
Onsite
training

Audience
Companies and engineers interested in writing and benchmarking real-
time applications and drivers on an embedded Linux system.

Training objectives
• Be able to understand the characteristics of a real-time operating system
• Be able to download, build and use the PREEMPT_RT patch
• Be able to identify and benchmark the hardware platform in terms of real-time

characteristics
• Be able to configure the Linux kernel for deterministic behavior.
• Be able to develop, trace and debug real-time user-space Linux applications.

Prerequisites
• Knowledge and practice of UNIX or GNU/Linux commands: participants must

be familiar with the Linux command line. Participants lacking experience on this
topic should get trained by themselves, for example with our freely available on-line
slides.

• Minimal experience in embedded Linux development: participants should have
a minimal understanding of the architecture of embedded Linux systems: role of
the Linux kernel vs. user-space, development of Linux user-space applications in C.
Following Bootlin’s Embedded Linux course allows to fulfill this pre-requisite.

• Minimal English language level: B1, according to the Common European Frame-
work of References for Languages, for our sessions in English. See the CEFR grid
for self-evaluation.

Pedagogics
• Lectures delivered by the trainer: 50% of the duration
• Practical labs done by participants: 50% of the duration
• Electronic copies of presentations, lab instructions and data files. They are freely

available here.

Certificate
Only the participants who have attended all training sessions, and who have scored over
50% of correct answers at the final evaluation will receive a training certificate from
Bootlin.

Disabilities
Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

1

Real-Time Linux with
PREEMPT_RT training

Course duration
U 2 days – 16 hours

Language

Materials English

Oral Lecture English
French

Trainer
One of the following engineers

• Maxime Chevallier

Contact
@ training@bootlin.com
T +33 484 258 097

bootlin.com

https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/preempt-rt
mailto:training@bootlin.com
mailto:training@bootlin.com
https://bootlin.com/company/staff/maxime-chevallier/
mailto:training@bootlin.com
https://bootlin.com


Required equipement
For on-site session delivered at our customer location, our customer must provide:

• Video projector
• One PC computer on each desk (for one or two persons) with at least 16 GB of RAM, and Ubuntu Linux 24.04 installed in

a free partition of at least 30 GB
• Distributions other than Ubuntu Linux 24.04 are not supported, and using Linux in a virtual machine is not supported.
• Unfiltered and fast connection to Internet: at least 50 Mbit/s of download bandwidth, and no filtering of web sites or

protocols.
• PC computers with valuable data must be backed up before being used in our sessions.

For on-site sessions organized at Bootlin premises, Bootlin provides all the necessary equipment.

Hardware platform for practical labs

STM32MP1 Discovery Kit
One of these Discovery Kits from STMi-
croelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-
DK2 or STM32MP157F-DK2

• STM32MP157, dual Cortex-A7 processor
from STMicroelectronics

• USB powered
• 512 MB DDR3L RAM
• Gigabit Ethernet port
• 4 USB 2.0 host ports
• 1 USB-C OTG port
• 1 Micro SD slot
• On-board ST-LINK/V2-1 debugger
• Arduino compatible headers
• Audio codec, buttons, LEDs
• LCD touchscreen (DK2 kits only)

2



Training Schedule

Day 1 - Morning
Lecture Introduction to Real-Time be-

haviour and determinism
• Definition of a Real-Time Operating System
• Specificities of multi-task systems
• Common locking and prioritizing patterns
• Overview of existing Real-Time Operating Systems
• Approaches to bring Real-Time capabilities to Linux

Lecture The PREEMPT_RT patch • History and future of the PREEMPT_RT patch
• Real-Time improvements from PREEMPT_RT in mainline Linux
• The internals of PREEMPT_RT
• Interrupt handling: threaded interrupts, softirqs
• Locking primitives: mutexes and spinlocks, sleeping spinlocks
• Preemption models

Lab Building a mainline Linux Kernel
with the PREEMPT_RT patch

• Downloading the Linux Kernel, and applying the patch
• Configuring the Kernel
• Booting the Kernel on the target hardware

Day 1 - Afternoon
Lecture Hardware configuration and limi-

tations for Real-Time
• Interrupts and deep firmware
• Interaction with power management features: CPU frequency scaling

and sleep states
• DMA

Lecture Tools: Benchmarking, Stressing
and Analyzing

• Benchmarking with cyclictest
• System stressing with stress-ng and hackbench
• The Linux Kernel tracing infrastructure
• Latency and scheduling analysis with ftrace, kernelshark or LTTng

Lab Tools: Benchmarking, Stressing
and Analyzing

• Usage of benchmarking and stress tools
• Common benchmarking techniques
• Benchmarking and configuring the hardware platform

Day 2 - Morning
Lecture Kernel infrastructures and config-

uration
• Good practices when writing Linux kernel drivers
• Scheduling policies and priorities: SCHED_FIFO, SCHED_RR,

SCHED_DEADLINE
• CPU and IRQ Affinity
• Memory management
• CPU isolation with isolcpus

Lecture Real-Time Applications program-
ming patterns

• POSIX real-time API
• Thread management and configuration
• Memory management: memory allocation and memory locking, stack
• Locking patterns: mutexes, priority inheritance
• Inter-Process Communication
• Signaling

Day 2 - Afternoon

3



Lab Debugging a demo application • Make a demo userspace application deterministic
• Use the tracing infrastructure to identify the cause of a latency
• Learn how to use the POSIX API to manage threads, locking and

memory
• Learn how to use the CPU affinities and configure the scheduling

policy

4


