
Online
seminar

Audience
Companies and engineers interested in writing and benchmarking real-
time applications and drivers on an embedded Linux system.

Training objectives
• Be able to understand the characteristics of a real-time operating system
• Be able to download, build and use the PREEMPT_RT patch
• Be able to identify and benchmark the hardware platform in terms of real-time

characteristics
• Be able to configure the Linux kernel for deterministic behavior.
• Be able to develop, trace and debug real-time user-space Linux applications.

Prerequisites
• Knowledge and practice of UNIX or GNU/Linux commands: participants must

be familiar with the Linux command line. Participants lacking experience on this
topic should get trained by themselves, for example with our freely available on-line
slides.

• Minimal experience in embedded Linux development: participants should have
a minimal understanding of the architecture of embedded Linux systems: role of
the Linux kernel vs. user-space, development of Linux user-space applications in C.
Following Bootlin’s Embedded Linux course allows to fulfill this pre-requisite.

• Minimal English language level: B1, according to the Common European Frame-
work of References for Languages, for our sessions in English. See the CEFR grid
for self-evaluation.

Pedagogics
• Lectures delivered by the trainer, over video-conference. Participants can ask ques-

tions at any time.
• Practical demonstrations done by the trainer, based on practical labs, over video-

conference. Participants can ask questions at any time. Optionally, participants
who have access to the hardware accessories can reproduce the practical labs by
themselves.

• Instant messaging for questions between sessions (replies under 24h, outside of
week-ends and bank holidays).

• Electronic copies of presentations, lab instructions and data files. They are freely
available here.

Certificate
Only the participants who have attended all training sessions, and who have scored over
50% of correct answers at the final evaluation will receive a training certificate from
Bootlin.

Disabilities
Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

1

Real-Time Linux with
PREEMPT_RT training

Course duration
U 3 half days – 12 hours

Language

Materials English

Oral Lecture English
French

Trainer
One of the following engineers

• Maxime Chevallier

Contact
@ training@bootlin.com
T +33 484 258 097

bootlin.com

https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/preempt-rt
mailto:training@bootlin.com
mailto:training@bootlin.com
https://bootlin.com/company/staff/maxime-chevallier/
mailto:training@bootlin.com
https://bootlin.com


Required equipement
Mandatory equipment:

• Computer with the operating system of your choice, with the Google Chrome or Chromium browser for videoconferencing.
• Webcam and microphone (preferably from an audio headset).
• High speed access to the Internet.

Optionnally, if the participants want to be able to reproduce the practical labs by themselves, they must separately purchase the
hardware platform and accessories, and must have a PC computer with a native installation of Ubuntu Linux 24.04.

Hardware platform for practical labs

STM32MP1 Discovery Kit
One of these Discovery Kits from STMi-
croelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-
DK2 or STM32MP157F-DK2

• STM32MP157, dual Cortex-A7 processor
from STMicroelectronics

• USB powered
• 512 MB DDR3L RAM
• Gigabit Ethernet port
• 4 USB 2.0 host ports
• 1 USB-C OTG port
• 1 Micro SD slot
• On-board ST-LINK/V2-1 debugger
• Arduino compatible headers
• Audio codec, buttons, LEDs
• LCD touchscreen (DK2 kits only)

2



Training Schedule

Half day 1
Lecture Introduction to Real-Time be-

haviour and determinism
• Definition of a Real-Time Operating System
• Specificities of multi-task systems
• Common locking and prioritizing patterns
• Overview of existing Real-Time Operating Systems
• Approaches to bring Real-Time capabilities to Linux

Lecture The PREEMPT_RT patch • History and future of the PREEMPT_RT patch
• Real-Time improvements from PREEMPT_RT in mainline Linux
• The internals of PREEMPT_RT
• Interrupt handling: threaded interrupts, softirqs
• Locking primitives: mutexes and spinlocks, sleeping spinlocks
• Preemption models

Demo Building a mainline Linux Kernel
with the PREEMPT_RT patch

• Downloading the Linux Kernel, and applying the patch
• Configuring the Kernel
• Booting the Kernel on the target hardware

Lecture Hardware configuration and limi-
tations for Real-Time

• Interrupts and deep firmware
• Interaction with power management features: CPU frequency scaling

and sleep states
• DMA

Half day 2
Lecture Tools: Benchmarking, Stressing

and Analyzing
• Benchmarking with cyclictest
• System stressing with stress-ng and hackbench
• The Linux Kernel tracing infrastructure
• Latency and scheduling analysis with ftrace, kernelshark or LTTng

Demo Tools: Benchmarking, Stressing
and Analyzing

• Usage of benchmarking and stress tools
• Common benchmarking techniques
• Benchmarking and configuring the hardware platform

Lecture Kernel infrastructures and config-
uration

• Good practices when writing Linux kernel drivers
• Scheduling policies and priorities: SCHED_FIFO, SCHED_RR,

SCHED_DEADLINE
• CPU and IRQ Affinity
• Memory management
• CPU isolation with isolcpus

Half day 3
Lecture Real-Time Applications program-

ming patterns
• POSIX real-time API
• Thread management and configuration
• Memory management: memory allocation and memory locking, stack
• Locking patterns: mutexes, priority inheritance
• Inter-Process Communication
• Signaling

Demo Debugging a demo application • Make a demo userspace application deterministic
• Use the tracing infrastructure to identify the cause of a latency
• Learn how to use the POSIX API to manage threads, locking and

memory
• Learn how to use the CPU affinities and configure the scheduling

policy

3


