

runs from DRAM

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/375

a@ Booting on Marvell SoCs

oYe!

ROM Code
stored in ROM
in the CPU
ROM Code: tries to find a valid bootstrap image from various
storage sources, and load it into DRAM. The DRAM
configuration is described in a CPU-specific header, prepended to
Header the bootloader image.
U-Boot U-Boot: runs from DRAM. Initializes some other hardware

stored in NAND or SD devices (network, USB, etc.). Loads the kernel image from storage
runs from DRAM or network to DRAM and starts it. Shell with commands
provided. File called u-boot.kwb.

Linux Kernel: runs from DRAM. Takes over the system
completely (bootloaders no longer exists).

Linux Kernel

stored in NAND, SD, network
runs from DRAM

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/375

%Generic bootloaders for embedded CPUs

There are several open-source generic bootloaders.
Here are the most popular ones:

> U-Boot, the universal bootloader by Denx

® The most used on ARM, also used on PPC,
MIPS, x86, m68k, RISC-V, etc.

® The de-facto standard nowadays. We will
study it in detail.

® https://www.denx.de/wiki/U-Boot

Bootloader: modern expectation

» Barebox, an architecture-neutral bootloader
created by Pengutronix.

i

o'm e e

Provgaon

® |t doesn't have as much hardware support as i AT

U-Boot yet.
. . See the nice introduction to Barebox
¢ U-Boot has improved quite a lot thanks to from Ahmad Fatoum at ELCE 2020:

- . Video: https://youtu.be/0j71KbFtyMo
thIS COmpetltOr. Slides: https://elinux.org/images/9/9d/Barebox-bells-

® https://www.barebox.org n-whistles.pdf

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/375

https://www.denx.de/wiki/U-Boot
https://www.barebox.org
https://youtu.be/Oj7lKbFtyM0
https://elinux.org/images/9/9d/Barebox-bells-n-whistles.pdf
https://elinux.org/images/9/9d/Barebox-bells-n-whistles.pdf

a Bootloaders
o)

g

The U-boot bootloader

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/375

60 U-Boot

038!

U-Boot is a typical free software project
License: GPLv2 (same as Linux)
Freely available at https://www.denx.de/wiki/U-Boot

Documentation available at
https://u-boot.readthedocs.io/en/latest/

The latest development source code is available in a Git
repository: https://gitlab.denx.de/u-boot/u-boot

Development and discussions happen around an open
mailing-list
https://lists.denx.de/pipermail/u-boot/ l | B O Ot
Follows a regular release schedule. Every 2 or 3 months, o credits:

a new version is released. Versions are named YYYY.MM. https://frama. link/rwCUFc-T

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/375

https://www.denx.de/wiki/U-Boot
https://u-boot.readthedocs.io/en/latest/
https://gitlab.denx.de/u-boot/u-boot
https://lists.denx.de/pipermail/u-boot/
https://frama.link/rwCUFc-T

a U-Boot configuration
o)

o%e]

Get the source code from the website or from git

The configs/ directory contains one or several configuration file(s) for each
supported board
It defines the CPU type, the peripherals and their configuration, the memory
mapping, the U-Boot features that should be compiled in, etc.
Examples:
configs/stm32mp15_basic_defconfig
configs/stm32mp15_trusted_defconfig

Note: U-Boot is migrating from board configuration defined in C header files
(include/configs/) to defconfig like in the Linux kernel (configs/)
Not all boards have been converted to the new configuration system.
Many boards still have both hardcoded configuration settings in .h files, and
configuration settings in defconfig files that can be overriden with configuration
interfaces.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/375

https://elixir.bootlin.com/u-boot/latest/source/configs/
https://elixir.bootlin.com/u-boot/latest/source/configs/stm32mp15_basic_defconfig
https://elixir.bootlin.com/u-boot/latest/source/configs/stm32mp15_trusted_defconfig
https://elixir.bootlin.com/u-boot/latest/source/include/configs/
https://elixir.bootlin.com/u-boot/latest/source/configs/

U-Boot configuration file

CHIP_defconfig

CONFIG_ARM=y

CONFIG_ARCH_SUNXI=y

CONFIG_MACH_SUNSI=y
CONFIG_DRAM_TIMINGS_DDR3_80QE_1066G_1333J=y
CONFIG_MMC is not set
CONFIG_USB@_VBUS_PIN="PB10"
CONFIG_VIDEO_COMPOSITE=y
CONFIG_DEFAULT_DEVICE_TREE="sun5i-r8-chip”
CONFIG_SPL=y
CONFIG_SYS_EXTRA_OPTIONS="CONS_INDEX=2"

CONFIG_CMD_IMLS is not set
CONFIG_CMD_DFU=y
CONFIG_CMD_USB_MASS_STORAGE=y
CONFIG_AXP_ALDO3_VOLT=3300
CONFIG_AXP_ALDO4_VOLT=3300
CONFIG_USB_MUSB_GADGET=y
CONFIG_USB_GADGET=y
CONFIG_USB_GADGET_DOWNLOAD=y
CONFIG_G_DNL_MANUFACTURER="Allwinner Technology"”
CONFIG_G_DNL_VENDOR_NUM=0x1f3a
CONFIG_G_DNL_PRODUCT_NUM=0x1010
CONFIG_USB_EHCI_HCD=y

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/375

ao Configuring and compiling U-Boot
&\ 4
U-Boot must be configured before being compiled

Configuration stored in a .config file

make BOARDNAME_defconfig

Where BOARDNAME is the name of a configuration, as visible in the configs/
directory.

You can then run make menuconfig to further customize U-Boot's configuration!

Make sure that the cross-compiler is available in PATH

Compile U-Boot, by specifying the cross-compiler prefix.

Example, if your cross-compiler executable is arm-1inux-gcc:

make CROSS_COMPILE=arm-linux-

The main result is a u-boot.bin file, which is the U-Boot image. Depending on
your specific platform, or what storage device you're booting from (NAND or
MMC), there may be other specialized images: u-boot.img, u-boot.kub...
This also generates the U-Boot SPL image to be flashed together with U-Boot.
The exact file name can vary too, depending on what the romcode expects.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/375

Installing U-Boot
9o

o%e]

U-Boot must usually be installed in flash memory to be executed by the hardware.
Depending on the hardware, the installation of U-Boot is done in a different way:

The CPU provides some kind of specific boot monitor with which you can
communicate through the serial port or USB using a specific protocol

The CPU boots first on removable media (MMC) before booting from fixed media
(NAND). In this case, boot from MMC to reflash a new version

U-Boot is already installed, and can be used to flash a new version of U-Boot.
However, be careful: if the new version of U-Boot doesn’t work, the board is
unusable

The board provides a JTAG interface, which allows to write to the flash memory
remotely, without any system running on the board. It also allows to rescue a
board if the bootloader doesn't work.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/375

4@} U-boot prompt

> Connect the target to the host through a serial console.
> Power-up the board. On the serial console, you will see something like:

U-Boot 2020.04 (May 26 2020 - 16:05:43 +0200)

CPU: SAMA5D36

Crystal frequency: 12 MHz
CPU clock : 528 MHz
Master clock : 132 MHz

DRAM: 256 MiB

NAND: 256 MiB

MMC: Atmel mci: @, Atmel mci: 1
Loading Environment from NAND... OK

In: serialeffffee00
Out: serialeffffee00
Err: serialeffffee00

Net: etho: ethernet@f0028000
Error: ethernet@f802c000 address not set.

Hit any key to stop autoboot: @
=

> The U-Boot shell offers a set of commands. We will study the most important
ones, see the documentation for a complete reference or the help command.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/375

4@3 Information commands
q

Version details

=> version
U-Boot 2020.04 (May 26 2020 - 16:05:43 +0200)

arm-linux-gcc (crosstool-NG 1.24.0.105_5659366) 9.2.0
GNU 1d (crosstool-NG 1.24.0.105_5659366) 2.34

NAND flash information

=> nand info

Device @: nand@, sector size 128 KiB

Page size 2048 b
00B size 64 b
Erase size 131072 b
subpagesize 2048 b
options 0x40004200

bbt options 0x00008000

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

97/375

Q}Important commands (1)

> The exact set of commands depends on the U-Boot configuration

help and help command
fatload, loads a file from a FAT filesystem to RAM

® Example: fatload usb 0:1 0x21000000 zImage
® And also fatinfo, fatls, fatsize, fatwrite...

Similar commands for other filesystems: ext2load, ext2ls, ext4load, ext4ls,

sqfsload, sqfsls... (SquashFS support contributed by Bootlin)

Note that filesystem independent commands such as load, 1s, and size exist.
Examples:

® Joad usb 0:1 0x21000000 zImage
® Is mmc @:2 boot/
® size mmc 0:1 dtb (result stored in filesize environment variable)

loadb, loads, loady, load a file from the serial line to RAM
tftp, loads a file from the network to RAM (example given later)

bootlin - Kernel, drivers an

d embedded Linux - Development, consulting, training and support - https://bootlin.com

98/375

https://bootlin.com/blog/bootlin-contributes-squashfs-support-to-u-boot/

a Important commands (2)
bdh)

ping, to test the network

bootd (can be abbreviated as boot), runs the default boot command, stored in
the bootcmd environment variable (explained later)

bootz <address>, starts a compressed kernel image loaded at the given address
in RAM

usb, to initialize and control the USB subsystem, mainly used for USB storage
devices such as USB keys

mmc, to initialize and control the MMC subsystem, used for SD and microSD cards
nand, to erase, read and write contents to NAND flash

md, displays memory contents. Can be useful to check the contents loaded in
memory, or to look at hardware registers.

mm, modifies memory contents. Can be useful to modify directly hardware
registers, for testing purposes.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/375

6 U-Boot bdinfo command
o)
=> bdinfo
arch_number = 0x00000000
boot_params = 0x20000100

~> start = 0x20000000 addresses without needing

> size = 0x10000000 the SoC datasheet or
baudrate = 115200 bps

TLB addr = 0x2FFF0000 board manual
relocaddr = Ox2FF27000

reloc off = 0x09027000

irg_sp = Ox2FB1DC40

sp start = Ox2FB1DC30

Early malloc usage: 135c / 2000
fdt_blob = 2fb1dc50 Source: U-Boot 2018.01

on Microchip SAMA5D3 Xplained

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/375

a Environment variables: principle
b

g

U-Boot can be configured through environment variables
Some specific environment variables impact the behavior of the different commands
Custom environment variables can be added, and used in scripts
Environment variables are loaded from persistent storage to RAM at U-Boot
startup. They can be defined or modified and saved back to storage for
persistence.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/375

o%e]

Depending on the configuration, the
U-Boot environment is typically stored in:

At a fixed offset in NAND flash

At a fixed offset on MMC or USB
storage, before the beginning of the
first partition.

In a file (uboot.env) on a FAT or ext4
partition

In a UBI volume

60 Environment variables: implementation
o0

— Environment

.config - U-Boot 2620.07 Configuration

[1 Environment
1 Environment
] Environment
1 Environment
1 Environment
1 Environment
] Environment
1 Environment
1 Environment
1 Environment
] Environment

[
[*
[
[
[
[
[
[
[
[

is
in
is
is
in
in
in
in
is
is
in

not stored

EEPROM

in a FAT filesystem
in a EXT4 filesystem
flash memory

an MMC device

a NAND device

a non-volatile RAM
in OneNAND

in remote memory space
a UBI volume

(0) Device and partition for where to store the environemt in FAT
(uboot.env) Name of the FAT file to use for the environment
(0x4000) Environment Size

[*] Relocate gd->env_addr

[1 Create default environment from file

[] Add run-time information to the environment

[1 Block forced environment operations

U-Boot environment configuration menu

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

102/375

4@3 Environment variables commands
q

Commands to manipulate environment variables:
» printenv
Shows all variables
» printenv <variable-name>
Shows the value of a variable
> setenv <variable-name> <variable-value>
Changes the value of a variable or defines a new one, only in RAM

» editenv <variable-name>
Edits the value of a variable in-place, only in RAM

> saveenv
Saves the current state of the environment to storage for persistence.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/375

‘Gb Environment variables commands - Example
A

=> printenv
baudrate=19200
ethaddr=00:40:95:36:35:33
netmask=255.255.255.0
ipaddr=10.0.0.11
serverip=10.0.0.1
stdin=serial
stdout=serial
stderr=serial

=> setenv serverip 10.0.0.100
=> printenv serverip
serverip=10.0.0.100

=> saveenv

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/375

60 Important U-Boot env variables
o0

g

bootcmd, specifies the commands that U-Boot will automatically execute at boot
time after a configurable delay (bootdelay), if the process is not interrupted. See
next page for an example.

bootargs, contains the arguments passed to the Linux kernel, covered later

serverip, the IP address of the server that U-Boot will contact for network
related commands

ipaddr, the IP address that U-Boot will use
netmask, the network mask to contact the server
ethaddr, the MAC address, can only be set once

filesize, the size of the latest copy to memory (from tftp, fatload,
nand read...)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/375

Q}Scripts in environment variables
A

> Environment variables can contain small scripts, to execute several commands and
test the results of commands.
¢ Useful to automate booting or upgrade processes
Several commands can be chained using the ; operator
Tests can be done using if command ; then ... ; else ... ; fi
Scripts are executed using run <variable-name>
You can reference other variables using ${variable-name}

> Examples
® setenv bootcmd 'tftp 0x21000000 zImage; tftp 0x22000000 dtb; bootz
0x21000000 - 0x22000000'
® setenv mmc-boot 'if fatload mmc @ 80000000 boot.ini; then source; else
if fatload mmc @ 80000000 zImage; then run mmc-do-boot; fi; fi’

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/375

a@ Transferring files to the target
o0

o%e]

U-Boot is mostly used to load and boot a kernel image, but it also allows to
change the kernel image and the root filesystem stored in flash.

Files must be exchanged between the target and the development workstation.
This is possible:
Through the network (Ethernet if a network port is available, Ethernet over USB
device...), if U-Boot has drivers for such networking. This is the fastest and most
efficient solution.
Through a USB key, if U-Boot supports the USB controller of your platform
Through a SD or microSD card, if U-Boot supports the MMC controller of your
platform
Through the serial port (Loadb, loadx or loady command)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/375

(7, TFTP

Jo3e!

Network transfer from the development workstation to U-Boot on the target takes
place through TFTP

Trivial File Transfer Protocol

Somewhat similar to FTP, but without authentication and over UDP

A TFTP server is needed on the development workstation
sudo apt install tftpd-hpa

All files in /var/lib/tftpboot orin /srv/tftp (if /srv exists) are then visible
through TFTP

A TFTP client is available in the tftp-hpa package, for testing
A TFTP client is integrated into U-Boot

Configure the ipaddr, serverip, and ethaddr environment variables

Use tftp <address> <filename> to load file contents to the specified RAM
address

Example: tftp 0x21000000 zImage

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/375

a Practical lab - U-Boot
o)

o%e]

Time to start the practical lab!

Communicate with the board using a serial
console

Configure, build and install U-Boot SPL and
U-Boot

Learn U-Boot commands
Set up TFTP communication with the board

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/375

Linux kernel introduction

Linux kernel bOOtIl'n

introduction

© C ight 2004-2022, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/375

a Linux kernel introduction
o)

g

Linux features

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/375

4@,‘3 History

» The Linux kernel is one component of a system, which also
requires libraries and applications to provide features to end
users.

» The Linux kernel was created as a hobby in 1991 by a Finnish
student, Linus Torvalds.

® Linux quickly started to be used as the kernel for free software
operating systems

» Linus Torvalds has been able to create a large and dynamic
developer and user community around Linux.

Linus Tqrvalds‘ in .2014
> As of 2022, about 2,000 people contribute to each kernel Image credits (Wikipedia):

https://bit.1ly/2UIa1TD
release, individuals or companies big and small.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/375

https://bit.ly/2UIa1TD

a Linux kernel key features
o)

o%e]

Portability and hardware support.
Runs on most architectures
(see arch/ in the source code).

Scalability. Can run on super
computers as well as on tiny devices
(4 MB of RAM is enough).

Compliance to standards and
interoperability.

Exhaustive networking support.

Security. It can't hide its flaws. Its
code is reviewed by many experts.
Stability and reliability.

Modularity. Can include only what a
system needs even at run time.

Easy to program. You can learn from

existing code. Many useful resources
on the net.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

113/375

https://elixir.bootlin.com/linux/latest/source/arch/

Q}Linux kernel in the system

User app B
Library A User app A
C library
Call to services Event notification,
information exposition
Linux kernel
Manage hardware Event notification
Hardware

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

114/375

a Linux kernel main roles
o)

o%e]

Manage all the hardware resources: CPU, memory, |/0.

Provide a set of portable, architecture and hardware independent APlIs to
allow user space applications and libraries to use the hardware resources.
Handle concurrent accesses and usage of hardware resources from different
applications.

Example: a single network interface is used by multiple user space applications
through various network connections. The kernel is responsible for “multiplexing”
the hardware resource.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

115/375

System calls
s

o%e]

The main interface between the kernel and user space is
the set of system calls

About 400 system calls that provide the main kernel
services

File and device operations, networking operations,

inter-process communication, process management,
memory mapping, timers, threads, synchronization
primitives, etc.

This interface is stable over time: only new system calls
can be added by the kernel developers

This system call interface is wrapped by the C library, . o
.. Image credits (Wikipedia):

and user space applications usually never make a system |5/ bit.1y/202rdcB

call directly but rather use the corresponding C library

function

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/375

https://bit.ly/2U2rdGB

a Pseudo filesystems
o)

o%e]

Linux makes system and kernel information available in user space through
pseudo filesystems, sometimes also called virtual filesystems

Pseudo filesystems allow applications to see directories and files that do not exist
on any real storage: they are created and updated on the fly by the kernel
The two most important pseudo filesystems are
proc, usually mounted on /proc:
Operating system related information (processes, memory management
parameters...)
sysfs, usually mounted on /sys:
Representation of the system as a tree of devices connected by buses. Information
gathered by the kernel frameworks managing these devices.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/375

%Inside the Linux kernel

Linux Kernel

Device drivers

Memory n
management .
& driver frameworks
Low level Device Trees
Scheduler . o ..
architecture specific (HW description),
Task management .
code on some architectures

Filesystem layer
and drivers

Network stack

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support -

https://bootlin.com

118/375

a Linux license
o)

o%e]

The whole Linux sources are Free Software released under the GNU General
Public License version 2 (GPL v2).
For the Linux kernel, this basically implies that:
When you receive or buy a device with Linux on it, you have the right to obtain the
Linux sources, with the right to study, modify and redistribute them.

When you produce Linux based devices, be prepared to release the sources to the
recipient, with the same rights, with no restriction.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

119/375

ao Supported hardware architectures
o0

Jo3e!

See the arch/ directory in the kernel sources
Minimum: 32 bit processors, with or without MMU, supported by gcc or clang

32 bit architectures (arch/ subdirectories)
Examples: arm, arc, m68k, microblaze (soft core on FPGA)...

64 bit architectures:

Examples: alpha, arm64, ia64...

32/64 bit architectures

Examples: mips, powerpc, riscv, sh, sparc, x86...

Note that unmaintained architectures can also be removed when they have
compiling issues and nobody fixes them.

Find details in kernel sources: arch/<arch>/Kconfig, arch/<arch>/README, or
Documentation/<arch>/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/375

https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/arch/arm/
https://elixir.bootlin.com/linux/latest/source/arch/arc/
https://elixir.bootlin.com/linux/latest/source/arch/m68k/
https://elixir.bootlin.com/linux/latest/source/arch/microblaze/
https://elixir.bootlin.com/linux/latest/source/arch/alpha/
https://elixir.bootlin.com/linux/latest/source/arch/arm64/
https://elixir.bootlin.com/linux/latest/source/arch/ia64/
https://elixir.bootlin.com/linux/latest/source/arch/mips/
https://elixir.bootlin.com/linux/latest/source/arch/powerpc/
https://elixir.bootlin.com/linux/latest/source/arch/riscv/
https://elixir.bootlin.com/linux/latest/source/arch/sh/
https://elixir.bootlin.com/linux/latest/source/arch/sparc/
https://elixir.bootlin.com/linux/latest/source/arch/x86/

a Linux kernel introduction
o)

g

Linux versioning scheme and development
process

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a Linux versioning scheme
o)

o%e]

Until 2003, there was a new “stable” release branch of Linux every 2 or 3 years
(2.0, 2.2, 2.4). Development branches took 2-3 years to be merged (too slow!).
Since 2003, there is a new official release of Linux about every 10 weeks:

Versions 2.6 (Dec. 2003) to 2.6.39 (May 2011)

Versions 3.0 (Jul. 2011) to 3.19 (Feb. 2015)

Versions 4.0 (Apr. 2015) to 4.20 (Dec. 2018)

Version 5.0 was released in Mar. 2019.
Features are added to the kernel in a progressive way. Since 2003, kernel
developers have managed to do so without having to introduce a massively
incompatible development branch.

For each release, there are bugfix and security updates called stable releases:
5.0.1, 5.0.2, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/375

a Linux development model
o)

g

Using merge and bug fixing windows

branch (Linus)TorvaIds)

2 weeks 6-10 weeks
< > <€ >
Merge window Bug-fixing period Development (master)
5.1 5.2-rcl 5.2-rc2 5.2-rc3 5.2-rc4 5.2-rch 52

(rc: Release Candidates)

5.1 stable branch

5.2 stable branch

521

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

123/375

o%e]

a@ Need for long term support (1)

Issue: bug and security fixes only released for most recent kernel versions.

Solution: the last release of each year is made an LTS (Long Term Support)
release, and is supposed to be supported (and receive bug and security fixes) for

up to 6 years.

Version Maintainer Released Projected EOL
5.15 Greg Kroah-Hartman & Sasha Levin 2021-10-31 Oct, 2023

5.10 Greg Kroah-Hartman & Sasha Levin 2020-12-13 Dec, 2026

5.4 Greg Kroah-Hartman & Sasha Levin 2019-11-24 Dec, 2025

4.19 Greg Kroah-Hartman & Sasha Levin 2018-10-22 Dec, 2024

4.14 Greg Kroah-Hartman & Sasha Levin 2017-11-12 Jan, 2024

4.9 Greg Kroah-Hartman & Sasha Levin 2016-12-1 Jan, 2023

4.4 Greg Kroah-Hartman & Sasha Levin 2016-01-10 Feb, 2022

Captured on https://kernel.org in Nov.

2021, following the Releases link.

Example at Google: starting from Android O (2017), all new Android devices will
have to run such an LTS kernel.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

124/375

https://kernel.org
https://www.kernel.org/category/releases.html

a@ Need for long term support (2)

o%e]

You could also get long term support from a commercial embedded Linux
provider.

Wind River Linux can be supported for up to 15 years.

Ubuntu Core can be supported for up to 10 years.
"If you are not using a supported distribution kernel, or a stable / longterm kernel,

you have an insecure kernel” - Greg KH, 2019
Some vulnerabilities are fixed in stable without ever getting a CVE.

The Civil Infrastructure Platform project is an industry / Linux Foundation effort
to support much longer (at least 10 years) selected LTS versions (currently 4.4,
4.19, 5.10) on selected architectures. See https://wiki.linuxfoundation.org/
civilinfrastructureplatform/cipkernelmaintenance.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/375

https://wiki.linuxfoundation.org/civilinfrastructureplatform/cipkernelmaintenance
https://wiki.linuxfoundation.org/civilinfrastructureplatform/cipkernelmaintenance

%What's new in each Linux release? (1)

The official list of changes for each Linux release is just a huge list of individual
patches!

ul 13 11:29

at91: at9l-ohci: support o

ent_pin[] array in the at91_usbh_data
OHCI driver

Very difficult to find out the key changes and to get the global picture out of individual
changes.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/375

%What's new in each Linux release? (2)

Fortunately, there are some useful resources available

> https://kernelnewbies.org/LinuxChanges
In depth coverage of the new features in each kernel release

> https://lwn.net/Kernel
Coverage of the features accepted in each merge window

January 18, 2021 Resource limits in user namespaces

January 15, 2021 Fast commits for ext4

January 14, 2021 MAINTAINERS truth and fiction

January 11, 2021 Old compilers and old bugs

January 7, 2021 Restricted DMA

January 5, 2021 Portable and reproducible kernel builds with TuxMake
—> December 28, 2020 5.11 Merge window, part 2
—» December 18, 2020 5.11 Merge window, part 1

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/375

https://kernelnewbies.org/LinuxChanges
https://lwn.net/Kernel

a Linux kernel introduction
o)

g

Linux kernel sources

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/375

g

a Location of kernel sources
o)

The official (mainline) versions of the Linux kernel, as released by Linus Torvalds,
are available at https://kernel.org
These versions follow the development model of the kernel
However, they may not contain the latest developments from a specific area yet.
Some features in development might not be ready for mainline inclusion yet.
Many chip vendors supply their own kernel sources
Focusing on hardware support first
Can have a very important delta with mainline Linux
Useful only when mainline hasn't caught up yet. Many vendors invest in the
mainline kernel at the same time.
Many kernel sub-communities maintain their own kernel, with usually newer but
fewer stable features
Architecture communities (ARM, MIPS, PowerPC, etc.), device drivers communities
(12C, SPI, USB, PCI, network, etc.), other communities (real-time, etc.)
No official releases, only meant for sharing work and contributing to the mainline
version. Absolutely not meant to be used in products.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

129/375

https://kernel.org

Q}Getting Linux sources

> The kernel sources are available from https://kernel.org/pub/linux/kernel
as full tarballs (complete kernel sources) and patches (differences between two
kernel versions).

> However, more and more people use the git version control system. Absolutely
needed for kernel development!

¢ Fetch the entire kernel sources and history
git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux

® Create a branch that starts at a specific stable version
git checkout -b <name-of-branch> v5.6

® Web interface available at
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/

¢ Read more about Git at https://git-scm.com/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

130/375

https://kernel.org/pub/linux/kernel
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/
https://git-scm.com/

Li kernel size (1
Q@ inux kernel size (1)

o%e]

Linux 5.10.11 sources:

70,639 files (git ls-files | wc -1)
29,746,102 lines (git ls-files | xargs cat | wc -1)
962,810,769 bytes (git ls-files | xargs cat | wc -c)

But a compressed Linux kernel just sizes a few megabytes.

So, why are these sources so big?
Because they include thousands of device drivers, many network protocols,
support many architectures and filesystems...

The Linux core (scheduler, memory management...) is pretty small!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/375

%Linux kernel size (2)

As of kernel version 5.7 (in percentage of total number of lines).

drivers/: 60.1% 1ib/: 0.6%
arch/: 12.9% mm/: 0.5%

fs/: 4.7% scripts/: 0.4%
sound/: 4.2% crypto/: 0.4%
net/: 4.0% security/: 0.3%

include/: 3.6%
tools/: 3.2%
Documentation/: 3.2%
kernel/: 1.3%

block/: 0.2%
samples/: 0.1%
virt/: 0.1%

vVvyVvyvVvvVvyVvYVYyVYy
VVvVvVYyVvVvVYVyVVYYVYY

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/375

https://elixir.bootlin.com/linux/latest/source/drivers/
https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/fs/
https://elixir.bootlin.com/linux/latest/source/sound/
https://elixir.bootlin.com/linux/latest/source/net/
https://elixir.bootlin.com/linux/latest/source/include/
https://elixir.bootlin.com/linux/latest/source/tools/
https://elixir.bootlin.com/linux/latest/source/Documentation/
https://elixir.bootlin.com/linux/latest/source/kernel/
https://elixir.bootlin.com/linux/latest/source/lib/
https://elixir.bootlin.com/linux/latest/source/mm/
https://elixir.bootlin.com/linux/latest/source/scripts/
https://elixir.bootlin.com/linux/latest/source/crypto/
https://elixir.bootlin.com/linux/latest/source/security/
https://elixir.bootlin.com/linux/latest/source/block/
https://elixir.bootlin.com/linux/latest/source/samples/
https://elixir.bootlin.com/linux/latest/source/virt/

ao Getting Linux sources
OO\%d
Full tarballs
Contain the complete kernel sources: long to download and uncompress, but must
be done at least once
Example:
https://kernel.org/pub/linux/kernel/v4.x/1linux-4.20.13.tar.xz
Extract command:
tar xf linux-4.20.13.tar.xz
Incremental patches between versions
It assumes you already have a base version and you apply the correct patches in the
right order to upgrade to the next one. Quick to download and apply

Examples:
https://kernel.org/pub/linux/kernel/v4.x/patch-4.20.xz
(from 4.19 to 4.20)
https://kernel.org/pub/linux/kernel/v4.x/patch-4.20.13.xz
(from 4.20 to 4.20.13)

All previous kernel versions are available in
https://kernel.org/pub/linux/kernel/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/375

https://kernel.org/pub/linux/kernel/v4.x/linux-4.20.13.tar.xz
https://kernel.org/pub/linux/kernel/v4.x/patch-4.20.xz
https://kernel.org/pub/linux/kernel/v4.x/patch-4.20.13.xz
https://kernel.org/pub/linux/kernel/

% Patch

> A patch is the difference between two source trees
¢ Computed with the diff tool, or with more elaborate version control systems

> They are very common in the open-source community.
See https://en.wikipedia.org/wiki/Diff
> Excerpt from a patch:

diff -Nru a/Makefile b/Makefile

--- a/Makefile 2005-03-04 09:27:15 -08:00
+++ b/Makefile 2005-03-04 09:27:15 -08:00
@e@ -1,7 +1,7 ee

VERSION = 2

PATCHLEVEL = 6

SUBLEVEL = 11

-EXTRAVERSION =

+EXTRAVERSION = .1

NAME=Woozy Numbat

*DOCUMENTATION=

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/375

https://en.wikipedia.org/wiki/Diff

Q}Contents of a patch

One section per modified file, starting with a header

diff -Nru a/Makefile b/Makefile
--- a/Makefile 2005-03-04 09:27:15 -08:00
+++ b/Makefile 2005-03-04 09:27:15 -08:00

> One sub-section (hunk) per modified part of the file, starting with a header with the
starting line number and the number of lines the change hunk applies to

ee -1,7 +1,7 ee
» Three lines of context before the change

VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 11

» The change itself

-EXTRAVERSION
+EXTRAVERSION A

» Three lines of context after the change
NAME=Woozy Numbat

DOCUMENTATION

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/375

4@} Using the patch command

The patch command:

P Takes the patch contents on its standard input

> Applies the modifications described by the patch into the current directory
patch usage examples:

> patch -p<n> < diff_file
» cat diff_file | patch -p<n>
» xzcat diff_file.xz | patch -p<n>
» zcat diff_file.gz | patch -p<n>
> Notes:

® n: number of directory levels to skip (-p: prune) in the file paths
® You can reverse apply a patch with the -R option
® You can test a patch with --dry-run option

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/375

%Applying a Linux patch

> Two types of Linux patches: patch-5.8

patch-5.8.6
(patch -R)

Linux patching examples

patch-5.8.7

Linux 5.8.6 Linux 5.8.7

© Either to be applied to the previous
stable version patch-5.9
(from x.<y-1>to x.y)

¢ Or implementing fixes to the current

stable version cd linux-5.7
(from x.y to x.y.z) # From 5.7 to 5.8.6
. . xzcat ../patch-5.8.xz | patch -pi
» Can be downloaded in gZ1p or Xz xzcat ../patch-5.8.6.xz | patch -p1
(much smaller) compressed files. # Back to 5.8 from 5.8.6

xzcat ../patch-5.8.6.xz | patch -R -pi

> —
Always produced for patch -pi i Erom 8 o 5 8 g

» Need to run the patch command xzcat ../patch-5.8.7.xz | patch -p1
inside the toplevel kernel source # Renaming directory
directory cd ..; mv linux-5.7 linux-5.8.7

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/375

a Practical lab - Kernel sources
o)

o%e]

Time to start the practical lab!
Get the Linux kernel sources

Apply patches

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/375

a Linux kernel introduction
o)

g

Kernel configuration

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/375

a Kernel configuration
o)

o%e]

The kernel contains thousands of device drivers, filesystem drivers, network
protocols and other configurable items

Thousands of options are available, that are used to selectively compile parts of
the kernel source code

The kernel configuration is the process of defining the set of options with which
you want your kernel to be compiled
The set of options depends

On the target architecture and on your hardware (for device drivers, etc.)
On the capabilities you would like to give to your kernel (network capabilities,
filesystems, real-time, etc.). Such generic options are available in all architectures.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/375

60 Kernel configuration and build system
o0

o%e]

The kernel configuration and build system is based on multiple Makefiles

One only interacts with the main Makefile, present at the top directory of the
kernel source tree

Interaction takes place

using the make tool, which parses the Makefile

through various targets, defining which action should be done (configuration,
compilation, installation, etc.).

Run make help to see all available targets.

Example

cd linux/
make <target>

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/375

https://elixir.bootlin.com/linux/latest/source/Makefile

a@ Specifying the target architecture

o%e]

First, specify the architecture for the kernel to build

Set ARCH to the name of a directory under arch/:
export ARCH=arm

By default, the kernel build system assumes that the kernel is configured and built
for the host architecture (x86 in our case, native kernel compiling)
The kernel build system will use this setting to:

Use the configuration options for the target architecture.
Compile the kernel with source code and headers for the target architecture.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/375

https://elixir.bootlin.com/linux/latest/source/arch/

a Choose a compiler
o)

Joye!

The compiler invoked by the kernel Makefile is $(CROSS_COMPILE)gcc

Specifying the compiler is already needed at configuration time, as some kernel
configuration options depend on the capabilities of the compiler.
When compiling natively
Leave CROSS_COMPILE undefined and the kernel will be natively compiled for the host
architecture using gcc.
When using a cross-compiler

To make the difference with a native compiler, cross-compiler executables are
prefixed by the name of the target system, architecture and sometimes library.
Examples:

mips-linux-gcc: the prefix is mips—-linux-

arm-1linux-gnueabi-gcc: the prefix is arm-1linux-gnueabi-

So, you can specify your cross-compiler as follows:

export CROSS_COMPILE=arm-1linux-gnueabi-

CROSS_COMPILE is actually the prefix of the cross compiling tools
(gcc, as, 1d, objcopy, strip...).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/375

ao Specifying ARCH and CROSS_COMPILE

Jo3e!

There are actually two ways of defining ARCH and CROSS_COMPILE:

Pass ARCH and CROSS_COMPILE on the make command line:

make ARCH=arm CROSS_COMPILE=arm-linux-

Drawback: it is easy to forget to pass these variables when you run any make
command, causing your build and configuration to be screwed up.

Define ARCH and CROSS_COMPILE as environment variables:

export ARCH=arm

export CROSS_COMPILE=arm-1linux-

Drawback: it only works inside the current shell or terminal. You could put these
settings in a file that you source every time you start working on the project. If
you only work on a single architecture with always the same toolchain, you could
even put these settings in your ~/.bashrc file to make them permanent and
visible from any terminal.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/375

a Kernel configuration details
o)

Jo3e!

The configuration is stored in the .config file at the root of kernel sources
Simple text file, CONFIG_PARAM=value (included by the kernel Makefile)

As options have dependencies, typically never edited by hand, but through
graphical or text interfaces:
make xconfig, make gconfig (graphical)
make menuconfig, make nconfig (text)
You can switch from one to another, they all load/save the same .config file, and
show the same set of options

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/375

a Initial configuration
o)

o%e]

Difficult to find which kernel configuration will work with your hardware and root
filesystem. Start with one that works!

Desktop or server case:
Advisable to start with the configuration of your running kernel:
cp /boot/config-‘uname -r' .config

Embedded platform case:
Default configurations stored in-tree as minimal configuration files (only listing
settings that are different with the defaults) in arch/<arch>/configs/
make help will list the available configurations for your platform
To load a default configuration file, just run make foo_defconfig (will erase your
current .config!)
On ARM 32-bit, there is usually one default configuration per CPU family
On ARM 64-bit, there is only one big default configuration to customize

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

146/375

ao Create your own default configuration
o0

Jo3e!

Use a tool such as make menuconfig to make changes to the configuration

Saving your changes will overwrite your .config (not tracked by Git)
When happy with it, create your own default configuration file:
Create a minimal configuration (non-default settings) file:
make savedefconfig
Save this default configuration in the right directory:
mv defconfig arch/<arch>/configs/myown_defconfig
This way, you can share a reference configuration inside the kernel sources and
other developers can now get the same .config as you by running
make myown_defconfig

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/375

a Kernel or module?
o)

o%e]

The kernel image is a single file, resulting from the linking of all object files that
correspond to features enabled in the configuration
This is the file that gets loaded in memory by the bootloader

All included features are therefore available as soon as the kernel starts, at a time
where no filesystem exists

Some features (device drivers, filesystems, etc.) can however be compiled as
modules

These are plugins that can be loaded/unloaded dynamically to add/remove features
to the kernel

Each module is stored as a separate file in the filesystem, and therefore access
to a filesystem is mandatory to use modules

This is not possible in the early boot procedure of the kernel, because no filesystem
is available

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/375

a Kernel option types
b

There are different types of options, defined in Kconfig files:
bool options, they are either

true (to include the feature in the kernel) or
false (to exclude the feature from the kernel)

tristate options, they are either

true (to include the feature in the kernel image) or
module (to include the feature as a kernel module) or
false (to exclude the feature)

int options, to specify integer values

hex options, to specify hexadecimal values

Example: CONFIG_PAGE_OFFSET=0xC0000000

string options, to specify string values

Example: CONFIG_LOCALVERSION=-no-network

Useful to distinguish between two kernels built from different options

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PAGE_OFFSET
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LOCALVERSION

60 Kernel option dependencies
OC

o%e]

There are dependencies between kernel options

For example, enabling a network driver requires the network stack to be enabled

Two types of dependencies:

depends on dependencies. In this case,
option B that depends on option A is not
visible until option A is enabled

select dependencies. In this case, with
option B depending on option A, when
option A is enabled, option B is
automatically enabled. In particular, such
dependencies are used to declare what

features a hardware architecture supports.

ig ATA
tate "Serial ATA and Parallel ATA drivers (libata)"

elp
If you want to use an ATA hard disk, ATA tape drive, ATA CD-ROM or
any other ATA device under Linux, say Y and make sure that you know
the name of your ATA host adapter (the card inside your computer
that "speaks” the ATA protocol, also called ATA controller),
because you will be asked for it.

Kconfig file excerpt

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

150/375

a make xconfig
o)

o%e]

make xconfig
The most common graphical interface to configure the kernel.
File browser: easier to load configuration files
Search interface to look for parameters
Required Debian / Ubuntu packages: qt5-default

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/375

Q} make xconfig screenshot

Linux/arm 5.11.0 Kernel Configuration

Eile Edit Option Help

> @@ [l E

option _ Valve ~ [option Valve
@ Patch physical to virtual translations at runtime M a.
O NEED_MACH 10_H N 0 SAM CortexM7 family N
O NEED_MACH MEMORY_H N O SAMASD2 family (NEW) N
Physical address of main memory] SAMASDS famil v
GENERIC_BUG v D SAMASDA family (NEW) N
PGTABLE LEVELS 2 0 AT91RM9200 N
- System Type 0 AT915AMS N

Mliple pltform slection 0 samsx60 N

O Actions Semi SoCs N Clocksource driver selection

0 s Gommunications AR based ARTPEC cs N @ periodic nterval Timer (PIT) support (NEW) Y
N
v

p Timer Counter Blocks (TCB) support (NEW) M
@ HAVE_AT91_UTM

O Broadcom SoC Support N @ HAVE_AT91_USB_CLK v
O Marvell Berlin So N 9 COMMON_CLK_AT91 M
O Cirrus Logic EP72 1x/EP731xcbased N HAVE_ATO1_SMD v
O Cavium Networks CNS3XXX Family N O HAVE_AT91_H32MX N
0 T Davindi N O HAVE_AT91_GENERATED_CLK N
Marvell Dove Implementations O HAVE_AT91_AUDIO_PLL N
Cirrus EP93xx Implementation Options O HAVE_AT91_125_MUX_CLK N
O samsung Exynos N 0 HAVE_AT91_SAMSX60_PLL N
Footbridge Implementations 0 SOC_SAM V4 V5 N
O Cortina Systems Gemini N 2 soC e v
3 nowe 2t et i N soc saAs M

. Integr ly © ATMEL_PM Y

10P32x Implementation Options
Intel IXPaxx Implementation Options
O MediaTek SoC support

O Amlogic Meson SoCs

O Socionext Milbeaut soCs

SAMA5D3 family (sOC_sAMASD3) »

zzz

CONFIG_SOC_SAMASD3:

Select this if you are using one of Microchip's SAMASDS3 family SoC.
This support covers SAMASD31, SAMASD33, SAMASD34, SAMASD3S, SAMASD36.

Symbol: SOC_SAMASDS [=y]
Type : bool

Defined at arch/arm/mach-at91/Kconfig:35
Prompt: SAMASD3 famil
Depends on: ARCH_ATS1 [=3] && ARCH_MULTV? [=y]
cation:
> System Ty
> AT91/Microchip SoCs (ARCH AT [=y])
Selects: SOC_SAMAS [-y)] &8 HAVE_ATS1_UTMI [=y] && HAVE_AT91_SMD [-y] && HAVE_AT91_USB_CLK [-y] && PINCTRL_ATS1 [-y]

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/375

4@3 make xconfig search interface

Looks for a keyword in the parameter name (shortcut: [Ctrl] + [f]).
Allows to set values to found parameters.

Search Config

Find: |ftrace Search

Option
Tracers
enable/disable function tracing dynamically
O Perform a startup test on ftrace
Trace syscalls
O Persistent function tracer
B Copy the output from kernel Ftrace to STM engine

Persistent function tracer (PSTORE_FTRACE)
CONFIG_PSTORE_FTRACE

with this option kernel traces function callsinto a persistent

ram buffer that can be decoded and dumped after reboot through
pstore filesystem. It can be used to determine what function

was last called before a reset or panic.

IFunsure, say N.

Symbol: PSTORE_FTRACE [=n]

Type : boolean

Prompt: Persistent Function tracer

Location:

-> File systems

-> Miscellaneous filesystems (MISC_FILESYSTEMS [=y])

-> Persistent store support (PSTORE [=y])

Defined at fs/pstore/Kconfig:61

Depends on: MISC_FILESYSTEMS [=y] 8& PSTORE [=y] && FUNCTION_TRACER [=y] && DEBUG_FS
=]

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/375

Q}Kernel configuration options

Compiled as a module (separate file)
CONFIG_ISO9660_FS=m

Driver options \ 5-E.ISO 9660 CDROM file system support
CONFIG_JOLIET=y ~ —¥ = .aMicrosoft Joliet CDROM extensions
CONFIG_ZISOFS=y —) - ~#Transparent decompression extension

“aUDF file system support

Compiled statically into the kernel
CONFIG_UDF_FS=y

Values in resulting .config file Parameter values as displayed in make xconfig

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/375

. Corresponding .config file excerpt

A

ptions are grouped by sections and are prefixed with CONFIG_.

#

CD-ROM/DVD Filesystems
#

CONFIG_IS09660_FS=m
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_UDF_FS=y
CONFIG_UDF_NLS=y

#

DOS/FAT/NT Filesystems

#

CONFIG_MSDOS_FS is not set
CONFIG_VFAT_FS is not set
CONFIG_NTFS_FS=m

CONFIG_NTFS_DEBUG is not set
CONFIG_NTFS_RW=y

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/375

_{% make menuconfig

make menuconfig
» Useful when no graphics are available.
Very efficient interface.
» Same interface found in other tools:
BusyBox, Buildroot...
» Convenient number shortcuts to jump
directly to search results.

> Required Debian packages:
libncurses-dev

v
DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/375

ke oldconfi
ma e oldconfig

Jo3e!

make oldconfig
Needed very often!
Useful to upgrade a .config file from an earlier kernel release

Asks for values for new parameters.
. unlike make menuconfig and make xconfig which silently set default values
for new parameters.
If you edit a .config file by hand, it's useful to run make oldconfig afterwards, to set
values to new parameters that could have appeared because of dependency changes.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/375

60 Undoing configuration changes

o%e]

A frequent problem:

After changing several kernel configuration settings, your kernel no longer works.

If you don't remember all the changes you made, you can get back to your
previous configuration:
$ cp .config.old .config

All the configuration tools keep this .config.old backup copy.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/375

a Linux kernel introduction
o)

g

Compiling and installing the kernel

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/375

Q} Kernel compilation

make

» Run it in the main kernel source directory!

» Remember to run multiple jobs in parallel if you have
multiple CPU cores / threads. Our advice: ncpus * 2
or ncpus + 2, to fully load the CPU and 1/Os at all
times.

Example: make -j 8
» No need to run as root!
» To recompile faster (7x according to some benchmarks),

use the ccache compiler cache:
export CROSS_COMPILE="ccache arm-linux-"

Benefits on parallel make

Tests on Linux .11 on am

BeBenefits of parallel compile jobs (make -j<n>)

e Ioad of a system with 4 threads / 2 CPUs

INa
0 s
SISO o
nake
Command: make
Total time: 129's

mike
Command: make -8
Total time: 67 5

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

160/375

Q}Kernel compilation results
A

b arch/<arch>/boot/Image, uncompressed kernel image that can be booted
b arch/<arch>/boot/*Imagex, compressed kernel images that can also be booted

® bzImage for x86, zImage for ARM, Image.gz for RISC-V, vmlinux.bin.gz for ARC,
etc.

> arch/<arch>/boot/dts/*.dth, compiled Device Tree Blobs

All kernel modules, spread over the kernel source tree, as . ko (Kernel Object) files.

v

> vmlinux, a raw uncompressed kernel image in the ELF format, useful for
debugging purposes but generally not used for booting purposes

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/375

a Kernel installation: native case
o)

g

sudo make install
Does the installation for the host system by default
Installs

/boot/vmlinuz-<version>

Compressed kernel image. Same as the one in arch/<arch>/boot
/boot/System.map-<version>

Stores kernel symbol addresses for debugging purposes (obsolete: such information is
usually stored in the kernel itself)

/boot/config-<version>

Kernel configuration for this version

In GNU/Linux distributions, typically re-runs the bootloader configuration utility
to make the new kernel available at the next boot.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/375

60 Kernel installation: embedded case
o0

o%e]

make install is rarely used in embedded development, as the kernel image is a
single file, easy to handle.

Another reason is that there is no standard way to deploy and use the kernel
image.

Therefore making the kernel image available to the target is usually manual or
done through scripts in build systems.

It is however possible to customize the make install behavior in
arch/<arch>/boot/install.sh

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/375

4@3 Module installation: native case
q

» sudo make modules_install
® Does the installation for the host system by default, so needs to be run as root
> Installs all modules in /1ib/modules/<version>/
® kernel/
Module .ko (Kernel Object) files, in the same directory structure as in the sources.
® modules.alias, modules.alias.bin
Aliases for module loading utilities. Further explanations on the next slide.
® modules.dep, modules.dep.bin
Module dependencies
® modules.symbols, modules.symbols.bin
Tells which module a given symbol belongs to (related to module dependencies).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/375

Automatic module loading with module aliases

Kernel compiling

static const struct usb_device_id products]

J Linksys USB200M
USB_DEVICE (0x077b, 0x2226),

ciiver_info = (unsioned long) &axBE17:. nfo,
{
i Netgear 4120 Module file
Ger it - (i ang Snetgear. 2120 o, make modules make modules install
asix.ko (depmod)
11 1 END
Containing the list

of supported devices

¥
MODULE_DEVICE TABLE(usb, products);
(module metadata)

drivers/net/usb/asix_devices.c

The device driver source code lists
which devices it supports

System operation

“7%", RUN{builtin}-+="kmod [oad Senv{MODALIAS}"

The USB bus driver sends a MODALIAS string ENV{MODALIAS

encoding these attributes to the udev process

MODAL p

The USB controller
driver reads

USB device attributes:

vendor id, product id, etc

Jlibjudev/rules.d/B0-drivers.rules

udev has a rule
for when MODALIAS
is set

Anew
USB device
is plugged-in

alias usb:v077Bp2226d"dcdscrdptictiscriptin® asix
alias usb:v0846p1040d+dcdscdprictiscHiptin® asix

modules.alias

Thanks to

is loaded

165/375

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

4@3 Module installation: embedded case

> In embedded development, you can't directly use make modules_install as it
would install target modules in /1ib/modules on the host!

» The INSTALL_MOD_PATH variable is needed to generate the module related files
and install the modules in the target root filesystem instead of your host root

filesystem (no need to be root):
make INSTALL_MOD_PATH=<dir>/ modules_install

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/375

4@3 Kernel cleanup targets

> Clean-up generated files (sometimes useful before switching versions, - |
to avoid untracked output files, or to force re-compilation):
make clean

» Remove all generated files. Needed when switching from one
architecture to another. Caution: it also removes your .config file!
make mrproper

> Also remove editor backup and patch reject files (mainly to generate
patches):
make distclean

> If you are in a git tree, remove all files not tracked (and ignored) by git:
git clean -fdx

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/375

Kernel building overview

Environment setup Kernel building
and configuration and deployment
Specify target architecture
(if different from host) K
ernel
export ARCH=arm — 3 compiing
" . make
Specify cross-compiler
(if cross-compiling)
export CROSS_COMPILE=arm-linux-
Kernel
configuration X
Installing modules Installing the kernel
Get reference configuration:

make soc_defconfig (ARM example) make modules_install make install
- or manual copy

Customize configuration:
make menuconfig

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/375

a Linux kernel introduction
o)

g

Booting the kernel

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/375

Device Tree 1/2
Q@ evice Tree 1/

o%e]

Many embedded architectures have a lot of non-discoverable hardware (serial,
Ethernet, 12C, Nand flash, USB controllers...)

Depending on the architecture, such hardware is either described in BIOS ACPI
tables (x86), using C code directly within the kernel, or using a special hardware
description language in a Device Tree.

The Device Tree (DT) was created for PowerPC, and later was adopted by other
architectures (ARM, ARC...). Now Linux has DT support in most architectures.
Its main purpose is to describe the hardware and its integration: non-discoverable
devices, clocks, interrupts, DMA channels, pin muxing, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/375

Device Tree 2/2
Q@ evice Tree 2/

o%e]

A Device Tree Source (DTS), written by kernel developers, is compiled into a
binary Device Tree Blob (DTB), and needs to be passed to the kernel at boot
time.

There is one different Device Tree for each board/platform supported by the kernel,
available in arch/arm/boot/dts/<board>.dtb.
See arch/arm/boot/dts/at91-sama5d3_xplained.dts for example.
The bootloader must load both the kernel image and the DTB in memory before
starting the kernel.

This way, a kernel supporting different SoCs knows which SoC and device
initialization hooks to run on the current board.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 171/375

https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/at91-sama5d3_xplained.dts

ao Customize your board device tree!
o0

o%e]

Often needed for embedded board users:

To describe external devices attached to
non-discoverable busses (such as 12C) and configure
them.

To configure pin muxing: choosing what SoC signals are
made available on the board external connectors. See e
http://1linux.tanzilli.com/ for a web service doing
this interactively.

To configure some system parameters: flash partitions,
kernel command line (other ways exist)

Device Tree 101 webinar, Thomas Petazzoni (2021):
Slides: https://bootlin.com/blog/device-tree-
101-webinar-slides-and-videos/

Video: https://youtu.be/a9CZ1Uk30YQ

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 172/375

http://linux.tanzilli.com/
https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/
https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/
https://youtu.be/a9CZ1Uk3OYQ

60 Booting with U-Boot

o%e]

U-Boot can directly boot the zImage binary.
In addition to the kernel image, U-Boot should also pass a DTB to the kernel.

The typical boot process is therefore:
1. Load zImage at address X in memory
2. Load <board>.dtb at address Y in memory

3. Start the kernel with bootz X - Y
The - in the middle indicates no initramfs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/375

a Kernel command line
o)

g

In addition to the compile time configuration, the kernel behavior can be adjusted
with no recompilation using the kernel command line
The kernel command line is a string that defines various arguments to the kernel
It is very important for system configuration
root= for the root filesystem (covered later)
console= for the destination of kernel messages
Example: console=ttyS@ root=/dev/mmcblk@p2 rootwait
Many more exist. The most important ones are documented in
admin-guide/kernel-parameters in kernel documentation.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/375

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

ao Passing the kernel command line
o0

Jo3e!

U-Boot carries the Linux kernel command line string in See the "Understanding U-Boot Falcon

. . . Mode" presentation from Michael

1ts boota rgs environ ment Varlab|e Opdenacker, for details about how U-Boot
boots Linux.

Right before starting the kernel, it will store the content
of bootargs in the chosen section of the Device Tree {2}, Bcun o cw NAND - Rt ad s
The kernel will behave differently depending on its
configuration:

If CONFIG_CMDLINE_FROM_BOOTLOADER is set:
The kernel will use only the string from the bootloader

If CONFIG_CMDLINE_FORCE is set: — -
The kernel will only use the string received at Slides: _

ides: https:
Configuration time in CONFIG_CMDLINE //bootlin.com/pub/conferences/2021/1ee/
|f CONFIG_CMDLINE_EXTEND iS set: \///va\l:;..yzzttzsb:e.c0m/watch?v=LFe3><ZQMhSo

The kernel will concatenate both strings

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_FROM_BOOTLOADER
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_FORCE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_EXTEND
https://bootlin.com/pub/conferences/2021/lee/
https://bootlin.com/pub/conferences/2021/lee/
https://www.youtube.com/watch?v=LFe3x2QMhSo
https://www.youtube.com/watch?v=LFe3x2QMhSo

ao Practical lab - Kernel cross-compiling
o0

o%e]

Set up the cross-compiling environment

Configure and cross-compile the kernel for an
arm platform

On this platform, interact with the bootloader
and boot your kernel

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

176/375

a Linux kernel introduction
o)

g

Using kernel modules

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a Advantages of modules
o)

Modules make it easy to develop drivers without
rebooting: load, test, unload, rebuild, load...

Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

Also useful to reduce boot time: you don't spend time
initializing devices and kernel features that you only
need later.

Caution: once loaded, have full control and privileges in
the system. No particular protection. That's why only
the root user can load and unload modules.

To increase security, possibility to allow only signed
modules, or to disable module support entirely.

Using kernel modules to support

many different devices and setups

Kernel

Intermediate root filesystem (initramfs)

No special driver required to access it
Contains all the modules to access the specific
storage and filesytem of the device
Load such modules
and mount the new root filesystem

b

Final root filesystem

Regular system startup

The modules in the initramfs are updated every time
a kernel upgrade is available

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

178/375

4@3 Module dependencies

> Some kernel modules can depend on other modules, which need to be loaded first.

> Example: the ubifs module depends on the ubi and mtd modules.

> Dependencies are described both in
/1lib/modules/<kernel-version>/modules.dep and in

/1lib/modules/<kernel-version>/modules.dep.bin (binary hashed format)
These files are generated when you run make modules_install.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/375

a Kernel log
o)

o%e]

When a new module is loaded, related information is available in the kernel log.

The kernel keeps its messages in a circular buffer (so that it doesn't consume
more memory with many messages)

Kernel log messages are available through the dmesg command (diagnostic
message)

Kernel log messages are also displayed in the system console (console messages
can be filtered by level using the loglevel kernel command line parameter, or
completely disabled with the quiet parameter). Example:

console=ttyS@ root=/dev/mmcblk@p2 loglevel=5

Note that you can write to the kernel log from user space too. That's useful when
your device's serial console is being monitored for critical messages:
echo "<n>Debug info"” > /dev/kmsg

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/375

4@3 Module utilities (1)

<module_name>: name of the module file without the trailing .ko

» modinfo <module_name> (for modules in /1ib/modules)
modinfo <module_path>.ko

Gets information about a module without loading it: parameters, license,
description and dependencies.

» sudo insmod <module_path>.ko

Tries to load the given module. The full path to the module object file must be
given.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 181/375

%Understanding module loading issues

» When loading a module fails, insmod often doesn't give you enough details!
> Details are often available in the kernel log.

> Example:
$ sudo insmod ./intr_monitor.ko
insmod: error inserting './intr_monitor.ko': -1 Device or resource busy
$ dmesg

[17549774.552000] Failed to register handler for irg channel 2

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

182/375

4@3 Module utilities (2)

» sudo modprobe <top_module_name>
Most common usage of modprobe: tries to load all the dependencies of the given
top module, and then this module. Lots of other options are available. modprobe
automatically looks in /1ib/modules/<version>/ for the object file
corresponding to the given module name.

» 1smod
Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/375

4@3 Module utilities (3)

» sudo rmmod <module_name>
Tries to remove the given module.
Will only be allowed if the module is no longer in use (for example, no more
processes opening a device file)

» sudo modprobe -r <top_module_name>
Tries to remove the given top module and all its no longer needed dependencies

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/375

4@} Passing parameters to modules

> Find available parameters:
modinfo usb-storage

> Through insmod:
sudo insmod ./usb-storage.ko delay_use=0

» Through modprobe:
Set parameters in /etc/modprobe.conf or in any file in /etc/modprobe.d/:
options usb-storage delay_use=0

> Through the kernel command line, when the driver is built statically into the
kernel:
usb-storage.delay_use=0
® ush-storage is the driver name
® delay_use is the driver parameter name. It specifies a delay before accessing a USB
storage device (useful for rotating devices).
® 0 is the driver parameter value

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/375

Q}Check module parameter values

How to find/edit the current values for the parameters of a loaded module?
» Check /sys/module/<name>/parameters.
> There is one file per parameter, containing the parameter value.

> Also possible to change parameter values if these files have write permissions
(depends on the module code).

> Example:
echo @ > /sys/module/usb_storage/parameters/delay_use

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/375

ﬁ Linux Root Filesystem
o)

bootlin

Linux Root Filesystem

© C ight 2004-2022, Bootlin. . . .
opyrig ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/375

a Linux Root Filesystem
o)

g

Principle and solutions

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/375

Filesystems
s

o%e]

Filesystems are used to organize data in directories and files on storage devices or
on the network. The directories and files are organized as a hierarchy

In UNIX systems, applications and users see a single global hierarchy of files and

directories, which can be composed of several filesystems.

Filesystems are mounted in a specific location in this hierarchy of directories
When a filesystem is mounted in a directory (called mount point), the contents of
this directory reflects the contents of the storage device
When the filesystem is unmounted, the mount point is empty again.

This allows applications to access files and directories easily, regardless of their

exact storage location

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/375

4@3 Filesystems (2)

> Create a mount point, which is just a directory
$ sudo mkdir /mnt/usbkey

> It is empty
$ 1s /mnt/usbkey
$

> Mount a storage device in this mount point
$ sudo mount -t vfat /dev/sdal /mnt/usbkey
$

> You can access the contents of the USB key
$ 1s /mnt/usbkey

docs prog.c picture.png movie.avi
$

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/375

mount / umount
(7) mount /

o%e]

mount allows to mount filesystems

mount -t type device mountpoint
type is the type of filesystem (optional for non-virtual filesystems)
device is the storage device, or network location to mount

mountpoint is the directory where files of the storage device or network location will
be accessible

mount with no arguments shows the currently mounted filesystems
umount allows to unmount filesystems

This is needed before rebooting, or before unplugging a USB key, because the Linux
kernel caches writes in memory to increase performance. umount makes sure that
these writes are committed to the storage.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

191/375

Root filesystem
s

Jo3e!

A particular filesystem is mounted at the root of the hierarchy, identified by /
This filesystem is called the root filesystem

As mount and umount are programs, they are files inside a filesystem.
They are not accessible before mounting at least one filesystem.

As the root filesystem is the first mounted filesystem, it cannot be mounted with
the normal mount command

It is mounted directly by the kernel, according to the root= kernel option
When no root filesystem is available, the kernel panics:

Please append a correct "root=" boot option
Kernel panic - not syncing: VFS: Unable to mount root fs on unknown block(@,0)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/375

a@ Location of the root filesystem
o0

o%e]

It can be mounted from different locations
From the partition of a hard disk
From the partition of a USB key
From the partition of an SD card
From the partition of a NAND flash chip or similar type of storage device
From the network, using the NFS protocol
From memory, using a pre-loaded filesystem (by the bootloader)
etc.

It is up to the system designer to choose the configuration for the system, and
configure the kernel behavior with root=

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 193/375

60 Mounting rootfs from storage devices
o0

o%e]

Partitions of a hard disk or USB key
root=/dev/sdXY, where X is a letter indicating the device, and Y a number
indicating the partition

/dev/sdb2 is the second partition of the second disk drive (either USB key or ATA
hard drive)

Partitions of an SD card
root=/dev/mmcblkXpY, where X is a number indicating the device and Y a number
indicating the partition
/dev/mmch1kop?2 is the second partition of the first device
Partitions of flash storage
root=/dev/mtdblockX, where X is the partition number

/dev/mtdblock3 is the fourth enumerated flash partition in the system (there could
be multiple flash chips)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

194/375

ao Mounting rootfs over the network (1)
oa@

o%e]

Once networking works, your root filesystem could be a directory on your GNU/Linux
development host, exported by NFS (Network File System). This is very convenient for
system development:

Makes it very easy to update files on the root filesystem, without rebooting.

Can have a big root filesystem even if you don’t have support for internal or
external storage yet.

The root filesystem can be huge. You can even build native compiler tools and
build all the tools you need on the target itself (better to cross-compile though).

Host Target
Ethernet
NFS client
NFS L
server built into the kernel

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/375

4@} Mounting rootfs over the network (2)

On the development workstation side, a NFS server is needed

» Install an NFS server (example: Debian, Ubuntu)
sudo apt install nfs-kernel-server
> Add the exported directory to your /etc/exports file:
/home/tux/rootfs 192.168.1.111(rw, no_root_squash, no_subtree_check)

® 192.168.1.111 is the client IP address
® rw,no_root_squash,no_subtree_check are the NFS server options for this

directory export.
> Ask your NFS server to reload this file:
sudo exportfs -r

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

196/375

ao Mounting rootfs over the network (3)
o0

Jo3e!

On the target system
The kernel must be compiled with
CONFIG_NFS_FS=y (NFS client support)

CONFIG_IP_PNP=y (configure IP at boot time)
CONFIG_ROOT_NFS=y (support for NFS as rootfs)

The kernel must be booted with the following parameters:
root=/dev/nfs (we want rootfs over NFS)
ip=192.168.1.111 (target IP address)
nfsroot=192.168.1.110:/home/tux/rootfs/ (NFS server details)
You may need to add ", nfsvers=3, tcp” to the nfsroot setting, as an NFS version
2 client and UDP may be rejected by the NFS server in recent GNU/Linux
distributions.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_IP_PNP
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_ROOT_NFS

_ﬁ@ Mounting rootfs over the network (4)

Host

NFS server

Ethernet

/home/tux/rootf's:
/home/tux/rootf's:
/home/tux/rootf's:
/home/tux/rootf's:

/home/tux/rootf's:
/home/tux/rootf's:
/home/tux/rootf's:

v
DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/375

a@ Root filesystem in memory: initramfs
o0

o%e]

It is also possible to boot the system with a filesystem in memory: initramfs
Either from a compressed CPIO archive integrated into the kernel image
Or from such an archive loaded by the bootloader into memory

At boot time, this archive is extracted into the Linux file cache

It is useful for two cases:
Fast booting of very small root filesystems. As the filesystem is completely loaded at
boot time, application startup is very fast.
As an intermediate step before switching to a real root filesystem, located on devices
for which drivers not part of the kernel image are needed (storage drivers, filesystem
drivers, network drivers). This is always used on the kernel of desktop/server
distributions to keep the kernel image size reasonable.

Details (in kernel documentation):

filesystems/ramfs-rootfs-initramfs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/375

https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html

4@3 External initramfs

> To create one, first create a compressed CPIO archive:

cd rootfs/
find . | cpio -H newc -o > ../initramfs.cpio
cd ..

gzip initramfs.cpio
> If you're using U-Boot, you'll need to include your archive in a U-Boot container:

mkimage -n 'Ramdisk Image' -A arm -0 linux -T ramdisk -C gzip \
-d initramfs.cpio.gz ulnitramfs

> Then, in the bootloader, load the kernel binary, DTB and uInitramfs in RAM
and boot the kernel as follows:

bootz kernel-addr initramfs-addr dtb-addr

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/375

Built-in initramfs
o

o%e]

To have the kernel Makefile include an initramfs archive in the
kernel image: use the CONFIG_INITRAMFS_SOURCE option. p N

It can be the path to a directory containing the root
filesystem contents

Kernel code and data

It can be the path to a ready made cpio archive
It can be a text file describing the contents of the initramfs

See the kernel documentation for details:

Root filesystem stored

driver-api/early-userspace/early_userspace_support as a compressed cpio
archive
WARNING: only binaries from GPLv2 compatible code are M

allowed to be included in the kernel binary using this technique.
Otherwise, use an external initramfs.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_INITRAMFS_SOURCE
https://www.kernel.org/doc/html/latest/driver-api/early-userspace/early_userspace_support.html

Linux Root Filesystem

Contents

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/375

a@ Root filesystem organization
o0

o%e]

The organization of a Linux root filesystem in terms of directories is well-defined
by the Filesystem Hierarchy Standard
https://wiki.linuxfoundation.org/lsb/fhs
Most Linux systems conform to this specification

Applications expect this organization

It makes it easier for developers and users as the filesystem organization is similar in
all systems

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/375

https://wiki.linuxfoundation.org/lsb/fhs

o%e]

/bin
/boot

/dev
/etc
/home
/lib
/media
/mnt
/proc

a Important directories (1)
bdh)

Basic programs

Kernel images, configurations and initramfs (only when the kernel is
loaded from a filesystem, not common on non-x86 architectures)

Device files (covered later)
System-wide configuration

Directory for the users home directories
Basic libraries

Mount points for removable media
Mount points for static media

Mount point for the proc virtual filesystem

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

204/375

a Important directories (2)
bdh)

o%e]

/root Home directory of the root user

/sbin Basic system programs

/sys Mount point of the sysfs virtual filesystem
/tmp Temporary files

Jusr /usr/bin Non-basic programs
/usr/lib Non-basic libraries
/usr/sbin Non-basic system programs

/var Variable data files, for system services. This includes spool directories and
files, administrative and logging data, and transient and temporary files

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/375

ao Separation of programs and libraries
o0

o%e]

Basic programs are installed in /bin and /sbin and basic libraries in /1ib

All other programs are installed in /usr/bin and /usr/sbin and all other libraries
in /usr/1lib

In the past, on UNIX systems, /usr was very often mounted over the network,
through NFS

In order to allow the system to boot when the network was down, some binaries
and libraries are stored in /bin, /sbin and /1ib

/bin and /shin contain programs like 1s, ip, cp, bash, etc.
/1ib contains the C library and sometimes a few other basic libraries

All other programs and libraries are in /usr

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/375

Linux Root Filesystem

Device Files

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 207/375

a Devices
o)

o%e]

One of the kernel important roles is to allow applications to access hardware
devices

In the Linux kernel, most devices are presented to user space applications through
two different abstractions

Character device

Block device
Internally, the kernel identifies each device by a triplet of information

Type (character or block)
Major (typically the category of device)
Minor (typically the identifier of the device)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/375

T f devi
Q@ ypes of devices

o%e]

Block devices
A device composed of fixed-sized blocks, that can be read and written to store data
Used for hard disks, USB keys, SD cards, etc.

Character devices
Originally, an infinite stream of bytes, with no beginning, no end, no size. The pure
example: a serial port.

Used for serial ports, terminals, but also sound cards, video acquisition devices,
frame buffers

Most of the devices that are not block devices are represented as character devices
by the Linux kernel

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/375

a Devices: everything is a file
o)

o%e]

A very important UNIX design decision was to represent most system objects as
files

It allows applications to manipulate all system objects with the normal file API
(open, read, write, close, etc.)

So, devices had to be represented as files to the applications
This is done through a special artifact called a device file

It is a special type of file, that associates a file name visible to user space
applications to the triplet (type, major, minor) that the kernel understands

All device files are by convention stored in the /dev directory

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/375

‘Gb Device files examples
A

Example of device files in a Linux system

$ 1s -1 /dev/ttySe /dev/ttyl /dev/sda /dev/sdal /dev/sda2 /dev/sdcl /dev/zero
brw-rw---- 1 root disk 8, 0 2011-05-27 08:56 /dev/sda
brw-rw---- 1 root disk 8, 1 2011-05-27 08:56 /dev/sdal
brw-rw---- 1 root disk 8, 2 2011-05-27 08:56 /dev/sda2
brw-rw---- 1 root disk 8, 32 2011-05-27 08:56 /dev/sdc
Crw-—------ 1 root root 4, 1 2011-05-27 08:57 /dev/ttyl
crw-rw---- 1 root dialout 4
crw-rw-rw- 1 root root 1

, 64 2011-05-27 08:56 /dev/ttySe
, 5 2011-05-27 08:56 /dev/zero

Example C code that uses the usual file APl to write data to a serial port

int fd;

fd = open("/dev/ttySe"”, O_RDWR);
write(fd, "Hello"”, 5);
close(fd);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/375

a Creating device files
o)

o%e]

Before Linux 2.6.32, on basic Linux systems, the device files had to be created
manually using the mknod command

mknod /dev/<device> [c|b] major minor

Needed root privileges

Coherency between device files and devices handled by the kernel was left to the

system developer
The devtmpfs virtual filesystem can be mounted on /dev and contains all the
devices registered to kernel frameworks. The CONFIG_DEVTMPFS_MOUNT kernel
configuration option makes the kernel mount it automatically at boot time, except
when booting on an initramfs.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT

a Linux Root Filesystem
o)

g

Pseudo Filesystems

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 213/375

a proc virtual filesystem
b

o%e]

The proc virtual filesystem exists since the beginning of Linux
It allows

The kernel to expose statistics about running processes in the system
The user to adjust at runtime various system parameters about process
management, memory management, etc.

The proc filesystem is used by many standard user space applications, and they
expect it to be mounted in /proc

Applications such as ps or top would not work without the proc filesystem

Command to mount proc:
mount -t proc nodev /proc

See filesystems/proc in kernel documentation or man proc

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 214/375

https://www.kernel.org/doc/html/latest/filesystems/proc.html

4@} proc contents

> One directory for each running process in the system
® /proc/<pid>
® cat /proc/3840/cmdline

® |t contains details about the files opened by the process, the CPU and memory
usage, etc.

P> /proc/interrupts, /proc/devices, /proc/iomem, contain general device-related
information

> /proc/cmdline contains the kernel command line

> /proc/sys contains many files that can be written to adjust kernel parameters
® They are called sysctl. See admin-guide/sysctl/ in kernel documentation.
¢ Example (free the page cache and slab objects):
echo 3 > /proc/sys/vm/drop_caches

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

215/375

https://www.kernel.org/doc/html/latest/admin-guide/sysctl/

4@} sysfs filesystem

> It allows to represent in user space the vision that the kernel has of the buses,
devices and drivers in the system

> It is useful for various user space applications that need to list and query the
available hardware, for example udev or mdev.
> All applications using sysfs expect it to be mounted in the /sys directory
» Command to mount /sys:
mount -t sysfs nodev /sys
> $ 1s /sys/
block bus class dev devices firmware
fs kernel module power

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/375

a Linux Root Filesystem
o)

g

Minimal filesystem

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/375

a Basic applications
o)

In order to work, a Linux system needs at least a few applications

An init application, which is the first user space application started by the kernel after
mounting the root filesystem (see https://en.wikipedia.org/wiki/Init):
The kernel tries to run the command specified by the init= command line
parameter if available.
Otherwise, it tries to run /shin/init, /bin/init, /etc/init and /bin/sh.
In the case of an initramfs, it will only look for /init. Another path can be supplied
by the rdinit= kernel argument.
If none of this works, the kernel panics and the boot process is stopped.
The init application is responsible for starting all other user space applications and
services, and for acting as a universal parent for processes which parent terminated
before they do.
A shell, to implement scripts, automate tasks, and allow a user to interact with the system

Basic UNIX executables, for use in system scripts or in interactive shells: mv, cp, mkdir,
cat, modprobe, mount, ip, etc.

These basic components have to be integrated into the root filesystem to make it usable

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/375

https://en.wikipedia.org/wiki/Init

Q}Overall booting process
A
Bootloader

Loads the DTB and kernel to RAM, starts the kernel

|

Kernel

Initializes hardware devices and kernel subsystems
Mounts the root filesystem indicated by root=
Starts the init application, /sbin/init by default

(\ 4
/sbin/init
Starts other user space services and applications

I
\ L 4

Shell Other applications

Root filesystem

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

219/375

Q}Overall booting process with initramfs

Bootloader

Loads the initramfs archive to RAM (if separate)
Loads DTB + kernel to RAM, starts the kernel

v

Kernel
Initializes hardware devices and kernel subsystems
Extracts the initramfs archive to the file cache
Starts the /init executable if found
(otherwise falls back to mounting the device specified by root=)

s l N
/init

Starts early user space commands
(show splashscreen, start time critical application...)
Loads drivers needed to access the final root filesystem
Mounts the root filesystem and switches to it (switch_root)

L Intermediate root fil|esystem (initramfs))
e \ 4 N
/sbin/init
Regular system startup
L Root filesystem)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

220/375

BusyBox
y

bootlin

BusyBox

© C ight 2004-2022, Bootlin. . . .
opyrig ootin embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 221/375

Why BusyBox?
Q@ y BusyBox

g

A Linux system needs a basic set of programs to work
An init program
A shell
Various basic utilities for file manipulation and system configuration
In normal GNU/Linux systems, these programs are provided by different projects
coreutils, bash, grep, sed, tar, wget, modutils, etc. are all different projects
A lot of different components to integrate
Components not designed with embedded systems constraints in mind: they are not
very configurable and have a wide range of features

BusyBox is an alternative solution, extremely common on embedded systems

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/375

%General purpose toolbox: BusyBox

https://www.busybox.net/
> Rewrite of many useful UNIX command line utilities

® Created in 1995 to implement a rescue and installer system
for Debian, fitting in a single floppy disk (1.44 MB)

® Integrated into a single project, which makes it easy to work
with

¢ Designed with embedded systems in mind: highly
configurable, no unnecessary features

¢ Called the Swiss Army Knife of Embedded Linux

> License: GNU GPLv2

> Alternative: Toybox, BSD licensed
(https://en.wikipedia.org/wiki/Toybox)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

223/375

https://www.busybox.net/
https://en.wikipedia.org/wiki/Toybox

a@ BusyBox in the root filesystem
OC

o%e]

All the utilities are compiled into a single
executable, /bin/busybox

Symbolic links to /bin/busybox are created for
each application integrated into BusyBox
For a fairly featureful configuration, less than 500
KB (statically compiled with uClibc) or less than 1
MB (statically compiled with glibc).

rootfs
— bin
ash -> busybox
busybox
cat -> busybox
1s -> busybox
mount -> busybox
sh -> busybox
— sbin
halt -> ../bin/busybox
ifconfig -> ../bin/busybox
init -> ../bin/busybox

L— usr
L— shin
L— httpd -> ../../bin/busybox

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

224/375

_{%BusyBox - Most commands in one binary

[, C[, acpid, add-shell, addgroup, adduser, adjtimex, arch, arp, arping, ash, awk, base64, basename, bc, beep, blkdiscard, blkid,
blockdev, bootchartd, brctl, bunzip2, bzcat, bzip2, cal, cat, chat, chattr, chgrp, chmod, chown, chpasswd, chpst, chroot, chrt,
chvt, cksum, clear, cmp, comm, conspy, cp, cpio, crond, crontab, cryptpw, cttyhack, cut, date, dc, dd, deallocvt, delgroup,
deluser, depmod, devmem, df, dhcprelay, diff, dirname, dmesg, dnsd, dnsdomainname, dos2unix, dpkg, dpkg-deb, du, dumpkmap,
dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid, ether-wake, expand, expr, factor, fakeidentd, fallocate, false,
fatattr, fbset, fbsplash, fdflush, fdformat, fdisk, fgconsole, fgrep, find, findfs, flock, fold, free, freeramdisk, fsck,
fsck.minix, fsfreeze, fstrim, fsync, ftpd, ftpget, ftpput, fuser, getopt, getty, grep, groups, gunzip, gzip, halt, hd, hdparm,
head, hexdump, hexedit, hostid, hostname, httpd, hush, hwclock, i2cdetect, i2cdump, i2cget, i2cset, i2ctransfer, id, ifconfig,
ifdown, ifenslave, ifplugd, ifup, inetd, init, insmod, install, ionice, iostat, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, ipneigh,
iproute, iprule, iptunnel, kbd_mode, kill, killall, killall5, klogd, last, less, link, linux32, linux64, linuxrc, 1ln, loadfont,
loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr, 1ls, lsattr, lsmod, lsof, lspci, lsscsi, lsusb, lzcat, lzma,
1zop, makedevs, makemime, man, md5sum, mdev, mesg, microcom, mim, mkdir, mkdosfs, mke2fs, mkfifo, mkfs.ext2, mkfs.minix, mkfs.vfat,
mknod, mkpasswd, mkswap, mktemp, modinfo, modprobe, more, mount, mountpoint, mpstat, mt, mv, nameif, nanddump, nandwrite,
nbd-client, nc, netstat, nice, nl, nmeter, nohup, nologin, nproc, nsenter, nslookup, ntpd, nuke, od, openvt, partprobe, passwd,
paste, patch, pgrep, pidof, ping, ping6, pipe_progress, pivot_root, pkill, pmap, popmaildir, poweroff, powertop, printenv, printf,
ps, pscan, pstree, pwd, pwdx, raidautorun, rdate, rdev, readahead, readlink, readprofile, realpath, reboot, reformime,
remove-shell, renice, reset, resize, resume, rev, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-init, run-parts, runlevel,
runsv, runsvdir, rx, script, scriptreplay, sed, sendmail, seq, setarch, setconsole, setfattr, setfont, setkeycodes, setlogcons,
setpriv, setserial, setsid, setuidgid, sh, shalsum, sha256sum, sha3sum, sha512sum, showkey, shred, shuf, slattach, sleep, smemcap,
softlimit, sort, split, ssl_client, start-stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svc, svlogd, svok, swapoff,
swapon, switch_root, sync, sysctl, syslogd, tac, tail, tar, taskset, tc, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time,
timeout, top, touch, tr, traceroute, traceroute6, true, truncate, ts, tty, ttysize, tunctl, ubiattach, ubidetach, ubimkvol,
ubirename, ubirmvol, ubirsvol, ubiupdatevol, udhcpc, udhcpc6, udhcpd, udpsvd, uevent, umount, uname, unexpand, unig, unix2dos,
unlink, unlzma, unshare, unxz, unzip, uptime, users, usleep, uudecode, uuencode, vconfig, vi, vlock, volname, w, wall, watch,
watchdog, wc, wget, which, who, whoami, whois, xargs, xxd, xz, xzcat, yes, zcat, zcip

Source: run /bin/busybox - July 2021 status

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 225/375

ao Configuring BusyBox

o%e]

Get the latest stable sources from https://busybox.net
Configure BusyBox (creates a .config file):

make defconfig

Good to begin with BusyBox.

Configures BusyBox with all options for regular users.

make allnoconfig

Unselects all options. Good to configure only what you need.

make menuconfig (text)
Same configuration interfaces as the ones used by the Linux kernel (though older
versions are used, causing make xconfig to be broken in recent distros).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/375

https://busybox.net

BusyBox make menuconfig

Coreutils

Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted
letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend:

[*] built-in [] excluded <M> module < > module capable
(-
. [1 link (3.2 kb)
You can choose:) Link G2
[] logname (1 1 kb)

the commands to compile, e

nab'le metypmg options (-p and -F)

[] Enable symlinks dereferencing (-L)
. [*] Enable recursion (-R)
and even the Command Optlons and [*] Enable -w WIDTH and window size autodetection
[*] sort the file names
[*1 Show file timestamps
featu res that yOU needl [*] Show username/groupnames

Allow use of color to identify file types
[*] md5sum (6.5 kb)
1(+)

< Exit > < Help >

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/375

%Compiling BusyBox

> Set the cross-compiler prefix in the configuration interface:
Settings -> Build Options -> Cross Compiler prefix
Example: arm-linux-
> Set the installation directory in the configuration interface:
Settings -> Installation Options -> BusyBox installation prefix
> Add the cross-compiler path to the PATH environment variable:
export PATH=$HOME/x-tools/arm-unknown-linux-uclibcgnueabi/bin:$PATH

» Compile BusyBox:
make

> Install it (this creates a UNIX directory structure with symbolic links to the
busybox executable):
make install

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 228/375

ao Applet highlight: BusyBox init

o%e]

BusyBox provides an implementation of an init program
Simpler than the init implementation found on desktop/server systems (SysV init
or systemd)
A single configuration file: /etc/inittab

Each line has the form <id>::<action>:<process>
Allows to run services at startup, and to make sure that certain services are always
running on the system

See examples/inittab in BusyBox for details on the configuration

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 229/375

https://elixir.bootlin.com/busybox/latest/source/examples/inittab

Applet highlight - BusyBox vi

. . . [1 cmp (4.9 kb)

If you are using BusyBox, adding vi support () a3 ko)
[] ed (21 kb)
[] patch (9.4 kb)

only adds about 20K [fed oo
(1 i (23 kb)]
(4096) Maximum screen width

1 H * All to d 1 8-b: h h i h d

You can select which exact features to compile (2 Allow to display 8-bit chars (otherwise shows dots)
[*] Enable yank/put commands and mark cmds

in [*] Enable search and replace cnds

. [1 Enable regex in search and replace

[*] catch signals
[*] Remember previous cmd and "." cmd

Users hardly realize that they are using a [4] Enable R option ond "view mode

[*] Enable settable options, ai ic showmatch
[*] Support :set

lightweight vi version! {1 Rohate window resize

[1 Use 'tell me cursor position' ESC sequence to measure window
[*] Support undo command "u

Tip: you can learn vi on the desktop, by (336) Haxinim.indo: charactor auee size
[1 Allow vi and awk to execute shell commands
running the vimtutor command.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 230/375

a@ Practical lab - A tiny embedded system

o%e]

Make Linux boot on a directory on your
workstation, shared by NFS

Create and configure a minimalistic Linux
embedded system

Install and use BusyBox

System startup with /sbin/init
Set up a simple web interface
Use shared libraries

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

231/375

Block filesystems
/

bootlin

Block filesystems

© C ight 2004-2022, Bootlin. . . .
opyrig ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/375

Block filesystems

Block devices

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/375

Block vs. flash
Qo ock vs. raw flas

o%e]

Storage devices are classified in two main types: block devices and raw flash
devices

They are handled by different subsystems and different filesystems

Block devices can be read and written to on a per-block basis, in random order,
without erasing.
Hard disks, RAM disks
USB keys, SSD, SD cards, eMMC: these are based on flash storage, but have an
integrated controller that emulates a block device, managing the flash in a
transparent way.
Raw flash devices are driven by a controller on the SoC. They can be read, but
writing requires prior erasing, and often occurs on a larger size than the "block”
size.
NOR flash, NAND flash

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 234/375

4@3 Block device list

> The list of all block devices available in the system can be found in
/proc/partitions

$ cat /proc/partitions
major minor #blocks name

179 3866624 mmcblko
179 73712 mmcblkopT
179 3792896 mmcblk@p2

8 1060258 sdal

0
1
2
8 @ 976762584 sda
1
8 2 975699742 sda2

> /sys/block/ also stores information about each block device, for example
whether it is removable storage or not.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 235/375

Partitioning
9o

o%e]

Block devices can be partitioned to store different parts of a system
The partition table is stored inside the device itself, and is read and analyzed
automatically by the Linux kernel
mmchb1ko is the entire device
mmch1k@p?2 is the second partition of mmch1ko
Two partition table formats:
MBR, the legacy format
GPT, the new format, now used by all modern operating systems, supporting disks
bigger than 2 TB.
Numerous tools to create and modify the partitions on a block device: fdisk,
cfdisk, sfdisk, parted, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 236/375

%Transfering data to a block device

> |t is often necessary to transfer data to or from a block device in a raw way
® Especially to write a filesystem image to a block device

> This directly writes to the block device itself, bypassing any filesystem layer.

P> The block devices in /dev/ allow such raw access
» dd (disk duplicate) is the tool of choice for such transfers:
® dd if=/dev/mmcblkdpl of=testfile bs=1M count=16
Transfers 16 blocks of 1 MB from /dev/mmcblkopl to testfile
® dd if=testfile of=/dev/sda2 bs=1M seek=4
Transfers the complete contents of testfile to /dev/sda2, by blocks of 1 MB, but
starting at offset 4 MB in /dev/sda2
* Typical mistake: copying a file (which is not a filesystem image) to a filesystem
without mounting it first:
dd if=zImage of=/dev/sdel
Instead, you should use:
sudo mount /dev/sdel /boot
cp zImage /boot/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

237/375

Block filesyst
Q@ ock filesystems

g

Available block filesystems

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/375

ao Standard Linux filesystem format: ext2, ext3, ext4
od

o%e]

The standard filesystem used on Linux systems is the series of ext{2,3,4}
filesystems
ext2 (CONFIG_EXTZ_FS)
ext3, brought journaling (explained next slide) compared to ext2, now obsoleted by
ext4.
ext4 (CONFIG_EXT4_FS), mainly brought performance improvements and support for
very big partitions.

It supports all features Linux needs in a root filesystem: permissions, ownership,
device files, symbolic links, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 239/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EXT2_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EXT4_FS

a Journaled filesystems
o)

o%e]

Unlike simpler filesystems (ext2, vfat...),
designed to stay in a coherent state even after
system crashes or a sudden poweroff.

Writes are first described in the journal before
being committed to files (can be all writes, or
only metadata writes depending on the
configuration)

Application

User space Modify the filesystem

Kernel-space v

(filesystem)
Writes an entry in the journal,

describing the modification

l

Perform the modification
in the filesystem

l

Clear journal entry

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

240/375

o%e]

Reboot

No Journal
empty ?

Y

Discard incomplete
Jjournal entries

\

Execute journal

e Filesystem OK

60 Filesystem recovery after crashes
o0

Thanks to the journal, the recovery at boot
time is quick, since the operations in progress
at the moment of the unclean shutdown are
clearly identified. There's no need for a full
filesystem check.

Does not mean that the latest writes made it
to the storage: this depends on syncing the
changes to the filesystem.

See https://en.wikipedia.org/wiki/
Journaling_file_system for further details.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

241/375

https://en.wikipedia.org/wiki/Journaling_file_system
https://en.wikipedia.org/wiki/Journaling_file_system

ao Other journaled Linux/UNIX filesystems

o%e]

btrfs (CONFIG_BTRFS_FS), the most actively developed filesystem for Linux. It
integrates numerous features: data checksuming, integrated volume management,
snapshots, etc.

XFS (CONFIG_XFS_FS), high-performance filesystem inherited from SGI IRIX, still
actively developed.

JFS (CONFIG_JFS_FS), inherited from IBM AIX. No longer actively developed,
provided mainly for compatibility.

reiserFS (CONFIG_REISERFS_FS), used to be a popular filesystem, but its latest
version Reiser4 was never merged upstream.

ZFS, provides standard and advanced filesystem and volume management (CoW,
snapshot, etc.). Due to license it cannot be mainlined into Linux but present into
few distributions (see OpenZFs).

All those filesystems provide the necessary functionalities for Linux systems: symbolic
links, permissions, ownership, device files, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 242/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_BTRFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_XFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_JFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_REISERFS_FS

60 F2FS: filesystem for flash-based block storage

o%e]

CONFIG_F2FS_FS, https://en.wikipedia.org/wiki/F2FS

Filesystem that takes into account the characteristics of flash-based storage:
eMMC, SD cards, SSD, etc.

Developed and contributed by Samsung
Now supporting transparent compression (LZO, LZ4, zstd) and encryption.

For optimal results, need a number of details about the storage internal behavior
which may not easy to get

Benchmarks: best performer on flash devices most of the time:
See https://1lwn.net/Articles/520003/

Not as widely used as ext4 and btrfs, even on flash-based storage.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 243/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_F2FS_FS
https://en.wikipedia.org/wiki/F2FS
https://lwn.net/Articles/520003/

ao SquashFS: read-only filesystem

o%e]

CONFIG_SQUASHFS

Read-only, compressed filesystem for block devices. Fine for parts of a filesystem
which can be read-only (kernel, binaries...)

Great compression rate, which generally brings improved read performance
Used in most live CDs and live USB distributions

Supports several compression algorithms (LZO, XZ, etc.)

Benchmarks: roughly 3 times smaller than ext3, and 2-4 times faster
(https://elinux.org/Squash_Fs_Comparisons)

New alternative to SquashFS: EROFS
CONFIG_EROFS_FS, https://en.wikipedia.org/wiki/EROFS

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_SQUASHFS
https://elinux.org/Squash_Fs_Comparisons
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EROFS_FS
https://en.wikipedia.org/wiki/EROFS

ao Our advice for choosing the best filesystem

o%e]

Some filesystems will work better than others depending on how you use them.
For example, reiserFS had the reputation to be best at handling many small files.
ext2 is great in small partitions and on systems with little RAM.

Fortunately, filesystems are easy to benchmark, being transparent to applications:

Format your storage with each filesystem

Copy your data to it

Run your system on it and benchmark its performance.
Keep the one working best in your case.

For read/write partitions, a good default choice would be ext4, and then try
btrfs and f2fs if you need extra performance.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/375

ao Compatibility filesystems

o%e]

Linux also supports several other filesystem formats, mainly to be interoperable with
other operating systems:
vfat (CONFIG_VFAT_FS) for compatibility with the FAT filesystem used in the
Windows world and on numerous removable devices

Also convenient to store bootloader binaries (FAT easy to understand for ROM code)
This filesystem does not support features like permissions, ownership, symbolic links,
etc. Cannot be used for a Linux root filesystem.

Linux now supports the exFAT filesystem too (CONFIG_EXFAT_FS).

ntfs (CONFIG_NTFS_FS) for compatibility with Windows NTFS filesystem.
hfs (CONFIG_HFS_FS) for compatibility with the MacOS HFS filesystem.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

246/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_VFAT_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EXFAT_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NTFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_HFS_FS

ao tmpfs: filesystem in RAM

o%e]

CONFIG_TMPFS
Not a block filesystem of course!

Perfect to store temporary data in RAM: system log files, connection data,
temporary files...

More space-efficient than ramdisks: files are directly in the file cache, grows and
shrinks to accommodate stored files

How to use: choose a name to distinguish the various tmpfs instances you have
(unlike in most other filesystems, each tmpfs instance is different). Examples:
mount -t tmpfs run /var/run

mount -t tmpfs shm /dev/shm

See filesystems/tmpfs in kernel documentation.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 247/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_TMPFS
https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html

Block filesyst
Qo ock filesystems

o%e]

Using block filesystems

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 248/375

ao Creating ext2/ext4 filesystems

o%e]

To create an empty ext2/ext4 filesystem on a block device or inside an
already-existing image file
mkfs.ext2 /dev/sdbl
mkfs.ext4 /dev/sda3
mkfs.ext2 disk.img
To create a filesystem image from a directory containing all your files and
directories
Use the genext2fs tool, from the package of the same name
This tool only supports ext2. Alternative for other filesystems: create a disk image,
format it, mount it (see next slides), copy contents and umount.
genext2fs -d rootfs/ rootfs.img
Your image is then ready to be transferred to your block device

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 249/375

ao Mounting filesystem images
o0

Jo3e!

Once a filesystem image has been created, one can access and modifies its
contents from the development workstation, using the loop mechanism
Example:

genext2fs -d rootfs/ rootfs.img

mkdir /tmp/tst

mount -t ext2 -o loop rootfs.img /tmp/tst

In the /tmp/tst directory, one can access and modify the contents of the
rootfs.img file.

This is possible thanks to loop, which is a kernel driver that emulates a block
device with the contents of a file.

Note: -0 loop no longer necessary with recent versions of mount from GNU
Coreutils. Not true with BusyBox mount.

Do not forget to run umount before using the filesystem image!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 250/375

4@} Creating squashfs filesystems

P Need to install the squashfs-tools package

> Can only create an image: creating an empty squashfs filesystem would be
useless, since it's read-only.
> To create a squashfs image:
® mksquashfs rootfs/ rootfs.sqfs -noappend
® -noappend: re-create the image from scratch rather than appending to it
> Examples mounting a squashfs filesystem:
® Same way as for other block filesystems
® mount -o loop rootfs.sqfs /mnt (filesystem image on the host)
® mount /dev/<device> /mnt (on the target)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

251/375

a@ Mixing read-only and read-write filesystems
o0

g

squashfs A

Good idea to split your block storage into: /
A compressed read-only partition (SquashFs) fead*OH'Yd
. . . compresse
Typically used for the root filesystem (binaries, root fill)esystem
kernel...).
ext4 Block storage

Compression saves space. Read-only access protects

! ' /data
your system from mistakes and data corruption.
A read-write partition with a journaled filesystem (like read-write
user and
eXt4) . configuration
Used to store user or configuration data. data v
Journaling guarantees filesystem integrity after power
tmpfs
off or crashes.
/var
Ram storage for temporary files (tmpfs) read write RAM
volatile data

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 252/375

a@ Issues with flash-based block storage

o%e]

Flash storage made available only through a block interface.

Hence, no way to access a low level flash interface and use the Linux filesystems

doing wear leveling.

No details about the layer (Flash Translation Layer) they use. Details are kept as
trade secrets, and may hide poor implementations.

Not knowing about the wear leveling algorithm, it is highly recommended to limit
the number of writes to these devices.

Using industrial grade storage devices (MMC/SD, USB) is also recommended.

See the Optimizing Linux with cheap flash drives article from Arnd Bergmann and try
his flashbench tool (http://git.linaro.org/people/arnd/flashbench.git/about/)
for finding out the erase block and page size for your storage, and optimizing your

partitions and filesystems for best performance. Note that some SD cards report their
erase block size, available in /sys/bus/mmc/devices/<dev>/preferred_erase_size.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 253/375

https://lwn.net/Articles/428584/
http://git.linaro.org/people/arnd/flashbench.git/about/

a@ Practical lab - Block filesystems
o0

o%e]

Creating partitions on your block storage

Booting your system with a mix of filesystems:
SquashFS for the root filesystem (including
applications), ext4 for configuration and user
data, and tmpfs for temporary system files.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 254/375

a@ Embedded Linux system development

g

Embedded Linux system bOOt“'n

development

© C ight 2004-2022, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/375

Contents
o

g

Using open-source components
Tools for the target device

Networking

System utilities

Language interpreters
Audio, video and multimedia
Graphical toolkits
Databases

Web browsers

System building

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 256/375

a@ Embedded Linux system development

Leveraging open-source components in an
Embedded Linux system

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a@ Third party libraries and applications

g

One of the advantages of embedded Linux is the wide range of third-party libraries
and applications that one can leverage in its product

They are freely available, freely distributable, and thanks to their open-source

nature, they can be analyzed and modified according to the needs of the project
However, efficiently re-using these components is not always easy. One must:

Find these components

Choose the most appropriate ones

Cross-compile them

Integrate them in the embedded system and with the other applications

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/375

a Find existing components
b

o%e]

Look at the list of software packaged by embedded Linux build systems
These are typically chosen for their suitability to embedded systems

Look at other embedded Linux products, and see what their components are (if
possible).

This presentation will also feature a list of components for common needs.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 259/375

a Choosing components
o)

o%e]

Not all free software components are necessarily good to re-use. One must pay
attention to:

Vitality of the developer and user communities. This vitality ensures long-term
maintenance of the component, and relatively good support. It can be measured
by looking at the mailing-list traffic and the version control system activity.

Quality of the component. Typically, if a component is already available through
embedded build systems, and has a dynamic user community, it probably means
that the quality is relatively good.

License. The license of the component must match your licensing constraints.
For example, GPL libraries cannot be used in proprietary applications.

Technical requirements. Of course, the component must match your technical
requirements. But don't forget that you can improve the existing components if a
feature is missing!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/375

Li 1
Q@ icenses (1)

o%e]

All software that are under a free software license give four freedoms to all users
Freedom to use
Freedom to study
Freedom to copy
Freedom to modify and distribute modified copies
See https://www.gnu.org/philosophy/free-sw.html for a definition of Free
Software

Open Source software, as per the definition of the Open Source Initiative, are
technically similar to Free Software in terms of freedoms

See https://www.opensource.org/docs/osd for the definition of Open Source
Software

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 261/375

https://www.gnu.org/philosophy/free-sw.html
https://www.opensource.org/docs/osd

Li 2
Q@ icenses (2)

Free Software licenses fall in two main categories

The copyleft licenses
The non-copyleft licenses

The concept of copyleft is to ask for reciprocity in the freedoms
given to a user.
The result is that when you receive a software under a copyleft
free software license and distribute modified versions of it, you
must do so under the same license

Same freedoms to the new users

It's an incentive to contribute back your changes instead of
keeping them secret

Non-copyleft licenses have no such requirements, and modified
versions can be made proprietary, but they still require
attribution

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 262/375

ao GPL

g

GPN

GNU General Public License Free as in Freedom
Covers around 55% of the free software projects

Including the Linux kernel, BusyBox and many applications
Is a copyleft license

Requires derivative works to be released under the same license
Programs linked with a library released under the GPL must also be released under
the GPL

Some programs covered by version 2 (Linux kernel, BusyBox, U-Boot...)

A number of programs are covered by version 3, released in 2007: gcc, bash, grub,
samba, Qt...
Major change for the embedded market: the requirement that the user must be able
to run the modified versions on the device, if the device is a consumer device

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 263/375

PL: istributi
Q@ G redistribution

o%e]

No obligation when the software is not distributed
You can keep your modifications secret until the product delivery
It is then authorized to distribute binary versions, if one of the following
conditions is met:
Convey the binary with a copy of the source on a physical medium
Convey the binary with a written offer valid for 3 years that indicates how to fetch
the source code
Convey the binary with the network address of a location where the source code can
be found
See section 6. of the GPL license
In all cases, the attribution and the license must be preserved

See sections 4. and 5.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 264/375

ao LGPL

o%e]

LGP

GNU Lesser General Public License Free as in Freedom
Covers around 10% of the free software projects

A copyleft license
Modified versions must be released under the same license
But, programs linked against a library under the LGPL do not need to be released
under the LGPL and can be kept proprietary.
However, the user must keep the ability to update the library independently from the
program. Dynamic linking is the easiest solution. Statically linked executables are
only possible if the developer provides a way to relink with an update (with source

code or linkable object files).
If this constraint is too strong for you, use a library with a more permissive license if
you can (such as the mus/ C library, with MIT license).

Used instead of the GPL for most of the libraries, including the C libraries

Also available in two versions, v2 and v3

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/375

a Non-copyleft licenses
b

g

A large family of non-copyleft licenses that are relatively similar in their
requirements

A few examples
Apache license (around 4%)
BSD license (around 6%)
MIT license (around 4%)
X11 license
Artistic license (around 9 %)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 266/375

4% BSD license

Copyright (c) <year>, <copyright holder>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the <organization> nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 267/375

a Is this free software?
o)

o%e]

Most of the free software projects are covered by about 10 well-known licenses, so
it is fairly easy for the majority of projects to get a good understanding of the
license

Check Free Software Foundation's opinion
https://www.fsf.org/licensing/licenses/

Check Open Source Initiative's opinion

https://www.opensource.org/licenses

Otherwise, read the license text

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 268/375

https://www.fsf.org/licensing/licenses/
https://www.opensource.org/licenses

a Licensing: examples
o)

o%e]

You distribute a system including GPL or LGPL software
You must be ready to distribute the corresponding source code to your customers.

You make modifications to the Linux kernel (to add drivers or adapt to your
board), to BusyBox, U-Boot or other GPL software

You must release the modified versions under the same license.
You make modifications to the C library or any other LGPL library
You must release the modified versions under the same license
You create an application that relies on LGPL libraries

You can keep your application proprietary, but you must link dynamically with the
LGPL libraries

You make modifications to non-copyleft licensed software
You can keep your modifications proprietary, but you must still credit the authors

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 269/375

ao Respect free software licenses (1)
o0

o%e]

Free Software is not public domain software, the distributors have obligations due
to the licenses

Before using a free software component, make sure the license matches your project
constraints

Make sure to keep a complete list of the free software packages you use, the original
version numbers you used, and to keep your modifications and adaptations
well-separated from the original version.

Buildroot and Yocto Project can generate this list for you!

Conform to the license requirements before shipping the product to the customers.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/375

ao Respect free software licenses (2)
o0

o%e]

Free Software licenses have been enforced successfully in courts

Risks:
Users complaining to copyright owners, who could sue you.
A competitor could look for copyright violations in your firmware (binary scanning
tools exist) to try to have your product withdrawn from the market until this is fixed.
Organizations which can help solving issues:
Software Freedom Law Center, https://www.softwarefreedom.org/
Software Freedom Conservancy, https://sfconservancy.org/

Ask your legal department!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 271/375

https://www.softwarefreedom.org/
https://sfconservancy.org/

a@ Keeping changes separate (1)

o%e]

When integrating existing open-source components in your project, it is
sometimes needed to make modifications to them

Better integration, reduced footprint, bug fixes, new features, etc.
Instead of mixing these changes, it is much better to keep them separate from the
original component version

If the component needs to be upgraded, easier to know what modifications were

made to the component
If support from the community is requested, important to know how different the

component we're using is from the upstream version
Makes contributing the changes back to the community possible

It is even better to keep the various changes made on a given component separate

Easier to review and to update to newer versions

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 272/375

60 Keeping changes separate (2)

o%e]

The simplest solution is to use Quilt

Quilt is a tool that allows to maintain a stack of patches over source code
Makes it easy to add, remove modifications from a patch, to add and remove
patches from stack and to update them
The stack of patches can be integrated into your version control system
https://savannah.nongnu.org/projects/quilt/

Another solution is to use a version control system

Import the original component version into your version control system
Maintain your changes in a separate branch

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

273/375

https://savannah.nongnu.org/projects/quilt/

a@ Embedded Linux system development

g

Tools for the target device: Networking

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a ssh server and client: Dropbear
o)

o%e]

https://matt.ucc.asn.au/dropbear/dropbear.html
Very small memory footprint ssh server for embedded systems
Satisfies most needs. Both client and server!

Size: 204 KB, dynamically compiled with musl on ARM
(Buildroot 2020.11 with Bootlin musl toolchain)
Useful to:

Get a remote console on the target device
Copy files to and from the target device (scp or rsync).

An alternative to OpenSSH, used on desktop and server systems.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

275/375

https://matt.ucc.asn.au/dropbear/dropbear.html

Q} Web servers
q

» BusyBox http server. https://busybox.net
® Tiny: only adds 20 K to BusyBox (dynamically linked on arm,
with all features enabled.)
® Sufficient features for many devices with a web interface,
including CGl, http authentication, script support (like PHP, with
a separate interpreter), reverse proxy...
® License: GPL

» Other possibilities: lightweight servers like Boa, thttpd, lighttpd,
nginx, etc

» Some products are using Node.js, which is lightweight enough to
be used. low.js (https://github.com/neonious/lowjs) is even
lighter, and is available on Linux and microcontrollers.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

276/375

https://busybox.net
https://github.com/neonious/lowjs

N k utilities (1
Qo etwork utilities (1)

o%e]

avahi is an implementation of Multicast DNS Service Discovery, that allows
programs to publish and discover services on a local network

bind, a DNS server

iptables, the user space tools associated to the Linux firewall, Netfilter

iw and wireless tools, the user space tools associated to Wireless devices
netsnmp, implementation of the SNMP protocol (device monitoring)

chrony, implementation of the Network Time Protocol, for clock synchronization

openssl, a toolkit for SSL and TLS connections

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 277/375

ao Network utilities (2)

o%e]

pppd, implementation of the Point to Point Protocol, used for dial-up connections
samba, implements the SMB and CIFS protocols, used by Windows to share files
and printers

coherence, a UPnP/DLNA implementation

vsftpd, proftpd, FTP servers

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 278/375

a@ Embedded Linux system development

g

Tools for the target device: System utilities

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

System utilities
s

o%e]

dbus, an inter-application object-oriented communication bus

gpsd, a daemon to interpret and share GPS data

libusb, a user space library for accessing USB devices without writing an in-kernel
driver

Utilities for kernel subsystems: i2c-tools for I12C, input-tools for input, mtd-utils
for MTD devices, usbutils for USB devices

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 280/375

a@ Embedded Linux system development

g

Tools for the target device: Language
Interpreters

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a Language interpreters
od)

o%e]

Interpreters for the most common scripting languages are available. Useful for
Application development
Web services development
Scripting

Supported languages

Shell (bash, sh...)

Lua, easy to embed in C applications
Python

Perl

Ruby

TCL

PHP

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 282/375

a@ Embedded Linux system development

g

Tools for the target device: Audio, video and
multimedia

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 283/375

a Audio, video and multimedia
o)

o%e]

GStreamer, a multimedia framework

Allows to decode/encode a wide variety of codecs.
Supports hardware encoders and decoders through plugins, proprietary/specific
plugins are often provided by SoC vendors.

alsa-lib, the user space library associated to the ALSA kernel sound subsystem

Directly using encoding and decoding libraries, if you decide not to use
GStreamer:

libavcodec: from the ffmpeg project, used in players such vlc and mplayer, and

supporting most audio and video codecs (mpeg4, h264, vp8, vp9...)

libvpx: vp8 and vp9 video encoding

libflac: FLAC: Free Lossless Audio Codec

libopus: latest greatest lossy audio codec

libvorbis: lossy audio codec, obsoleted by Opus

libspeex: audio codec optimized for human speech, obsoleted by Opus

libmad: to decode mp3 audio

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

284/375

a@ Embedded Linux system development

g

Tools for the target device: Graphical toolkits

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 285/375

a@ Embedded Linux system development

g

Graphical toolkits: “Low-level” solutions and
layers

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 286/375

X.org - KDri
Qo org rive

o%e]

Stand-alone simplified version of the X server, for embedded
systems

Formerly know as Tiny-X
Kdrive is integrated in the official X.org server

Works on top of the Linux frame buffer, thanks to the Xfbdev -
variant of the server
Real X server

Fully supports the X11 protocol: drawing, input event handling,
etc.
Allows to use any existing X11 application or library

Still maintained, but now legacy.
X11 license
https://www.x.org

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 287/375

https://www.x.org

a Kdrive: architecture
o)

g

Application
Application
Toolkit

X.org KDrive server <€<—>» Compositor

Kernel

Hardware

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 288/375

a Kdrive: usage
b

g

Can be directly programmed using Xlib / XCB
Low-level graphic library, rarely used

Or, usually used with a toolkit on top of it
Gtk
Qt
Enlightenment Foundation Libraries
Others: Fltk, WxEmbedded, etc

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

289/375

60 Wayland

o%e]

A simpler replacement for X

Wayland is a protocol for a compositor to talk to its clients as
well as a C library implementation of that protocol.

Weston: a minimal and fast reference implementation of a
Wayland compositor, and is suitable for many embedded and
mobile use cases.

Most graphical toolkits (Gtk, Qt, EFL...) support Wayland now.

Most desktop distributions support it: Fedora, Debian, Ubuntu
(from 21.04 on)
https://en.wikipedia.org/wiki/Wayland_(display_server_
protocol)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 290/375

https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)
https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)

a Wayland: architecture
o)

g

Application
Application
Toolkit

Wayland compositor

/X
=

Kernel

evdev I

Hardware

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 291/375

a@ Embedded Linux system development

g

Graphical toolkits: “High-level” solutions

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 292/375

Qo Gtk

g

Gtk

The famous toolkit, providing widget-based high-level APls to X.orgtDrive
develop graphical applications v
Standard APl in C, but bindings exist for various languages: K:"e'
C++, Python, etc. -
Works on top of X.org and Wayland.

No windowing system, a lightweight window manager needed to -
run several applications. Possible solution: Matchbox. v
License: LGPL Wayland
Multiplatform: Linux, MacOS, Windows. \

Kernel

https://www.gtk.org 4

Hardware

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 293/375

https://www.gtk.org

a Gtk stack components
o)

o%e]

Glib, core infrastructure

Object-oriented infrastructure GObject

Event loop, threads, asynchronous queues, plug-ins, memory allocation, 1/0
channels, string utilities, timers, date and time, internationalization, simple XML
parser, regular expressions

Data types: memory slices and chunks, linked lists, arrays, trees, hash tables, etc.

Pango, internationalization of text handling
ATK, accessibility toolkit

Cairo, vector graphics library

Gtk+, the widget library itself

The Gtk stack is a complete framework to develop applications

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 294/375

Fle Layer Object Path Text Fit
B E
N T SUUTSUU . ST TOUN. ST o * s s L W
-
N~ &
~

=
o - -

@
o3 Geaulheion @ causluidch
& Alignment: Bl
e =
® L]

o [9]e ~
> oo b >
A o7
1% 3
A %

-] e 6
[-
x a
” El Arrang a ™
® - s Agand st AL ~a

E Export PNG mage (ShiftsCtrlsE) Nk
» A DFFilland stroke (shift+ctrlsF) Al
X
Fit Nag,

stroke: N/A”"

Unfortunately GTK is losing traction in embedded.
Mer, the descendent of Maemo, a GTK based framework for tablets and phones, has
now been implemented in EFL (see next slides).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 295/375

7 Q)

» The other famous toolkit, providing widget-based
high-level APIs to develop graphical applications
» Implemented in C+-+
® the C+4++ library is required on the target system
¢ standard API in C++, but with bindings for other
languages
» Works either on top of
° EGLFS
Linux framebuffer
X11
Wayland

» Multiplatform: Linux, MacOS, Windows.
> https://www.qt.io/

v
DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 296/375

https://www.qt.io/

(7 Q)

o%e]

Qt is more than just a graphical toolkit, it also offers a complete development
framework: data structures, threads, network, databases, XML, etc.

See our presentation Qt for non graphical applications presentation at ELCE 2011
(Thomas Petazzoni): https://j.mp/WAPK85

Qt Embedded has an integrated windowing system, allowing several applications
to share the same screen

Very well documented

License: mix of LGPLv3 and GPLv3 (and LGPLv2 and GPLv2 for some parts),
making it difficult to implement non GPL applications. According to customers,
the commercial license is very expensive (about 5 USD per unit for volumes in
thousands of devices).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 297/375

https://j.mp/W4PK85

Doe, Johnny M.
= 211258
MEDAS

Blood Pressure Meter Pulse Oximeter

'»J LL SYS DIA

mmHg mmHg 81

Insulin Pump

Basal Rate FastBolus Slow Bolus Glucose
Urhr u Urhr mg/dl

Spirometry

Doe, Johr M. .
DA A lonnmy M Des, dohnny .

Blood Pressure Meter Fuise Oximeter

1655, 7

st Pump
FaotBolus Siow Bolus
8 1.223

o

G o L
Spiometry MM/ IO \
opm

Source: https://www.qt.io/qt-for-device-creation/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 298/375

https://www.qt.io/qt-for-device-creation/

ao Other graphical toolkits

o%e]

Enlightenment Foundation Libraries (EFL) / Elementary
Very powerful. Supported by Samsung, Intel and Free.fr.
Work on top of X or Wayland.

License: BSD
https://www.enlightenment.org/about-efl

Fast Light Toolkit (FLTK)

Very lightweight, multi-platform, widget library written in C++
The "hello” program fits in 100 KiB, statically linked

Work on top of X or Wayland (port in progress).

License: LGPL

https://www.fltk.org/

See https://en.wikipedia.org/wiki/List_of_widget_toolkits

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 299/375

https://www.enlightenment.org/about-efl
https://www.fltk.org/
https://en.wikipedia.org/wiki/List_of_widget_toolkits

4@} Further details on Linux graphics

Check out the freely available materials from our
training course on Linux graphics:

> Image processing theory, hardware, kernel and
userspace aspects...

» More than 200 pages
https://bootlin.com/training/graphics

Light representation, color quantization

> Light itself must be quantized in digital representations
distinct from and unrelated to spatial quantization
> Translating light information (colors) to numbers:
> Using a translation referential called colorspace
> The translated color has coordinates in the colorspace
eg. 3 for a human-eye-alike referential: red, green, blue
> Color coordinates are quantized with:
> A given resolution: the smallest possible color difference
> A given range: the span of representable colors
> Different approaches exist for color quantization:

v

Uniform quantization in the color range (most common)

values are attributed to colors with a regular step (resolution)

v

Irregular quantization with indexed colors (palettes)
values are attributed to colors as needed

C, tem-agnostic overview (ill i)

T 1T 5+

Window
Manager Display

5| 20 render
library

Server 20 render
primitives

30 render
Tibrary

Rermel space
Y__V
et] [zorencer]

OO e i e i g . i

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

300/375

https://bootlin.com/training/graphics

a@ Embedded Linux system development

g

Tools for the target device: Databases

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a@ Lightweight database - SQLite

o%e]

https://www.sqglite.org

SQLite is a small C library that implements a self-contained, embeddable,
lightweight, zero-configuration SQL database engine
The database engine of choice for embedded Linux systems

Can be used as a normal library
Can be directly embedded into a application, even a proprietary one since SQLite is
released in the public domain

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 302/375

https://www.sqlite.org

a@ Embedded Linux system development

g

Tools for the target device: Web browsers

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

ao WebKit

o%e]

https://webkit.org/

Web browser engine. Application framework that can be used to J(@

develop web browsers or add HTML rendering capability to your
applications. You could also replace your application by a
full-screen browser (easier to implement).

License: portions in LGPL and others in BSD. Proprietary
applications allowed.

Used by many web browsers: Safari, iPhone and Android default
browsers ... Google Chrome now uses a fork of its WebCore
component). Used by e-mail clients too to render HTML.

Multiple graphical back-ends: Qt, GTK, EFL...

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 304/375

https://webkit.org/

a@ Embedded Linux system development

g

System building

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 305/375

%System building: goal and solutions

> Goal

® Integrate all the software components, both
third-party and in-house, into a working root
filesystem

® |t involves the download, extraction,
configuration, compilation and installation of
all components, and possibly fixing issues and
adapting configuration files

> Several solutions

® Manually
® System building tools
® Distributions or ready-made filesystems

Penguin picture: https://bit.1ly/1PwDklz

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

306/375

https://bit.ly/1PwDklz

ao System building: manually

o%e]

Manually building a target system involves downloading, configuring, compiling
and installing all the components of the system.

All the libraries and dependencies must be configured, compiled and installed in
the right order.

Sometimes, the build system used by libraries or applications is not very
cross-compile friendly, so some adaptations are necessary.

There is no infrastructure to reproduce the build from scratch, which might cause
problems if one component needs to be changed, if somebody else takes over the
project, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 307/375

ao System building: manually (2)

o%e]

Manual system building is not recommended for production projects

However, using automated tools often requires the developer to dig into specific
issues

Having a basic understanding of how a system can be built manually is therefore
very useful to fix issues encountered with automated tools

We will first study manual system building, and during a practical lab, create a
system using this method
Then, we will study the automated tools available, and use one of them during a lab

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

308/375

a System foundations
o)

o%e]

A basic root file system needs at least
A traditional directory hierarchy, with /bin, /etc, /1ib, /root, /usr/bin,
/usr/lib, /usr/share, /usr/sbin, /var, /sbin
A set of basic utilities, providing at least the init program, a shell and other
traditional UNIX command line tools. This is usually provided by BusyBox
The C library and the related libraries (thread, math, etc.) installed in /1ib
A few configuration files, such as /etc/inittab, and initialization scripts in
/etc/init.d

On top of this foundation common to most embedded Linux systems, we can add
third-party or in-house components

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 309/375

o%e]

a@ Target and build spaces

The system foundation, BusyBox and C library, are the core of the target root

filesystem

However, when building other components, one must distinguish two directories
The target space, which contains the target root filesystem, everything that is
needed for execution of the application
The build space, which will contain a lot more files than the target space, since it is
used to keep everything needed to compile libraries and applications. So we must
keep at least the headers, binaries and configuration files.

needed for further
compilations

Sources

make install

) Build space) Target space

copy +strip
(only files needed at runtime)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

310/375

Build systems
s

Each open-source component comes with a mechanism to configure, compile and
install it
A basic Makefile

Need to read the Makefile to understand how it works and how to tweak it for
cross-compilation

A build system based on the Autotools
As this is the most common build system, we will study it in details
CMake, https://cmake.org/

More recent and simpler than the autotools. Used by (sometimes large) projects
such as KDE, KiCad, LLVM / Clang, Scribus, OpenCV, Qt (since version 6).

Meson, https://mesonbuild.com/

Even more recent. Faster and simple to use. Now used by projects such as GNOME
(partially), GTK+, Gstreamer, Mesa, Systemd, Wayland (Weston).

Many more exist

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

311/375

https://cmake.org/
https://mesonbuild.com/

a Autotools and friends
o)

g

A family of tools, which associated together form a complete and extensible build
system
autoconf is used to handle the configuration of the software package
automake is used to generate the Makefiles needed to build the software package
pkgconfig is used to ease compilation against already installed shared libraries
libtool is used to handle the generation of shared libraries in a system-independent
way

Most of these tools are old and relatively complicated to use, but they are used by

a majority of free software packages today. One must have a basic understanding
of what they do and how they work.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 312/375

automake / autoconf / autoheader

=

autoconf
; configure

configure.in

» . .
> config.h.in
autoheader

automake

Makefile.am

Written by the |
developer

2» Makefile.in

Generated by the developer
using the autotools

> config.h
./configure
P Makefile

Generated by the user
by running the ./configure script

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

313/375

a automake / autoconf
bdh)

o%e]

Files written by the developer
configure.in describes the configuration options and the checks done at configure
time
Makefile.am describes how the software should be built
The configure script and the Makefile.in files are generated by autoconf and
automake respectively.
They should never be modified directly
They are usually shipped pre-generated in the software package, because there are
several versions of autoconf and automake, and they are not completely compatible
The Makefile files are generated at configure time, before compiling
They are never shipped in the software package.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

314/375

60 Configuring and compiling: native case
o0

o%e]

The traditional steps to configure and compile an autotools based package are

Configuration of the package
./configure

Compilation of the package
make

Installation of the package
make install

Additional arguments can be passed to the ./configure script to adjust the
component configuration (run ./configure --help)

Only the make install target needs to be done as root if the installation should
take place system-wide

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 315/375

60 Configuring and compiling: cross case (1)

o%e]

For cross-compilation, things are a little bit more complicated.

At least some of the environment variables AR, AS, LD, NM, CC, GCC, CPP, CXX,
STRIP, OBJCOPY must be defined to point to the proper cross-compilation tools.
The host tuple is also by default used as prefix.

configure script arguments:

--host: mandatory but a bit confusing. Corresponds to the target platform the
code will run on. Example: --host=arm-1inux

--build: build system. Automatically detected.

--target is only for tools generating code.

It is also recommended to pass the —--prefix argument. It defines from which
location the software will run in the target environment. We recommend /usr
instead of the default setting (/usr/local).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/375

Jo3e!

60 Configuring and compiling: cross case (2)

If one simply runs make install, the software will be installed in the directory
passed as --prefix. For cross-compiling, one must pass the DESTDIR argument
to specify where the software must be installed.

Making the distinction between the prefix (as passed with --prefix at configure
time) and the destination directory (as passed with DESTDIR at installation time)

is very important.

export PATH=/usr/local/arm-linux/bin:$PATH
export CC=arm-linux-gcc

export STRIP=arm-linux-strip

./configure --host=arm-linux --prefix=/usr
make

make DESTDIR=$HOME/rootfs install

Host

V/home/tux/rootfs
V/home/tux/rootfs
:/home/tux/rootfs
:/home/tux/rootfs
E/home/tux/rootfs

DESTDIR

5 Target

usr:rbin/aplay

usrybin/arecord

usrz’bin/speaker—test

usrysbin/alsactl
usryshare/sounds/alsa/Front_Center.wav

prefix

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

317/375

4@} Installation (1)

> The autotools based software packages provide both install and install-strip
make targets, used to install the software, either stripped or unstripped.

> For applications, the software is usually installed in <prefix>/bin, with
configuration files in <prefix>/etc and data in
<prefix>/share/<application>/
> The case of libraries is a little more complicated:
® In <prefix>/1ib, the library itself (a .so.<version>), a few symbolic links, and the
libtool description file (a .1a file)
® The pkgconfig description file in <prefix>/lib/pkgconfig
® Include files in <prefix>/include/
® Sometimes a <libname>-config program in <prefix>/bin (older alternative to

pkgconfig)
® Documentation in <prefix>/share/man or <prefix>/share/doc/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

318/375

4% Installation (2)

Contents of usr/1ib after installation of libpng and zlib

> libpng libtool description files
./1ib/1libpngl2.1a
./1lib/1libpng.la -> libpngl2.1la

> libpng static version
./1ib/1libpngi2.a
./1ib/libpng.a -> libpngl2.a

> libpng dynamic version
./1ib/1libpng.s0.3.32.0
./1ib/1libpng12.s0.0.32.0
./1ib/1ibpng12.s0.0 -> 1libpngl12.50.0.32.0
./1ib/1libpngl12.so -> libpngl12.s0.0.32.0
./1lib/libpng.so -> libpngl12.so
./1ib/1libpng.so0.3 -> libpng.s0.3.32.0

> libpng pkg-config description files
./1lib/pkgconfig/libpngl2.pc
./1lib/pkgconfig/libpng.pc -> libpngl12.pc

> zlib dynamic version
./1lib/1ibz.s0.1.2.3
./1ib/1libz.so -> libz.s0.1.2.3
./1ib/1libz.so0.1 -> libz.so0.1.2.3

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

319/375

a@ Installation in the build and target spaces
o0

g

From all these files, everything except documentation is necessary to build an
application that relies on libpng.
These files will go into the build space

However, only the library .so binaries in <prefix>/1ib and some symbolic links
are needed to execute the application on the target.

Only these files will go in the target space
The build space must be kept in order to build other applications, to recompile
existing ones, and to debug your applications.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 320/375

4@} pkg-config

> pkg-config is a tool that allows to query a small database to get information on
how to compile programs that depend on libraries

> The database is made of .pc files, installed by default in
<prefix>/lib/pkgconfig/.

> pkg-config is used by the configure script to get the library configurations

P It can also be used manually to compile an application:
arm-linux-gcc -o test test.c $(pkg-config --libs --cflags thelib)

> By default, pkg-config looks in /usr/lib/pkgconfig for the *.pc files, and
assumes that the paths in these files are correct.
> PKG_CONFIG_LIBDIR allows to set another location for the *.pc files.

P PKG_CONFIG_SYSROOT_DIR allows to prepend a directory to the paths mentioned
in the .pc files and appearing in the pkg-config output.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 321/375

4@,‘3 Let's find the libraries

| 2

>

When compiling an application or a library that relies on other libraries, the build
process by default looks in /usr/1ib for libraries and /usr/include for headers.

The first thing to do is to set the CFLAGS and LDFLAGS environment variables:
export CFLAGS=-I/my/build/space/usr/include/

export LDFLAGS=-L/my/build/space/usr/lib

The libtool files (. 1a files) must be modified because they include the absolute
paths of the libraries:

- libdir='/usr/lib’

+ libdir="'/my/build/space/usr/1ib’

The PKG_CONFIG_LIBDIR environment variable must be set to the location of the
.pc files, typically /my/build/space/usr/lib/pkgconfig

The PKG_CONFIG_SYSROOT_DIR variable must be set to the build space directory.

bootlin - Kernel, drive

rs and embedded Linux - Development, consulting, training and support - https://bootlin.com 322/375

60 Further details about autotools
o0

038!

Conference

See our Demystification tutorial e
presentation about the GNU Autotools O operisumy
by Thomas Petazzoni, 2016:
slides (101 pages!) !, video 2

1
https://bootlin.com/pub/conferences/2016/elc/petazzoni-
autotools-tutorial/petazzoni-autotools-tutorial.pdf

https://youtu.be/alNRxIA9ahA

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 323/375

https://bootlin.com/pub/conferences/2016/elc/petazzoni-autotools-tutorial/petazzoni-autotools-tutorial.pdf
https://bootlin.com/pub/conferences/2016/elc/petazzoni-autotools-tutorial/petazzoni-autotools-tutorial.pdf
https://youtu.be/a1NRxIA9ahA

a@ Practical lab - Third party libraries and applications

g

Manually cross-compiling applications and
libraries

Learning about common techniques and issues.

Compile and run an audio player application!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 324/375

ao System building tools: principle

o%e]

Different tools are available to automate the process of building a target system,
including the kernel, and sometimes the toolchain.

They automatically download, configure, compile and install all the components in
the right order, sometimes after applying patches to fix cross-compiling issues.
They already support a large number of packages, that should fit your main
requirements, and are easily extensible.

The build becomes reproducible, which allows to easily change the configuration
of some components, upgrade them, fix bugs, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 325/375

60 Available system building tools

Large choice of tools

Buildroot, developed by the community
https://buildroot.org

See our dedicated course and training materials:
https://bootlin.com/training/buildroot/

OpenWRT, originally a fork of Buildroot for wireless routers, now a more generic project
https://openwrt.org

PTXdist, developed by Pengutronix
https://www.ptxdist.org
Similar configuration interface (menuconfig), but a bit difficult to grasp at first.

OpenEmbedded, more flexible but also far more complicated
https://www.openembedded.org and its industrialized version Yocto Project. See our
dedicated course and training materials: https://bootlin.com/training/yocto/.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 326/375

https://buildroot.org
https://bootlin.com/training/buildroot/
https://openwrt.org
https://www.ptxdist.org
https://www.openembedded.org
https://bootlin.com/training/yocto/

..0

Jo3e!

Rbot &

Making "Embedded Linux Easy

uild

F

(1)

Allows to build a toolchain, a root filesystem image with many
applications and libraries, a bootloader and a kernel image

Or any combination of the previous items

Supports building uClibc, glibc and musl toolchains, either built
by Buildroot, or external

Over 2800 applications or libraries integrated, from basic utilities
to more elaborate software stacks: Wayland, GStreamer, Qt,
Gtk, WebKit, Python, PHP, etc.
Good for small to medium size embedded systems, with a fixed
set of features

No support for generating packages (.deb or .1ipk)

Needs complete rebuild for most configuration changes.
Active community, releases published every 3 months. One LTS
release made every year (YYYY.02 so far).

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

327/375

Buildroot (2)

Configuration takes place through a *config
interface similar to the kernel

make menuconfig

Allows to define

Architecture and specific CPU

Toolchain configuration

Set of applications and libraries to integrate
Filesystem images to generate

Kernel and bootloader configuration

Build by just running
make

/hone/thomas/local/buildroot/.config - buildroot v2016.11-git Configuration

Buildroot Configuration

Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y» selectes a feature,

while <N> will exclude a feature. Press <Esce<Esc> to exit, <?> for
Help, </> for Search. Legend: [*] feature is selected [] feature

| | Target Architecture (arm) --->|

Target Architecture Variant (arm926t) --->
Target ABI (EABI) --->

Build options --->

Toolchain --->

System configuration --->

Package Selection for the target --->
Target filesystem options --->
Bootloaders --->

Kernel --->

Load an Alternate Configuration File

Save an Alternate Configuration File

<Exit> < Help >

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

328/375

a@ Buildroot: adding a new package (1)

o%e]

A package allows to integrate a user application or library to Buildroot

Each package has its own directory (such as package/gqview). This directory
contains:
A Config.in file (mandatory), describing the configuration options for the package.
At least one is needed to enable the package. This file must be sourced from
package/Config.in
A gqview.mk file (mandatory), describing how the package is built.
A gqview.hash file (optional, but recommended), containing hashes for the files to
download, and for the license file.
Patches (optional). Each file of the form *.patch will be applied as a patch.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 329/375

%Buildroot: adding a new package (2)

> For a simple package with a single configuration option to enable/disable it, the
Config.in file looks like:

config BR2_PACKAGE_GQVIEW
bool "gqgview”
depends on BR2_PACKAGE_LIBGTK2
help
GQview is an image viewer for UNIX operating systems

http://prdownloads.sourceforge.net/gqview

> It must be sourced from package/Config.in:

source "package/ggview/Config.in”

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 330/375

4@3 Buildroot: adding new package (3)

> Create the gqview.mk file to describe the build steps

GQVIEW_VERSION = 2.1.5

GQVIEW_SOURCE = gqview-$(GQVIEW_VERSION).tar.gz
GQVIEW_SITE = http://prdownloads.sourceforge.net/gqview
GQVIEW_DEPENDENCIES = host-pkgconf libgtk2
GQVIEW_CONF_ENV = LIBS="-1m"

GQVIEW_LICENSE = GPL-2.0

GQVIEW_LICENSE_FILES = COPYING

$(eval $(autotools-package))

> The package directory and the prefix of all variables must be identical to the suffix
of the main configuration option BR2_PACKAGE _GQVIEW

> The autotools-package infrastructure knows how to build autotools packages.
A more generic generic-package infrastructure is available for packages not
using the autotools as their build system.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 331/375

ao OpenEmbedded / Yocto Project

o%e]

The most versatile and powerful embedded Linux build system

A collection of recipes (.bb files)
A tool that processes the recipes: bitbake

Integrates 2000+ application and libraries, is highly configurable, can generate
binary packages to make the system customizable, supports multiple
versions/variants of the same package, no need for full rebuild when the
configuration is changed.

Configuration takes place by editing various configuration files
Allows to generate and maintain custom distributions

Good for larger embedded Linux systems, or people looking for more
configurability and extensibility

Drawbacks: very steep learning curve, very long first build.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 332/375

a Distributions - Debian
o)

o%e]

Debian GNU/Linux, https://www.debian.org

Provides the easiest environment for quickly building prototypes and
developing applications. Countless runtime and development packages
available.

But probably too costly to maintain and unnecessarily big for production
systems.

Available on multiple architectures: ARM (armel, armhf, arm64), MIPS,
PowerPC, RISC-V (in progress)...

Software is compiled natively by default.

Use the debootstrap command to build a root filesystem for your
architecture, with a custom selection of packages.

ELBE (https://elbe-rfs.org) is a more advanced environment for
generating custom root filesystems based on Debian. See our blog post *

1
https://bootlin.com/blog/elbe-automated-building-of-ubuntu-images-for-a-raspberry-pi-3b/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 333/375

https://www.debian.org
https://elbe-rfs.org
https://bootlin.com/blog/elbe-automated-building-of-ubuntu-images-for-a-raspberry-pi-3b/

a Distributions - Others
o)

o%e]

Fedora
https://fedoraproject.org/wiki/Architectures/ARM

Supported on various recent ARM boards (such as
Beaglebone Black and Raspberry Pi)

Supports QEMU emulated ARM boards too (Versatile
Express board)

Shipping the same version as for desktops!
Ubuntu

https://ubuntu.com/download/iot

Ubuntu Desktop supported on Raspberry Pi

Ubuntu Core targeting more real embedded projects,
packaging and securing applications through Snaps, and
offering up to 10 years of security updates.

fedora®

Image credits: https://bit.ly/2EzmJLF

ubuntu®

Image credits:
https://tinyurl.com/f4zxj5kw

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

334/375

https://fedoraproject.org/wiki/Architectures/ARM
https://ubuntu.com/download/iot
https://bit.ly/2EzmJLF
https://tinyurl.com/f4zxj5kw

a@ Embedded distributions

g

Even if you don’t use them for final products, they can be useful to make demos quickly

Alpine Linux: https://www.alpinelinux.org/

Security oriented distribution based on Mus/ and BusyBox
Supports x86 and arm, both 32 and 64 bit, plus ppc64 and s390 @ U i
Multiple types of downloads supported OLIrL)erwQe
Standard version: about 130 MB
Mini root filesystem: about 4 MB (without kernel)
Other images: Raspberry Pi, Virtual, Xen, Generic ARM...

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 335/375

https://www.alpinelinux.org/

a Application frameworks
o)

o%e]

Not real distributions you can download. Instead, they implement
middleware running on top of the Linux kernel and allowing to develop
applications.

Tizen: https://www.tizen.org/
Targeting smartphones, wearables (watches), smart TVs and In

<3
Vehicle Infotainment devices. TI 2 E N >
Supported by big phone manufacturers (mostly Samsung) and "

operators

HTML5 base application framework.

Wikipedia: 21% of the smart TVs market share in 2018
See https://en.wikipedia.org/wiki/Tizen

android

Android: https://www.android.com/
Google's distribution for phones, tablets, TVs, cars...

. . . Image credits:
Except the Linux kernel, very different user space than other Linux https://frama. link/yhPuj_oS
distributions. Mostly successful in its target markets though.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 336/375

https://www.tizen.org/
https://en.wikipedia.org/wiki/Tizen
https://www.android.com/
https://frama.link/yhPuj_oS

a Practical lab - Buildroot
o)

o%e]

Rebuild the same system, this time with
Buildroot.

See how easier it gets!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 337/375

a@ Embedded Linux application development

g

Embedded Linux bootll'n

application development

© C ight 2004-2022, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 338/375

Contents
o

o%e]

Application development

Developing applications on embedded Linux
Building your applications

Source management
Integrated development environments (IDEs)
Version control systems

Debugging and analysis tools

Debuggers
Memory checkers
System analysis

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 339/375

a@ Embedded Linux application development

g

Developing applications on embedded Linux

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a Application development
o)

o%e]

An embedded Linux system is just a normal Linux system, with usually a smaller
selection of components

In terms of application development, developing on embedded Linux is exactly the
same as developing on a desktop Linux system
All existing skills can be re-used, without any particular adaptation

All existing libraries, either third-party or in-house, can be integrated into the
embedded Linux system

Taking into account, of course, the limitation of the embedded systems in terms of
performance, storage and memory

Application development could start on x86, even before the hardware is available.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 341/375

ao Programming language (1)

o%e]

The programming language for system-level applications in Linux is usually C
The C library is already present on your system, nothing to add
C++ can be used for larger applications
The C++ library must be added to the system
Some libraries, including Qt, are developed in C++ so they need the C++ library on
the system anyway
The Rust language is increasingly popular in embedded and system applications,
as an alternative to C and C++.
See https://www.rust-lang.org/what/embedded for attractive features.

Suggestion to start with Rust if you neither know C and C++.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 342/375

https://www.rust-lang.org/what/embedded

ao Programming language (2)

o%e]

Scripting languages can also be useful for quick application development, web
applications or scripts
But they require an interpreter on the embedded system and have usually higher
memory consumption and slightly lower performance
Most popular: Python, shell

All programming languages can be used: Lua, Ada, Java, Go...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 343/375

ao C library or higher-level libraries?

o%e]

For many applications, the C library already provides a relatively large set of
features
file and device 1/0O, networking, threads and synchronization, inter-process
communication
Thoroughly described in the glibc manual, or in any Linux system programming book
However, the API carries a lot of history and is not necessarily easy to grasp for new
comers

Therefore, using a higher level framework, such as Qt or the Gtk/Glib stack,
might be a good idea

These frameworks are not only graphical libraries, their core is separate from the
graphical part

But of course, these libraries have some memory and storage footprint, in the order
of a few megabytes

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 344/375

a@ Building your applications

o%e]

For simple applications that do not need to be really portable or provide
compile-time configuration options, a simple Makefile will be sufficient

For more complicated applications, or if you want to be able to run your
application on a desktop Linux PC and on the target device, using a build system
is recommended

autotools is ancient, complicated but very widely used.
We recommend to invest in simpler and more modern tools instead, such as CMake

and Meson.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

345/375

@o Simple Makefile (1)

o%e]

Case of an application that only uses the C library, contains two source files and
generates a single binary

CROSS_COMPILE?=arm-linux-
CC=$(CROSS_COMPILE)gcc
OBJS=foo.0 bar.o

all: foobar

foobar: $(0BJS)
< Tab>» $(CC) -o %@ $*

clean:
< Tab>» $(RM) -f foobar $(0BJS)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 346/375

Qo Simple Makefile (2)

o%e]

Case of an application that uses the Glib and the GPS libraries

CROSS_COMPILE?=arm-1linux-
LIBS=1libgps glib-2.0
0BJS=f00.0 bar.o

CC=$(CROSS_COMPILE)gcc

CFLAGS=$(shell pkg-config --cflags $(LIBS))
LDFLAGS=$(shell pkg-config --libs $(LIBS))
all: foobar

foobar: $(0BJS)
< Tab»$(CC) -0 $@ $* $(LDFLAGS)

clean:
< Tab» $(RM) -f foobar $(0BJS)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 347/375

a@ Embedded Linux application development

g

Debuggers

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 348/375

ao GDB

o%e]

The GNU Project Debugger
https://www.gnu.org/software/gdb/

The debugger on GNU/Linux, available for most embedded
architectures.

Supported languages: C, C4++, Pascal, Objective-C, Fortran,
Ada...

Console interface (useful for remote debugging).
Can also be used through graphical IDEs

Can be used to control the execution of a program, set
breakpoints or change internal variables. You can also use it to
see what a program was doing when it crashed (by loading its
memory image, dumped into a core file).

New alternative: /ldb (https://11db.11lvm.org/)
from the LLVM project.

See also https://en.wikipedia.org/wiki/Gdb

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 349/375

https://www.gnu.org/software/gdb/
https://lldb.llvm.org/
https://en.wikipedia.org/wiki/Gdb

%GDB crash course (1)

A few useful GDB commands

» break foobar (b)
Put a breakpoint at the entry of function foobar()

» break foobar.c:42
Put a breakpoint in foobar.c, line 42

» print var or print task->files[0].fd (p)
Print the variable var, or a more complicated reference. GDB can also nicely display
structures with all their members

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 350/375

ao GDB crash course (2)

o%e]

continue (c)
Continue the execution after a breakpoint

next (n)
Continue to the next line, stepping over function calls

step (s)
Continue to the next line, entering into subfunctions

backtrace (bt)
Display the program stack

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 351/375

a@ Embedded Linux application development

g

Remote debugging

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 352/375

60 Remote debugging

In a non-embedded environment, debugging takes place using gdb or one of its
front-ends.

gdb has direct access to the binary and libraries compiled with debugging symbols.
However, in an embedded context, the target platform environment is often too
limited to allow direct debugging with gdb (2.4 MB on x86).

Remote debugging is preferred

ARCH-1inux-gdb is used on the development workstation, offering all its features.
gdbserver is used on the target system (only 100 KB on arm).

ARCH-1inux-gdb
gdbserver

-8
3

A

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 353/375

Jo3e!

Host
(build space)

ARCH-1inux-gdb

a@ Remote debugging: architecture

Serial or Ethernet
connection

Target

(root filesystem)

A
Y

Binaries and libraries
with debugging
symbols not
stripped

gdbserver

A
Y

Running program
with binaries and
libraries that can be
stripped

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

354/375

4@3 Remote debugging: usage

> On the target, run a program through gdbserver.
Program execution will not start immediately.
gdbserver localhost:<port> <executable> <args>
gdbserver /dev/ttyS0 <executable> <args>

> Otherwise, attach gdbserver to an already running program:
gdbserver --attach localhost:<port> <pid>

> Then, on the host, start ARCH-1inux-gdb <executable>,
and use the following gdb commands:
® To connect to the target:
gdb> target remote <ip-addr>:<port> (networking)
gdb> target remote /dev/ttyUSBo (serial link)
® To tell gdb where shared libraries are:
gdb> set sysroot <library-path> (without 1ib/)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

355/375

a Post mortem analysis
o)

o%e]

When an application crashes due to a segmentation fault and the application was
not under control of a debugger, we get no information about the crash

Fortunately, Linux can generate a core file that contains the image of the
application memory at the moment of the crash, and gdb can use this core file to
let us analyze the state of the crashed application
On the target
Use ulimit -c unlimited in the shell starting the application, to enable the
generation of a core file when a crash occurs
On the host

After the crash, transfer the core file from the target to the host, and run
ARCH-1linux-gdb -c core-file application-binary

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 356/375

a@ Embedded Linux application development

g

Profiling

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 357/375

strace
95

System call tracer - https://strace.io A

=~
(}

)

e

Available on all GNU/Linux systems
Can be built by your cross-compiling toolchain generator or by
your build system.

Allows to see what any of your processes is doing: accessing files,
allocating memory... Often sufficient to find simple bugs.

Usage:

strace <command> (starting a new process)

strace -p <pid> (tracing an existing process)

strace -c <command> (statistics of system calls taking most
time)

See the strace manual for details.

Image credits: https://strace.io/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 358/375

https://strace.io
https://man7.org/linux/man-pages/man1/strace.1.html
https://strace.io/

strace example output

> strace cat Makefile

execve("/bin/cat”, ["cat”, "Makefile"], [/* 38 vars x/]) = @

brk(0) = 0x98b4000

access("/etc/1d.so.nohwcap”, F_OK) = -1 ENOENT (No such file or directory)

mmap2 (NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, @) = 0xb7f85000
access("/etc/1ld.so.preload”, R_OK) = -1 ENOENT (No such file or directory)
open("/etc/1d.so.cache”, O_RDONLY) = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=111585, ...}) = @
mmap2(NULL, 111585, PROT_READ, MAP_PRIVATE, 3, @) = 0xb7f69000
close(3) = @

access("/etc/1d.so.nohwcap”, F_OK) = -1 ENOENT (No such file or directory)
open("/1ib/tls/i686/cmov/1libc.so0.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\320h\1\0004\0\0\0\344" ..., 512) = 512
fstat64(3, {st_mode=S_IFREG|Q755, st_size=1442180, ...}) = 0
mmap2 (NULL, 1451632, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, @) = 0xb7e06000
mprotect (0xb7f62000, 4096, PROT_NONE) = @
mmap2 (0xb7f63000, 12288, PROT_READ|PROT_WRITE,

MAP_PRIVATE |[MAP_FIXED |MAP_DENYWRITE, 3, 0x15c) = 0xb7f63000
mmap2(0xb7f66000, 9840, PROT_READ|PROT_WRITE,

MAP_PRIVATE |MAP_FIXED |MAP_ANONYMOUS, -1, @) = 0xb7f66000
close(3) = 0

Hint: follow the open file descriptors returned by open().

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 359/375

> strace -c cheese

% time seconds
36.24 0.523807
28.63 0.413833
25.83 0.373267

3.03 0.043807
2.69 0.038865
2.14 0.030927
0.28 0.003977
0.21 0.002991
0.20 0.002889
0.18 0.002534
0.13 0.001851
0.10 0.001512
0.08 0.001171
0.07 0.001036

strace -c example output

usecs/call calls errors syscall

19 27017 poll

5 75287 115 ioctl

6 63092 57321 recvmsg
8 5527 writev
10 3712 read

3 10807 getpid
1 3341 34 futex

3 1030 269 openat
2 1619 975 stat

4 568 mmap

5 356 mprotect
2 784 close

3 461 315 access
2 538 fstat

bOoOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

360/375

ltrace
5

o%e]

A tool to trace library calls used by a program and all the signals it receives

Very useful complement to strace, which shows only system calls. Library calls
include system calls too!

Of course, works even if you don’t have the sources

Allows to filter library calls with regular expressions, or just by a list of function
names.

Also offers a summary with its -c option.
Manual page: https://linux.die.net/man/1/1trace

Works better with glibc. 1trace was broken with uClibc and may still be, and was
not supported with Mus/ (Buildroot 2021.08 status).

See https://en.wikipedia.org/wiki/Ltrace for details

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 361/375

https://linux.die.net/man/1/ltrace
https://en.wikipedia.org/wiki/Ltrace

% ltrace example output

ltrace ffmpeg -f video4linux2 -video_size 544x288 -input_format mjpeg -i /dev

/video@ -pix_fmt rgb565le -f fbdev /dev/fbo

__libc_start_main(["ffmpeg"”, "-f", "video4linux2"
=0

setvbuf (0xb6avec80, nil, 2, @)
av_log_set_flags(1, 0, 1, 0)
strchr("f", ':")

strlen("f")

strncmp("f", "L", 1)
strncmp("f", "h", 1)
strncmp("f", "?", 1)
strncmp("f", "help”, 1)
strncmp("f", "-help”, 1)
strncmp("f", "version”, 1)
strncmp("f", "buildconf"”, 1)
strncmp("f", "formats”, 1)
strlen(”formats")

strncmp("f", "muxers”, 1)
strncmp("f", "demuxers”, 1)
strncmp("f", "devices”, 1)
strncmp("f", "codecs”, 1)

"-video_size"”...] <unfinished ...

nil
]
26
=2
39
=2
57
=1

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

362/375

. ltrace summary

A

xample summary at the end of the Itrace output (-c option)

usecs/call

calls function

% time seconds
52.64 5.958660
20.64 2.336331
14.87 1.682895

7.17 0.811210
0.75 0.085290
0.49 0.055150
0.29 0.033008
0.22 0.025090
0.20 0.022836
0.16 0.017788
0.15 0.016819
0.15 0.016753
0.13 0.014536
0.09 0.009762

5958660
2336331
421
811210
584

434

660

464
22836
635

646

440

581
9762

1 __libc_start_main
1 avformat_find_stream_info
3995 strncmp
1 avformat_open_input
146 av_freep
127 strlen
50 av_log
54 strcmp
1 avformat_close_input
28 av_dict_free
26 av_dict_get
38 strchr
25 memset
1 avcodec_send_packet

100.00 11.318773

4762 total

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

363/375

Qo Valgrind (1)

o%e]

https://valgrind.org/
GNU GPL Software suite for debugging and profiling programs.

Supported platforms: Linux on x86, x86_64, arm (armv7 only),
arm64, mips32, s390, ppc32 and ppcb4. Also supported on other
operating systems (Android, Darwin, lllumos, Solaris...)

Can detect many memory management and threading bugs.
Profiler: provides information helpful to speed up your program
and reduce its memory usage.

The most popular tool for this usage. Even used by projects with
hundreds of programmers.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 364/375

https://valgrind.org/

%Valgrind (2)

>

>

Can be used to run any program, without the need to recompile
it.

Examples

valgrind --leak-check=yes <program> (leak check mode)
valgrind --tool=callgrind --dump-instr=yes --simulate-
cache=yes --collect-jumps=yes <program> (profiling mode)
Works by adding its own instrumentation to your code and then
running in on its own virtual cpu core. Significantly slows down
execution, but still fine for debugging and profiling!

More details on https://valgrind.org/info/ and
https://valgrind.org/docs/manual/manual.html

The Valgrind tool suite is easy to add to your root filesystem
with Buildroot.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

365/375

https://valgrind.org/info/
https://valgrind.org/docs/manual/manual.html

9

Eile View Go gettings Help
|zaopen.. ¢ Back ~)
Flat Profile

search: [search Query

® 0x000162e9
|| (No Grouping) ~ |

up - |Relative |G Cycle Detection | Relative to Parent Shorten Templates | Instruction Fetch -

Types | Callers | AllCallers | CalleeMap | Source Code

= rnrrrrrr

Count Callee

Incl. self Called Function Location
(0) = 0x00033851 libcso
1§ 0x0003386d libcso
23 W <cycle 6> libavutil.s0.56.51.100

1. 0x00016ae! mpeg

1 8 (below main) libc.so

1 M 0x00016841 ffmpeg

1 8 0x00025631 ffmpeg

1 M 0x00025281 ffmpeg

1 5 0x0001F0d1 ffmpeg

1 W 0x000281a1 ffmpeg

1 M 0x0003044d ffmpeg

1 8 0x0002Fc01 ffmpeg
] 1 8 0x000275d9 ffmpeg
1] 1 8 0x00027bb5 ffmpeg
M 18 <cycle 7> ffmpeg Ir I per call
1] 1 M 0x0001bed1 <cycle 7> ffmpeg W 89.81 13746745
1] 1 8 av_find_input_format libavformat.s0.58.45.100
' 1 8 0x00010421 <cycle 6> libavfilterso.7.85.100
] 1 1 sws_scale libswscale.s0.5.7.100
] 1 8 0x00029811 libswscale.50.5.7.100
v 1 M 0x00029811'2 libswscale.so.5.7.100
] 1 lib: L 1100
1 2 M 0x0003e14d <cycle 6> libavcodec.50.58.91.100
] 1 = 0x0002c4ed libavcodec.s0.58.91.100
1 1. libavcodec.50.58.91.100
1 1 M 0x0002ca03 libavcodec.50.58.91.100
1 1m _dls2b libc.so
I 18 _dis3 libc.so
' 127 8 av_mallocz2 <cycle 6> libavutil.s0.56.51.100
! 898 000 3 5 0x000340F9 libe.so = | Gallees | call Graph

callgrind.out.115 [1] - Total Instruction Fetch Cost: 15 306 392

Directly run it on Callgrind’s output file.

18 (below main) (libc.so)

AllCallees | Caller Map | Machine Code

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

366/375

Rem

ao Practical lab - App. development and debugging

o%e]

Application development

Compile your own application with the ncurses
library

ote debugging

Set up remote debugging tools on the target:
strace, 1trace and gdbserver.

Debug a simple application running on the
target using remote debugging

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

367/375

References
e

bootlin

References

© C ight 2004-2022, Bootlin. . . .
opyrig ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 368/375

Books

» Mastering Embedded Linux, 3rd Edition !
By Chris Simmonds, Packt Publishing, May 2021
An up-to-date resource covering most aspects of embedded Linux
development.

» The Linux Programming Interface ?
Michael Kerrisk (maintainer of Linux manual pages), 2010, No Starch Press
A gold mine about Linux system programming

» Embedded Linux System Design and Development 3
P. Raghavan, A. Lad, S. Neelakandan, Auerbach, Dec. 2005.
Very good coverage of the POSIX programming API (still up to date).

1 s
https://www.packtpub.com/product/mastering-embedded-1linux-programming-third-edition/9781789530384
https://man7.org/tlpi/
https://www.amazon.com/Embedded-Linux-System-Design-Development/dp/0849340586

Embedded
Linux Programming

THE LINUX
PROGRAMMING
INTERFACE

=21l

— EmBEDDED
LiNux SysTem
DESIGN AND
DEVELOPMENT

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

360/375

https://www.packtpub.com/product/mastering-embedded-linux-programming-third-edition/9781789530384
https://man7.org/tlpi/
https://www.amazon.com/Embedded-Linux-System-Design-Development/dp/0849340586

Web sites
o

o%e]

ELinux.org, https://elinux.org, a Wiki entirely dedicated to embedded Linux.
Lots of topics covered: real-time, filesystems, multimedia, tools, hardware
platforms, etc. Interesting to explore to discover new things.

LWN, https://1lwn.net, very interesting news site about Linux in general, and
specifically about the kernel. Weekly edition, available for free after one week for
non-paying visitors.

Linux Gizmos, https://linuxgizmos.com, a news site about embedded Linux,
mainly oriented on hardware platforms related news.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 370/375

https://elinux.org
https://lwn.net
https://linuxgizmos.com

a International conferences (1)
bdh)

o%e]

Embedded Linux Conference:

Q‘b €mbedded Linux
Y Conference

https://embeddedlinuxconference.com/

Organized by the Linux Foundation every year in North
America and in Europe

Very interesting kernel and user space topics for
embedded systems developers. Many kernel and
embedded project maintainers are present.
Presentation slides and videos freely available on
https://elinux.org/ELC_Presentations

Linux Plumbers: https://linuxplumbersconf.org

About the low-level plumbing of Linux: kernel, audio,
power management, device management, multimedia,
etc. Not really a conventional conference with formal
presentations, but rather a place where contributors on
each topic meet, share their progress and make plans for
work ahead.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 371/375

https://embeddedlinuxconference.com/
https://elinux.org/ELC_Presentations
https://linuxplumbersconf.org

a International conferences (2)
bdh)

o%e]

FOSDEM: https://fosdem.org (Brussels, February)
For developers. Presentations about system development.

Live Embedded Event: https://live-embedded-event.com/
A new free live event about embedded topics. Co-organized by Bootlin!

Currently, most conferences are available on-line. They are much more affordable
and often free.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 372/375

https://fosdem.org
https://live-embedded-event.com/

Last slides

bootlin

Last slides

© C ight 2004-2022, Bootlin. . . .
opyrig ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 373/375

%Evaluation and final quiz

> Rate this training session and provide your feedback:
https://bootlin.com/doc/training/sessions/hp-online.embedded-
linux.mar2022//survey.html

> Fill in the final quiz to assess your level of knowledge on the topics covered in this
course. At least 50% of correct answers are needed to get the training certificate:
https://bootlin.com/doc/training/sessions/hp-online.embedded-
linux.mar2022//quiz-after.html

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 374/375

https://bootlin.com/doc/training/sessions/hp-online.embedded-linux.mar2022//survey.html
https://bootlin.com/doc/training/sessions/hp-online.embedded-linux.mar2022//survey.html
https://bootlin.com/doc/training/sessions/hp-online.embedded-linux.mar2022//quiz-after.html
https://bootlin.com/doc/training/sessions/hp-online.embedded-linux.mar2022//quiz-after.html

Last slide
o

o%e]

Thank you!
And may the Source be with you

00tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

	Generic course information
	Introduction to Embedded Linux
	A few examples of embedded systems running Linux
	Embedded hardware for Linux systems
	Embedded Linux system architecture

	Embedded Linux development environment
	Cross-compiling toolchains
	Definition and Components
	C Libraries
	Toolchain Options
	Obtaining a Toolchain

	Bootloaders
	Boot Sequence
	The U-boot bootloader

	Linux kernel introduction
	Linux features
	Linux versioning scheme and development process
	Linux kernel sources
	Kernel configuration
	Compiling and installing the kernel
	Booting the kernel
	Using kernel modules

	Linux Root Filesystem
	Principle and solutions
	Contents
	Device Files
	Pseudo Filesystems
	Minimal filesystem

	BusyBox
	Block filesystems
	Block devices
	Available block filesystems
	Using block filesystems

	Embedded Linux system development
	Leveraging open-source components in an Embedded Linux system
	Tools for the target device: Networking
	Tools for the target device: System utilities
	Tools for the target device: Language interpreters
	Tools for the target device: Audio, video and multimedia
	Tools for the target device: Graphical toolkits
	Graphical toolkits: ``Low-level'' solutions and layers
	Graphical toolkits: ``High-level'' solutions
	Tools for the target device: Databases
	Tools for the target device: Web browsers
	System building

	Embedded Linux application development
	Developing applications on embedded Linux
	Debuggers
	Remote debugging
	Profiling

	References
	Last slides

