
Embedded Linux networking training

Embedded Linux networking
training

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Latest update: July 03, 2025.

Document updates and training details:
https://bootlin.com/training/networking

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@bootlin.com

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/298

https://bootlin.com/training/networking
mailto:feedback@bootlin.com

Embedded Linux networking training

▶ These slides are the training materials for Bootlin’s Embedded
Linux networking training course.

▶ If you are interested in following this course with an experienced
Bootlin trainer, we offer:

• Public online sessions, opened to individual registration. Dates
announced on our site, registration directly online.

• Dedicated online sessions, organized for a team of engineers
from the same company at a date/time chosen by our customer.

• Dedicated on-site sessions, organized for a team of engineers
from the same company, we send a Bootlin trainer on-site to
deliver the training.

▶ Details and registrations:
https://bootlin.com/training/networking

▶ Contact: training@bootlin.com

Icon by Eucalyp, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/298

https://bootlin.com/training/networking

About Bootlin

About Bootlin

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/298

Bootlin introduction

▶ Engineering company
• In business since 2004
• Before 2018: Free Electrons

▶ Team based in France and Italy
▶ Serving customers worldwide
▶ Highly focused and recognized expertise

• Embedded Linux
• Linux kernel
• Embedded Linux build systems

▶ Strong open-source contributor
▶ Activities

• Engineering services
• Training courses

▶ https://bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/298

https://bootlin.com

Bootlin engineering services

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/298

Bootlin training courses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/298

Bootlin, an open-source contributor

▶ Strong contributor to the Linux kernel
• In the top 30 of companies contributing to Linux worldwide
• Contributions in most areas related to hardware support
• Several engineers maintainers of subsystems/platforms
• 9000 patches contributed
• https://bootlin.com/community/contributions/kernel-contributions/

▶ Contributor to Yocto Project
• Maintainer of the official documentation
• Core participant to the QA effort

▶ Contributor to Buildroot
• Co-maintainer
• 6000 patches contributed

▶ Significant contributions to U-Boot, OP-TEE, Barebox, etc.
▶ Fully open-source training materials

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/298

https://bootlin.com/community/contributions/kernel-contributions/

Bootlin on-line resources

▶ Website with a technical blog:
https://bootlin.com

▶ Engineering services:
https://bootlin.com/engineering

▶ Training services:
https://bootlin.com/training

▶ LinkedIn:
https://www.linkedin.com/company/bootlin

▶ Elixir - browse Linux kernel sources on-line:
https://elixir.bootlin.com

Icon by Freepik, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/298

https://bootlin.com
https://bootlin.com/engineering
https://bootlin.com/training
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

Generic course information

Generic course
information

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/298

Supported hardware

Espressobin from Globalscale
▶ Marvell Armada 3720 SoC (Dual ARM64 Cortex-A53 CPU)
▶ SoC with powerful Network Controller (up to 2.5Gbps), SATA, PCIe
▶ 1 GB of RAM
▶ 8 GB of on-board eMMC storage
▶ Marvell 88e6341 Switch with 3 Gbps interfaces

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/298

https://espressobin.net/

Training quiz and certificate

▶ You have been given a quiz to test your knowledge on the topics covered by the
course. That’s not too late to take it if you haven’t done it yet!

▶ At the end of the course, we will submit this quiz to you again. That time, you
will see the correct answers.

▶ It allows Bootlin to assess your progress thanks to the course. That’s also a kind
of challenge, to look for clues throughout the lectures and labs / demos, as all the
answers are in the course!

▶ Another reason is that we only give training certificates to people who achieve at
least a 50% score in the final quiz and who attended all the sessions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/298

Participate!

During the lectures...
▶ Don’t hesitate to ask questions. Other people in the audience may have similar

questions too.
▶ Don’t hesitate to share your experience too, for example to compare Linux with

other operating systems you know.
▶ Your point of view is most valuable, because it can be similar to your colleagues’

and different from the trainer’s.
▶ In on-line sessions

• Please always keep your camera on!
• Also make sure your name is properly filled.
• You can also use the ”Raise your hand” button when you wish to ask a question but

don’t want to interrupt.
▶ All this helps the trainer to engage with participants, see when something needs

clarifying and make the session more interactive, enjoyable and useful for everyone.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/298

Collaborate!

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
▶ Use the dedicated Matrix channel for this session to add

questions.
▶ If your session offers practical labs, you can also report issues,

share screenshots and command output there.
▶ Don’t hesitate to share your own answers and to help others

especially when the trainer is unavailable.
▶ The Matrix channel is also a good place to ask questions outside

of training hours, and after the course is over.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/298

Practical lab - Training Setup

Prepare your lab environment
▶ Download and extract the lab archive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/298

Introduction - Networking Technologies

Introduction -
Networking
Technologies

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/298

OSI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

▶ Open Systems Interconnection
▶ Reference model to design network protocols, created in the late

1970s
▶ Defines 7 layers, with specific functions and semantics
▶ Each layer relies on the layer below, and provides features to the

layer above
• In practise, this is done through encapsulation
• Each layer add its required data at the front of the data array

This is the layer’s header
• A Layer N’s header is part of Layer N-1’s payload

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/298

OSI layer communication

Network

Data Link

Physical

Host A Host B

▶ The payload sent by a layer targets the same layer on the
receiving end

▶ Each layer only cares about its specific header and treats the
payload as a black box

▶ When the peer receives it, it decapsulates the received data
▶ Every layer has its own semantics about the data it manipulates
▶ Every layer’s unit is called Protocol Data Unit
▶ Every layer has a Maximum Transmit Unit per PDU

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/298

Layer 1 - PHY Layer

▶ Defines how data is sent to a peer trough a physical medium
▶ PDU is symbols and bits
▶ IEEE 802.3 ”Ethernet” defines a lot of Layer 1 technologies

• 1000BaseT4 : Transmit data at 1000Mbps over 4 twisted copper pairs
• 1000BaseFX : Transmit data at 1.25Gsps / 1Gbps over an optics fiber
• 10BaseT1S : Transmit data at 10Mbps over a single twisted copper pair
• Ethernet protocols may use the same medium

Protocol selection can be done through autonegotiation
Link detection is done by sending Idle words

▶ IEEE 802.11 ”Wifi” also defines Layer 1 technologies using 2.4/5/60GHz radio
modulation

▶ Many more exists : IEEE 802.15.4, ”Bluetooth”, NFC, etc.
▶ Usually handled by a dedicated hardware component : a PHY

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/298

Layer 2 - Data Link Layer

▶ Sometimes called MAC layer
▶ PDU is a Frame
▶ In charge of Point-to-point communication
▶ IEEE 802.3 ”Ethernet” defines a Layer 2 standard as well

• Source address, Destination address, Layer 3 type
▶ IEEE 802.11 ”Wifi” also defines a Layer 2

• 2, 3 or 4 addresses
• Receiver, Transmitter, Source and Destination

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/298

Ethernet - Layer 2

preamble SFD MAC dst MAC src ethertype Payload FCS IPG

▶ Point-to-point frames are sent on the medium, separated by a gap
▶ Regardless of the speed and medium, frames have the same structure :

• 7 bytes Preamble: Used to synchronize both equipments
• 1 byte SFD (Start Frame Delimiter): Ends the preamble
• 6 bytes Destination address, identifying the destination equipment
• 6 bytes Source address, identifying the source equipment
• 2 bytes ethertype, identifying the encapsulated protocol
• A payload
• 4 trailing bytes FCS (Frame Check Sequence): Checksum of the frame

▶ Each frame must be separated by at least 12 bytes, named the Inter Packet Gap
▶ header + payload + fcs <= 1522 bytes, the payload’s size is at most 1504 bytes
▶ header + payload + fcs >= 64 bytes, the payload must be zero-padded otherwise

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/298

Network Bridging

▶ A Network bridge is a Layer 2 device interconnecting multiple network segments
▶ We usually use a dedicated Network Switch for this purpose

• Using a ASIC chip
• Using a software implementation

▶ Ethernet switches are usually transparent switches
• They monitor Layer 2 header to learn the Port to Address assciation
• This is stored in the FDB : Forwarding DataBase

▶ Some switches can be highly configurable, and support VLANs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/298

Transparent bridge

Switch

P1 : 00:11:22:33:44:01
P2 : ???

P3 : 00:11:22:33:44:03
P4 : ???

P1 P2 P3 P4

fdb

Device A
00:11:22:33:44:01

Device C
00:11:22:33:44:03

dst = 00:11:22:33:44:03
src = 00:11:22:33:44:01
ethertye = …
payload = …

populate

lookup

▶ Ports are monitored, the source address saved
▶ The destination address is looked-up
▶ If no match is found, the frame is flooded on all ports
▶ Advanced switches can do port mirroring

• Duplicate traffic going forwarded a port to another port
• Used for administration and troubleshooting

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/298

VLANs

switch

Host D
vlan 20

Host E
vlan 20

Host F
vlan 10

switch

Host A
vlan 10

Host B
vlan 20

Host C
vlan 10

trunk :
tagged traffic

▶ Virtual Local Area Network
▶ Multiple VLAN technologies exist:

• 802.1Q (dot1q): Layer 2
• 802.1AD (QinQ): Layer 2
• VxLan : Layer 4 (UDP)
• MACVlan : Based only on MAC addresses

▶ Logical segmentation of the network
▶ Used for isolation, priorisation and bandwitdh

optimisation
▶ The same conduit can be used to convey multiple

VLANs
• We talk about a trunk interface
• Frames are tagged to indicate the VLAN it belongs to

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/298

VLAN - 802.1Q

MAC dst MAC src ethertype Payload FCS
VLAN

ethertype
0x8100

TCI

▶ A 802.1Q frame has includes an extra 4 bytes tag in the Ethernet header
▶ The ethertype is set to 0x8100, the real ethertype is stored after the tag
▶ A 16 bits value identifies the Tag : Tag Control Information

• 3 bits indicate a priority, between 0 and 7
Also called Class of Service

• 1 bit Drop Eligible Indicator
• 12 bits represent the ID of the vlan, between 1 and 4094

ID 0 means no tag, only the priorty is consided
ID 4095 is reserved.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/298

Layer 3 - Network Layer

▶ PDU is packet or Segment
▶ Handles routing between multiple machines
▶ Defined by subnets, linked tothegher by routers
▶ Main technologies are IPv4 and IPv6

• IPv4 : 32-bits addresses, IPv6 : 128-bits addresses
▶ Layer 2 to Layer 3 addresses can be associated

• e.g. the Address Resolution Protocol
• MAC to IP tables are named ARP or neighbouring tables

▶ Layer 3 can perform fragmentation
• e.g. if an IPv4 packet is too big to fit within the Ethernet MTU, it is split into

multiple IPv4 packets
• each packet is individually routable
• Re-assembly is done by the peer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/298

Transport Layer

▶ Communication between endpoints over a routed network
• e.g. Multple applications on the same machine
• Each end-point is further identified within the host
• on TCP and UDP, ports are used

▶ TCP : Connection-oriented, reliable, guarantees ordering.
• Stream of data, boundaries may be be preserved

▶ UDP : Connection-less, not reliable, no ordering guarantee
• Sends datagrams with clear boundaries

▶ QUIC : Based on UDP, introduced by Google. Connection-oriended, reliable,
guarantees ordering

• Can batch Acknowledgments, supports encryption (i think)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/298

Tunneling

wireguard

TCP/UDP

IP

UDP

IP

Ethernet

Payload

▶ Encapsulate a Lower-level layer into a higher one
▶ Used to virtualise networks (e.g. VXLAN is Ethernet

over UDP)
▶ Also used for encryption (IPSec, Wireguard, OpenVPN)

• e.g. Wireguard Encrypts and encapsulates IP packets
into UDP packets

▶ There may therefore be more headers to decapsulate
than there are ISO layers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/298

Layers 5, 6 and 7

▶ Session : Handles the connection, authentication and lifetime of data exchanges
• e.g. RPC, SOCKS

▶ Presentation : Handles the data conversion and serialization for interoperability
• e.g. character transcoding depending on the locale
• e.g. serializing user data in JSON or XML

▶ Application : Communication between user applications
• e.g. HTTP for Web applications

▶ less relevant for this training, as they aren’t handled by the linux kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/298

The Linux Kernel Networking Stack

The Linux Kernel
Networking Stack

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/298

The Linux Kernel Networking Stack

AF_UNIX AF_INET(6)

TCP

IPv4

AF_NETLINKAF_PACKET

net_device

DSA

switchdev

phylink

phylib sfp

UDP

IPv6

802.1Q PPPoE ARP

cfg80211

mac80211

nl80211 rtnetlink ethtool

netfilter tc

rdmadevlink

kernel

userspace

eBPF

non-exhaustive map of the networking stack

As of v6.16-rc1 :
▶ over 209000 commits
▶ over 7750 files
▶ over 993000 LoC
▶ around 100

maintainers
▶ Around 880 drivers

(Layer 2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/298

Some history

▶ First support was introduced in v0.96 (may 1992) !
▶ Already exposing a socked-based API
▶ IPv4 : v0.98 - September 1992
▶ TCP/UDP : v0.98 - September 1992
▶ IPv6 : v2.2 - January 1999 (IPv6 was created in 1998)
▶ BPF : v2.5 - 2003, was then known as Linux Socket Filtering

• eBPF : v3.15 - June 2014
▶ PHYlib : v2.6.13 - August 2005, before that PHYs were handled in MAC drivers
▶ XDP : v4.8 - September 2016
▶ phylink : v4.13 - September 2017

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/298

Networking in the Linux Kernel

Physical

Data Link

Network

Transport

Session

Presentation

Application

Kernel-side

Userspace

▶ Abstracts the Network Devices
▶ Implements some OSI Layers :

• Layer 1 (PHY) : Ethernet, WiFi, CAN, etc.
• Layer 2 (MAC) : Bridging, VLANs, etc.
• Layer 3 (Network) : IPv4, IPv6, etc.
• Layer 4 (Transport) : TCP, UDP, etc.

▶ Provides a set of APIs to userspace :
• Socket API and io_uring
• Control through ioctl and Netlink

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/298

Physical and MAC support

▶ The Networking stack provides a framework for Layer 2 drivers :
struct net_device

▶ Used by Ethernet, Wifi, Bluetooth, CAN, 802.15.4, Radio, etc.
▶ PHY drivers have their dedicated frameworks

• phylib for Ethernet PHYs
• mac80211 and wiphy for 802.11 PHYs

▶ A lot of communication technologies are handled through the network stack
• Ethernet
• Wifi
• Bluetooth and Bluetooth Low Energy
• Infiniband
• 802.15.4, radio, X.25
• CAN Bus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/298

https://elixir.bootlin.com/linux/latest/ident/net_device

Ethernet

▶ Ethernet MAC controllers are supported through regular struct net_device as
well as ethtool

▶ Switch drivers are supported, with offload operation going through Switchdev
▶ Standalone Ethernet Switches are handled through DSA
▶ Ethernet PHYs are supported via phylib, and the MAC to PHY link via phylink
▶ SFF and SFP cages and modules are also supported
▶ Supports 802.3 frames and Ethernet II
▶ Multiple 802.1 and 802.3 Low-Level aspects are supported :

• Vlan with 802.1Q and 802.1AD
• Bridging and Switching
• MACSec (802.1ae) for Ethernet-level encryption
• Teaming, Bonding, HSR and PRP for link redudancy

▶ Raw Ethernet frames can be sent and received in userspace API with AF_PACKET

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/298

https://elixir.bootlin.com/linux/latest/ident/net_device
https://docs.kernel.org/networking/switchdev.html
https://docs.kernel.org/networking/dsa/dsa.html
https://docs.kernel.org/networking/phy.html
https://docs.kernel.org/networking/sfp-phylink.html

Wireless subsystem

▶ Wifi (802.11) Stack :
• Supports Wifi chips with internal MAC stack (hardmac)
• Also provides a 802.11 MAC stack for softmac drivers in mac80211
• The main implementation is in cfg80211, configured via nl80211

▶ Bluetooth stack :
• Low-level support for Bluetooth and BLE
• Exposes a socket-based API for management and data
• Profiles are implemented either in the kernel or userspace
• BlueZ is the main userspace companion stack

▶ 802.15.4 stack :
• Also provides hardmac and softmac support
• Has its own PHY layer
• Complemented by the 6lowpan stack for upper levels

6lowpan can also be used with Bluetooth Low Energy

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/298

Other Technologies

▶ X25 / AX25 : Amateur radio protocols. Long-standing support in Linux.
▶ Infiniband : Used for very high speed link, usually in datacenters

• Layer 1 and Layer 2 technology (like Ethernet)
• Allows using RDMA : Remote Direct Memory Access
• provides a VERBS-based API (IB Verbs) , not sockets

▶ RoCE : RDMA over Converged Ethernet
• RDMA over Ethernet-based networks (instead of Infiniband)
• Works on top of Layer 4 (RoCE v2)

▶ CAN bus : Controller Area Network Bus
• Widely used in automotive and industrial equipment
• Support implemented using the Network Stack, socket-based

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/298

Userspace Networking

▶ Userspace applications can also access traffic at various points in the stack
through sockets :

▶ AF_PACKET Sockets allows raw Layer 2 access
• Can be used for custom protocol support in userspace
• Used by libpcap and traffic monitoring tools like tcpdump and wireshark

▶ socket(AF_PACKET, SOCK_DGRAM, 0) sockets expose raw IPv4 and IPv6 packets
▶ Some protocols only have userspace implementations by design :

• QUIC : Not in the kernel when the protocol was first intrduced
Rationale was to prevent ossification
Recent kernel-side implementation submitted for inclusion in the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/298

Kernel Bypass

kernel

userspace

hardware

HW

IPv4

TCP

driver

Network
stack

VFIO /
UIO /

Custom

▶ Contrary to AF_PACKET, Kernel Bypass techniques
circumvent the networking stack

▶ Allows using an alternative implementation of the
network stack, entirely running in userspace

• For use-case optimised scenarios
▶ DPDK : Data Plate Development Kit

• Re-implement the drivers in userspace as well as a
custom stack

▶ Not supported by the linux kernel community
▶ Implies re-writing a full driver in userspace
▶ With XDP + AF_XDP, we now have a fully upstream

solution

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/298

Netdev community

▶ The networking stack is made of around 1M lines, 7000 distinct files
▶ 4 Maintainers share the top-level load :

• Jakub Kicinski, David S. Miller, Eric Dumazet and Paolo Abeni
▶ Lots of maintainers for specific aspects of the networking stack

• Wireless, Bluetooth, TC, Ethernet framework, PHY framework, individual drivers...
▶ Very active subsystem with lots of contributions and reviews.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/298

Contributing

▶ Development occurs on the netdev@vger.kernel.org mailing list, see archives
▶ Follows the kernel development cycle, with a 2 weeks break during the merge

window
▶ 2 git repositories are used as a development basis:

• net-next : For new features, development stops during the Merge Window
Check the status page before sending patches !

• net : For fixes, always open to patches.
▶ Very fast-paced development, replies arrive quickly, for quick iterations
▶ Patch status can be tracked on patchwork
▶ Automated build-test and runtime tests are run with NIPA, results are published

here

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/298

https://lore.kernel.org/netdev/
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/
https://patchwork.hopto.org/net-next.html
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/
https://patchwork.kernel.org/project/netdevbpf/list/
https://netdev.bots.linux.dev/status.html

Conferences

▶ The Linux Plumbers Conference hosts a Networking Track
• Main maintainers attend and host the track
• For ongoing development, to discuss current issues and future work
• Very technical topics
• Usually single-day track on a multi-day event
• LPC 2025 will be in Tôkyo, Japan, in December

▶ The Netdev Conference is dedicated to kernel networking development
• Main maintainers also attend
• Hosted by a dedicated group of individuals (the Netdev Society)
• 4 or 5 days, mixing remte and on-site sessions
• Very technical topics as well, not many are embedded-oriented
• Netdev 2025 was in Zagreb, Croatia, in April.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/298

https://lpc.events/
https://netdevconf.info/

Practical lab - Setup lab

▶ Build the image used for the whole training
▶ Setup the host machine

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/298

The Linux Kernel Networking Stack

Network Devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/298

Network devices in Linux

▶ In UNIX systems, the common saying is that ”everything is a file”
▶ Most classes of devices follow that rule, and expose block and char devices in

/dev
• /dev/mmcblk0 : eMMC device 0
• /dev/i2c-3 : I2C bus number 3
• /dev/input/* : HID devices

▶ Network devices don’t follow that rule, as they are rarely directly accessed
▶ The Linux Kernel provides access to Layers 2, 3 and 4 through the socket API
▶ Network devices appear as interfaces under /sys/class/net
▶ The sysfs API is only for limited control and device information

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/298

struct net_device

▶ The struct net_device structure represents a conduit
▶ Used for physical interfaces and virtual interfaces
▶ Abstract interfaces can be used for vlan, bridging, tap, veth, etc.
▶ Every struct net_device objects can transmit and receive packets :

• Physically, in which case it is managed by a device driver
• or Logically, by passing them to another component in the stack after potientally

altering them
▶ Instances of struct net_device are often called netdev in the Documentation
▶ Variables of that type are usually named dev

• Unfortunately, this is als the usual name of struct device objects

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/298

https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/device

struct net_device (2)

▶ Userspace sees a netdev as an interface
• Listed with ip link show or ifconfig
• Also appearing under /sys/class/net/

▶ Interfaces have a name, which may change
▶ Interfaces also have an index (ifindex) that uniquely identifies them
▶ They have attributes, changeable or not, depending on their type :

• Addresses : IPv4, IPv6, MAC, etc.
• Properties : MTU, Queue length, etc.
• Statistics : RX/TX packets, link events, etc.
• State : Link up or down, admin state, Promiscuous, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/298

Network driver

▶ Creating a new Network Interface driver is similar to any other driver :
▶ The driver registers a device driver on its underlying bus :

static const struct of_device_id mvneta_match[] = {
{ .compatible = "marvell,armada-3700-neta" },
{ }

};

static struct platform_driver mvneta_driver = {
.probe = mvneta_probe,
.remove = mvneta_remove,
.driver = {

.name = MVNETA_DRIVER_NAME,

.of_match_table = mvneta_match,
},

};
module_platform_driver(mvneta_driver);

▶ In the .probe() function, allocate a struct net_device :
dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),

txq_number, rxq_number);

▶ The netdev is registered to the networking subsystem :
register_netdev(dev);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/298

https://elixir.bootlin.com/linux/latest/ident/net_device

Reminder - Device Model and Device Drivers

In Linux, a driver is always interfacing with:
▶ a framework that allows the driver to expose the

hardware features in a generic way.
▶ a bus infrastructure, part of the device model, to

detect/communicate with the hardware.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/298

Netdevice allocation

▶ alloc_netdev_mqs() : Main allocation function :
struct net_device *
alloc_netdev_mqs(int sizeof_priv, /* Size of driver-dedicated private data area */

const char *name, /* Default name of the device */
unsigned char name_assign_type, /* Category of device name assignment */
void (*setup)(struct net_device *), /* Setup callback function */
unsigned int txqs, /* Number of TX queues */
unsigned int rxqs); /* Number of RX queues */

▶ The setup callback is called directly by alloc_netdev_mqs()

▶ free_netdev() is used to destroy the netdevice
▶ device-managed variants exist : devm_alloc_etherdev_mqs()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/298

https://elixir.bootlin.com/linux/latest/ident/alloc_netdev_mqs
https://elixir.bootlin.com/linux/latest/ident/alloc_netdev_mqs
https://elixir.bootlin.com/linux/latest/ident/free_netdev
https://elixir.bootlin.com/linux/latest/ident/devm_alloc_etherdev_mqs

Netdevice naming

▶ Netdevice names can be changed dynamically, and the name source is tracked
▶ dev->name_assign_type, exposed in /sys/class/net/xxx/name_assign_type
▶ NET_NAME_ENUM : Name built sequentially by the kernel

• e.g. eth0, eth1, etc.
▶ NET_NAME_PREDICTABLE : Name predictably assigned by the kernel

• e.g. label="lan1" in devicetree for DSA switches
▶ NET_NAME_USER : Name assigned by the user during device creation

• e.g. ip link add link eth0.10 type vlan id 10

▶ NET_NAME_RENAMED : Device was renamed by userspace
• e.g. ip link set dev eth0 name new-eth0
• Used by systemd’s Predictable Network Interface Names

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/298

https://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/

Ethernet-specific device allocation

▶ alloc_etherdev_mqs() : Allocate a new struct net_device for Ethernet :
▶ Sets the number of queues passed as parameters
▶ Creates a default name using the "eth\%d" template
▶ Sets all the Ethernet-specific default parameters :

• MTU, Header len, Address len, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/298

https://elixir.bootlin.com/linux/latest/ident/alloc_etherdev_mqs
https://elixir.bootlin.com/linux/latest/ident/net_device

Netdev ops

▶ Before registering, the driver populates a struct net_device_ops

mvneta.c - simplified
static const struct net_device_ops mvneta_netdev_ops = {

.ndo_open = mvneta_open,

.ndo_stop = mvneta_stop,

.ndo_start_xmit = mvneta_tx,

.ndo_set_mac_address = mvneta_set_mac_addr,

.ndo_change_mtu = mvneta_change_mtu,
...
};

static int mvneta_probe(struct platform_device *pdev)
{

...
dev->netdev_ops = &mvneta_netdev_ops;

register_netdev(dev);
}

▶ These hooks are referred to as NDOs
▶ .ndo_start_xmit must be populated, all other are optional.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/298

https://elixir.bootlin.com/linux/latest/ident/net_device_ops

Common NDOs

▶ .ndo_open and
▶ .ndo_stop : Bring the interface UP or DOWN

• Call when using ip link set eth0 up/down

▶ .ndo_start_xmit : Send a packet
▶ .ndo_set_rx_mode : Configure the rx filtering
▶ .ndo_set_mac_address : Notify the driver that the MAC address was changed
▶ .ndo_get_stats64 : Ask for hardware or driver statistics
▶ .ndo_eth_ioctl : Device-level ioctl handler, phased-out.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/298

Netdev registration

▶ register_netdevice() : Registers the struct net_device, in the netdev->net
namespace

• Allocates the interface index
• Makes the device visble from userspace
• From this point on, NDOs may be called
• Assumes RTNL is held.
• .ndo_init is called at that stage, if provided

▶ register_netdev() : Calls register_netdevice() with RTNL held
• Used mostly in drivers, as the device driver’s .probe() doesn’t hold RTNL

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/298

https://elixir.bootlin.com/linux/latest/ident/register_netdevice
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/register_netdev
https://elixir.bootlin.com/linux/latest/ident/register_netdevice

Stacking Network Devices
▶ Netdevices can be independent conduits, or stacked in a hierarchy
▶ e.g. a VLAN is represented as a dedicated netdev

• A VLAN netdev’s lower_dev is the physical device
• The physical netdev’s upper_dev is the VLAN device

▶ struct net_device has a list of lower_dev and upper_dev
▶ Packets may be passed between netdevs, which may modify them, e.g.

• Encapsulation and Decapsulation (VLANs, tunnels)
• Redirection and Routing (bridges)
• Duplication and Redundancy (hsr, bond)
• Encryption (macsec, wireguard)

▶ Can also be virtual interfaces, such as veth, tun and tap

eth0

eth0.10 eth0.11

lower dev

upper dev

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/298

https://elixir.bootlin.com/linux/latest/ident/net_device

Stacking Network Devices - 2

▶ Stacked devices show in userspace as dev@lower
• e.g. DSA ports show as lan1@eth0
• DSA uses stacking for the conduit interface

▶ The relationship is declared by calling :
int netdev_upper_dev_link(struct net_device *dev,

struct net_device *upper_dev,
struct netlink_ext_ack *extack)

▶ A netdev can also have a master device
• Similar to upper, except a netdev can only have one master
• Used for bridges
• ip link set dev eth0 master br0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/298

Network Namespaces

▶ Netdevs can only view and pass traffic to other netdevs in the same namespace
▶ Net Namespaces, or netns, are represented internally by struct net
▶ A netns is created using netlink, e.g. through iproute2 :

• ip netns add new_netns

▶ Network namespace have their own set of resources :
• Routing tables, ARP tables, caches, pools of memory, identifier pools...

▶ Netdevs are moved to a netns with ip link set dev eth0 netns new_netns

▶ All netns contain a loopback interface named lo, created when netdev is added
to the netns

▶ Dedicated mechanisms such as veth pairs must be used for inter-netns
communication

▶ Used by Containers for isolation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/298

https://elixir.bootlin.com/linux/latest/ident/net

Network Namespaces - 2
▶ User processes run within a given netns and cannot see other interfaces

• ip netns <ns> exec <cmd> : Run cmd in the ns namespace
▶ By default, netdevs are created in the init_ns

netns_1 netns_2

eth0 eth1
lo lo lo

app A app B app C

init_ns

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/298

veth : Virtual Ethernet Pairs
▶ ip link add type veth : creates veth0@veth1 and veth1@veth0

▶ Both veth0 and veth1 are linked together, traffic flows between the 2
▶ Main way to traverse namespaces, heavily used by containers

netns_1

eth0 eth1

lo lo

app A app B

veth0 veth1

init_ns

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/298

Bridges

eth0 eth1 eth2 eth3

br0

▶ A bridge represents a logical switch.
▶ If there is a hardware switch, its ports should act as standalone interfaces

• A logical switch corresponding to the hardware can be re-created
• switching operations can be offloaded in hardware with switchdev

▶ Bridges are represented with their own struct net_device
• Created with ip link add name br0 type bridge
• It acts as the master of all the switch ports
• Ports are added with ip link set dev lan0 master br0

▶ The bridge interface maintains the fdb and handles forwarding
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/298

https://elixir.bootlin.com/linux/latest/ident/net_device

Vlan

▶ Multiple types of Vlans are supported in Linux through dedicated drivers
▶ 802.1Q : Layer 2 tag-based VLANs

• ip link add link eth0 name eth0-100 type vlan id 100

▶ 802.1AD (Q in Q) : Allows using Vlans withing Vlans, with multiple tags
• ip link add link eth0 name eth0-100 type vlan id 100 protocol 802.1ad

▶ VxLAN : VLAN using UDP encapsulation
• sudo ip link add link eth0 name vxlan100 type vxlan id 100 \

local 192.168.42.1 remote 192.168.42.2

▶ MACVlan : Virtual interface with a different MAC address than the physical one
• ip link add macvlan1 link eth0 type macvlan mode bridge
• Used a lot by containers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/298

tun and tap interfaces

socket

IP

Eth

tun

tap

TCP/UDP

tap0 tun0

App

/dev/net/tun

/dev/net/tap

userspace

kernel

▶ Create virtual interfaces where a userspace
program feeds and receives data from the
netdev

• Data is sent and received by accessing
/dev/net/tun

▶ Used for userspace tunnel implementations,
such as VPNs

▶ ip tuntap add dev tun0 mode tun

▶ ip tuntap add dev tap0 mode tap

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/298

The Linux Kernel Networking Stack

Control interfaces for the Network Stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/298

Networking stack control path

▶ The Networking stack is very highly configurable, at all levels :
▶ Controller and driver behaviour, through ethtool, e.g. set the link speed
▶ Interface configuration, with iproute2, e.g. configure the IP address
▶ System-wide configuration, e.g. enable IP forwarding
▶ Per-connection configuration, e.g. select the TCP congestion-control algorithm

• The setsockopts() syscall is covered later in this training.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/298

ioctl interface

▶ The ioctl syscall is used to perform device-specific configuration
▶ ioctl() acts on a file descriptor.

• For hardware configuration, we usually use ioctl on /dev/xxx descriptors
▶ We don’t have any fd that corresponds to a specific struct net_device

▶ Network admin ioctl uses a fd corresponding to a socket with unspecified
family : AF_UNSPEC

▶ Any socket fd can be used for network ioctls.

Example ioctl - Get interface name

struct ifreq ifr;
ifr.ifr_ifindex = ifindex;
ioctl (fd, SIOCGIFNAME, &ifr);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/298

https://elixir.bootlin.com/linux/latest/ident/net_device

ioctl API

▶ Network-related ioctl have the SIOC prefix :
• e.g. SIOCGIFNAME : Returns the name of an interface from its index
• e.g. SIOCADDMULTI : Add to the multicast address list
• e.g. SIOCSHWTSTAMP : Contigure hardware timestamping

▶ Most of the ioctl API is now frozen, and maintained for compatibility
▶ Replaced with Netlink, which offers more flexibility

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/298

https://elixir.bootlin.com/linux/latest/ident/SIOCGIFNAME
https://elixir.bootlin.com/linux/latest/ident/SIOCADDMULTI
https://elixir.bootlin.com/linux/latest/ident/SIOCSHWTSTAMP

sysctl interface

▶ The sysctl parameters are global, kernel-level parameters tunable at runtime
▶ sysctl is equivalent to writing into the corresponding files under /proc/sys/
▶ e.g. systcl net.ipv4.ip_forward=1 is equivalent to

echo 1 > /proc/sys/net/ipv4/ip_forward

▶ Values can be stored in /etc/sysctl.d/*.conf, and loaded with sysctl -p

▶ sysctl values are per-namespace, inheriting values from the init_net
▶ net.core : Core and net_device level configuration

• sysctl net.core.netdev_budget : Displays the default NAPI budget
▶ net.ipv4 IPv4 and Layer 4 configuration

• sysctl net.ipv4.ip_forward : Allow IP forwarding (Router mode)
• sysctl net.ipv4.tcp_fin_timeout : Set the TCP connection timeout (even for

IPv6)
▶ net.ipv6 IPv6 configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/298

Netlink interface

▶ More flexible kernel to userspace communication mechanism, based on sockets
fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);

▶ Allows easy extension of the userspace API without breaking compatibility
▶ User applications must open a netlink socket and send specially-formatted

messages
▶ The socket can also be listened to for Kernel to userspace notificatins
▶ Netlink messages are grouped in families, grouping message types per class.

• routing, ethtool, 802.11, team, macsec, etc.
▶ Netlink messages have a well-defined and stable format, but extensible.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/298

Netlink Classic vs Netlink Generic

▶ Most netlink users today use generic netlink
▶ This replaces classic netlink, which has statically allocated familiy ID
▶ Generic Netlink (genetlink) allows dynamic family regstration

• Allows easy implementation of custom families
• Families are looked-up by name (a string) instead of ID.

▶ Example families :
• ”ethtool”: Ethtool commands, also called ethnl
• ”wireguard”: Wireguard tunneling configuration
• ”nl80211”: Wifi-configuration netlink commands

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/298

Netlink Messages
▶ Transmission of netlink messages :

• A fixed-format Header begins the message
• The information is conveyed through TLV items : Type, Length, Value

struct nlmsghdr {
__u32 nlmsg_len; /* Length of message including headers */
__u16 nlmsg_type; /* Generic Netlink Family (subsystem) ID */
__u16 nlmsg_flags; /* Flags - request or dump */
__u32 nlmsg_seq; /* Sequence number */
__u32 nlmsg_pid; /* Port ID, set to 0 */

};
struct genlmsghdr {

__u8 cmd; /* Command, as defined by the Family */
__u8 version; /* Irrelevant, set to 1 */
__u16 reserved; /* Reserved, set to 0 */

};
/* TLV attributes follow... */

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/298

Netlink commands

▶ There are multiple types of Netlink requests based on the nlmsg_flags

▶ Commands may be used to Get or Set some kernel attributes
▶ Netlink Get commands can target one or several objects

• A single object request is a .doit() request
ip link show eth0

• An object listing request is a .dumpit() request
ip link show

▶ Netlink also exposes multicast notifications
▶ The message content is made of a set of pre-defined Attributes, based on the

Command and Family
• e.g. Command ETHTOOL_MSG_LINKMODES_GET for family ”ethtool”
• Contains ETHTOOL_A_LINKMODES_SPEED

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/298

Netlink specifications
▶ Message content used to be specified directly in the kernel uAPI headers
▶ Formats are now defined as Netlink Specs written in YAML

▶ Specifications are written per-family in Documentation/netlink/specs

Documentation/netlink/specs/ethtool.yaml

name: ethtool
protocol: genetlink-legacy
doc: Partial family for Ethtool Netlink.

definitions:
- ...

attribute-sets:
- ...

operations:
- ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/298

https://elixir.bootlin.com/linux/latest/source/Documentation/netlink/specs

Netlink specifications - 2

▶ Netlink specs are used internally to generate the uAPI headers
• Generated in include/uapi/linux/ethtool_netlink_generated.h
• Included by include/uapi/linux/ethtool_netlink.h

▶ When modifying the specs, headers can be regenerated with
${KDIR}/tools/net/ynl/ynl-regen.sh

▶ The ynl tool included in the kernel’s sources can be used to sent hand-crafted
messages

• make -C tools/net/ynl

▶ Uses the Netlink Specs to derive the format and family :
ynl --family ethtool --no-schema --do linkinfo-get \
--json '{"header" : { "dev-name" : "eth0"}}'

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/298

https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/ethtool_netlink_generated.h
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/ethtool_netlink.h

Netlink monitor

▶ Netlink Monitoring car refer to 2 distinct operations :
▶ One can listen to netlink notifications

• Emitted by the kernel upon configuration change
• Applications can listen for specific notifications (Address change, link up, etc.)
• e.g. ip monitor, ethtool --monitor, etc.

▶ It is also possible to listen to All Netlink Traffic
• It includes All netlink messages, requests, replies and notifications
• Done through a dedicated virtual interface : nlmon
• e.g. ip link add name nlmon0 type nlmon
• Tools such as tcpdump and wireshark can be used on the nlmon interface

▶ All these mechanisms still go through network namespaces

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/298

Configuration serialization in the kernel

▶ Actions triggered by ioctl or netlink messages often need serialization
• Some actions impact multiple devices (e.g. netns removal)
• Actions may be performed on multiple CPUs concurrently

▶ The main lock used to serialize the configuration is the rtnl lock
• Global struct mutex, taken with rtnl_lock() and released with rtnl_unlock()
• RouTing NetLink

▶ net_device.lock : Mutex to protect some of the struct net_device fields
• Very recent feature, introduced in v6.14

▶ The list of struct net_device is protected by RCU
▶ All struct net_device instance are reference-counted and reference-tracked

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/298

https://elixir.bootlin.com/linux/latest/ident/mutex
https://elixir.bootlin.com/linux/latest/ident/rtnl_lock
https://elixir.bootlin.com/linux/latest/ident/rtnl_unlock
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/net_device

The RTNL lock

▶ Sometimes the Network Stack’s Big Kernel Lock
• Its scope is slowly getting removed, replaced with more specific locks

▶ Serializes most NDOs that aren’t on the datapath
• e.g. it does not protect .ndo_start_xmit().

▶ Also serializes most struct ethtool_ops

▶ Protects some of the struct net_device fields
▶ For now, RTNL is not per-namespace, it is global. This is being reworked.
▶ Functions that rely on the caller holding rtnl ofen use ASSERT_RTNL()
▶ It is a mutex :

• It is possible to sleep while holding rtnl
• rtnl cannot be used when sleeping is forbidden (e.g. interrupt and softirq context)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/298

https://elixir.bootlin.com/linux/latest/ident/ethtool_ops
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/ASSERT_RTNL

Using Netlink in the kernel

▶ A new family can be registered by registering a struct genl_family
▶ This allows registering custom messages and associated handlers

• e.g the macsec family
▶ Existing families already provide layers of abstractions :

• The struct rtnl_link_ops is used for virtual netdev types
• The ethnl abstraction is used for ethtool commands

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/298

https://elixir.bootlin.com/linux/latest/ident/genl_family
https://elixir.bootlin.com/linux/v6.15.2/source/drivers/net/macsec.c#L3360
https://elixir.bootlin.com/linux/latest/ident/rtnl_link_ops
https://elixir.bootlin.com/linux/v6.15.2/source/net/ethtool

Netlink Attributes

▶ As netlink is part of userspace API, all attribute values are heavily checked
▶ When declaring attributes, we can specify a policy

• Allows specifying a range of acceptable values
const struct nla_policy ethnl_linkmodes_set_policy[] = {

[ETHTOOL_A_LINKMODES_LANES] = NLA_POLICY_RANGE(NLA_U32, 1, 8),
};

▶ Handling messages is done in the genetlink .doit() callback
▶ Netlink attributes are represented as struct nlattr

▶ Attributes are passed as an array, indexed by attribute id, usually named tb

▶ Helpers are provided to get attribute values, e.g. nla_get_u32()

if (data[IFLA_MACSEC_WINDOW])
secy->replay_window = nla_get_u32(data[IFLA_MACSEC_WINDOW]);^^I

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/298

https://elixir.bootlin.com/linux/latest/ident/nlattr
https://elixir.bootlin.com/linux/latest/ident/nla_get_u32

struct netlink_ext_ack

▶ struct netlink_ext_ack allows reporting error messages to userspace
▶ It is included as part of the reply to netlink requests
▶ It can be found passed as a parameter to numerous internal kernel function

int dsa_port_mst_enable(struct dsa_port *dp, bool on, struct netlink_ext_ack *extack)
{

if (on && !dsa_port_supports_mst(dp)) {
NL_SET_ERR_MSG_MOD(extack, "Hardware does not support MST");
return -EINVAL;

}

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/298

https://elixir.bootlin.com/linux/latest/ident/netlink_ext_ack
https://elixir.bootlin.com/linux/latest/ident/netlink_ext_ack

Userpace libraries

▶ libmnl: Simple and lightweight library to access netlink
• Used by nftables, iproute2 and ethtool

▶ libnl: Higher level of abstraction but bigger binary
• Useful for programs that ”just work”

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/298

https://www.netfilter.org/projects/libmnl/index.html
https://www.infradead.org/~tgr/libnl/

Userspace tooling

▶ iproute2
• ip : Configure and query interfaces, routing and tunnels
• bridge : Configures bridges (switching)
• tc : Configures traffic control policing, shaping and filtering
• dcb : Configures ”Data Center Bridging” for traffic priorisation
• These tools use the Netlink API

▶ net-tools
• Obsolete ! replaced by iproute2
• ifconfig : Configure interfaces (replaced by ip)
• brctl : Configure bridges (replaced by bridge)

▶ ethtool
• Used to configure Ethernet devices.
• Can be compiled with ioctl or netlink support.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/298

Userspace tooling - 2

▶ NetworkManager
• Automatic configuration of interfaces based on config files
• Handles IP assignment, low-level parameters
• Very featureful, but bigger binary
• Exposes a DBus API to interact with other software
• See man 8 NetworkManager

▶ Connman
• Alternative to NetworkManager, more embedded-oriented and lightweight
• Also uses DBus to communicate with other software

▶ Systemd-networkd
• Network configuration tool provided by SystemD
• .network files are used to describe interfaces
• See man 8 systemd-networkd

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/298

https://man7.org/linux/man-pages/man8/NetworkManager.8.html
https://man7.org/linux/man-pages/man8/systemd-networkd.8.html

C library

▶ The C library exposes a few helper functions to manipulate Network features
▶ if_nametoindex: Get the ifindex of a given interface
▶ if_indextoname: Get the name of an interface from its index

• Can use either netlink or ioctl
▶ inet_aton, inet_addr: Convert IP address from string to binary
▶ htons, ntohs, htonl, ntohl: Endianness conversion

• On most protocol headers, data is sent in big endian format
• Also referred-to as Network Byte Order
• host to network sort / long

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/298

Practical lab - Interacting with the Networking stack

▶ Use iproute2 and ethtool

▶ Experiment with namespaces
▶ Create stacked interfaces
▶ Use the netlink interface

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/298

Sockets and Data Path

Sockets and Data Path

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/298

Sockets

client 2

eth0

client 1

server
process

eth0

hardware

hardware

kernel

kernel

userspace

userspace

▶ The Socket programming model stems from UNIX
▶ It has been the main way for users to transmit data through the

network since then
▶ Sockets are about more than networking, their behaviour depends on

their attributes.
▶ A socket is represented from userspace as a file descriptor :

int socket(int domain, int type, int protocol);

• see man 2 socket

▶ The domain or family defines the underlying protocol : IPv4, IPv6,
Bluetooth, Netlink...

▶ The type defines the semantics : Connection-oriented,
re-transmission, message ordering...

▶ The protocol depends on the domain and type, for further
configuration.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/298

https://man7.org/linux/man-pages/man2/socket.2.html

Socket Families

int socket(int domain, int type, int protocol);

▶ Familes as defined by UNIX, POSIX or are Linux-specific
▶ In Linux, defined in include/linux/socket.h

• AF_UNIX, AF_LOCAL : Unix Domain Sockets, for IPC. See man 7 unix
• AF_INET, AF_INET6 : IPv4 and IPv6 sockets, see man 7 ip
• AF_PACKET (raw sockets) : Layer 2 sockets, see man 7 packet
• AF_NETLINK, AF_ROUTE : Userspace to kernel sockets for configuration, see

man 7 netlink
• More specialised families : AF_BLUETOOTH, AF_IEE802154, AF_NFC, etc.

▶ Socket families are named AF_xxx, but equivalent names PF_xxx also exist
• PF standing for Protocol Family, AF for Address Family
• legacy from the early UNIX days, AF and PF enums are equivalent on linux.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/298

https://man7.org/linux/man-pages/man7/unix.7.html
https://man7.org/linux/man-pages/man7/ip.7.html
https://man7.org/linux/man-pages/man7/packet.7.html
https://man7.org/linux/man-pages/man7/netlink.7.html

Socket Types

int socket(int domain, int type, int protocol);

▶ Socket types indicates the transmission semantics, which usually means Layer 4
▶ Its meaning depends on the selected domain :

• socket(AF_INET, SOCK_DGRAM, 0) : UDP over IPv4 socket
• socket(AF_UNIX, SOCK_DGRAM, 0) : Message-oriented Unix Socket

▶ SOCK_STREAM : Sequenced, reliable, two-way, connection-oriented
• socket(AF_INET, SOCK_STREAM, 0) : TCP over IPv4 socket

▶ SOCK_DGRAM : Transmit datagrams of fixed maximum size, unreliable,
connection-less

• socket(AF_INET, SOCK_DGRAM, 0) : UDP over IPv4 socket
▶ SOCK_RAW : Raw sockets, usually containing the full frame including L2
▶ SOCK_SEQPACKET, SOCK_RDM : Other types with different ordering and

message-length attributes
▶ SOCK_NONBLOCK, SOCK_CLOEXEC : Extra bitwise flags for configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/298

Socket protocol

int socket(int domain, int type, int protocol);

▶ Complements the tuple <domain, type> to allow protocol selection.
• socket(AF_INET, SOCK_STREAM, 0) : TCP over IPv4 socket
• socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP) : SCTP over IPv4 socket

▶ For raw sockets, allows filtering by Ethertype (in network byte order)
• socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL)) : All raw frames
• socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP)) : All IPv4 frames
• socket(AF_PACKET, SOCK_RAW, htons(ETH_P_8021Q)) : All Vlan frames

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/298

binding a socket

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

▶ The bind() call allows associating a local address to a socket, see man 2 bind

▶ For connection-oriented, necessary before being able to accept connections
▶ The socket’s address format is represented by the generic struct sockaddr.

struct sockaddr {
sa_family_t sa_family;
char sa_data[14];

}

▶ The sockaddr must be subclassed by family-specific addresses :
struct sockaddr_in {

sa_family_t sin_family; /* address family: AF_INET */
in_port_t sin_port; /* TCP/UDP port in network byte order */
struct in_addr sin_addr; /* IPv4 address (uint32_t) */

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/298

https://man7.org/linux/man-pages/man2/bind.2.html

listen(), connect() and accept()

int listen(int sockfd, int backlog)

▶ Set the socket as listening for up to backlog connections, man 2 listen

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen)

▶ Accepts a remote connection request on a listening socket, man 2 accept

▶ The peer’s address is filled into the addr parameter
▶ Returns a new socket file descriptor for that connection

int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen)

▶ Connect to a remote listening socket, man 2 connect

▶ For connection-less protcols, it simply sets the destination address for datagrams

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/298

https://man7.org/linux/man-pages/man2/listen.2.html
https://man7.org/linux/man-pages/man2/accept.2.html
https://man7.org/linux/man-pages/man2/connect.2.html

socket options

▶ The socket() syscall doesn’t allow fine-tuned configuration
▶ Sockets are configured through setsockopt

• int setsockopt(int sockfd, int level, int optname, const void *optval,
socklen_t optlen)

• man 2 setsockopt

▶ The options can be used to configure the socket itself :
• setsockopt(fd, SOL_SOCKET, ...);
• SO_ATTACH_BPF : attach BPF programs to sockets
• SO_BINDTODEVICE : bind the socket to an interface
• see man 7 socket

▶ We can also configure the underlying protocol’s behaviour :
• setsockopt(fd, proto_num, ...);
• The protocol number can be retrieved from /etc/protocols
• See man 7 ip, man 7 tcp, man 7 udp, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/298

https://man7.org/linux/man-pages/man2/setsockopt.2.html
https://man7.org/linux/man-pages/man7/socket.7.html
https://man7.org/linux/man-pages/man7/ip.7.html
https://man7.org/linux/man-pages/man7/tcp.7.html
https://man7.org/linux/man-pages/man7/udp.7.html

Socket queues

▶ All sockets are created with 2 queues : A Receive queue and a Transmit queue
▶ Queues size is the same for every socket at creation time, but can be adjusted

• With the SO_RCVBUF socket option, see man 7 socket
• Using the net.core.rmem_default sysctl

▶ Packets that can’t be queued because the queue is full are dropped
▶ netstat shows the current queue usage of every open socket

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/298

https://man7.org/linux/man-pages/man7/socket.7.html

read() and write()

▶ Generic syscalls, acting on any kind of file descriptors
▶ Does not allow passing any extra flags

ssize_t read(int fd, void *buf, size_t count)

▶ Reads up to count bytes from the socket.
▶ May block until data arrives, unless the socket is non-blocking

ssize_t write(int fd, const void *buf, size_t count)

▶ Only works on connected sockets
▶ Recipient’s address is part of the socket’s connection information
▶ For datagrams, count can’t exceed the datagram size
▶ Not possible to know if the recipient actually received the message

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/298

send() and recv()

▶ Socket-only, very similar to read() and write()
▶ Also only works with connected sockets
▶ Accepts MSG_xxx bitwise flags

ssize_t recv(int sockfd, void *buf, size_t len, int flags)

▶ Similar to read()

▶ MSG_PEEK : Receives a message without consuming it from the socket queue
▶ MSG_TRUNC : Returns the real size, even if count is too small
▶ MSG_DONTWAIT : Per-message non-blocking operation

ssize_t send(int sockfd, const void *buf, size_t len, int flags)

▶ Accepts a remote connection request on a listening socket
▶ MSG_MORE : More data is yet to be sent, as a single datagram or TCP message

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/298

sendto() and recvfrom()

▶ Socket-only, specifies the peer address per-message
▶ Allows using the same socket with multiple peers on UDP

ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
struct sockaddr *src_addr, socklen_t *addrlen)

▶ Get the address of the peer that sent the message along with the message
▶ src_addr and addrlen may be null, equivalent to recv()

ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
const struct sockaddr *dest_addr, socklen_t addrlen

▶ Send data to the the peer at the specified address
▶ On connection-oriented sockets (e.g. TCP), dest_addr is ignored
▶ On Datagram sockets, the address overrides the connect() address.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/298

sendmsg() and recvmsg()

▶ Allows passing ancilliary data alongside the buffers
▶ Ancilliary data is following the cmsg format
▶ Also allows scatter-gather buffers

ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags)

▶ Grabs the peer address, like in recvfrom()
▶ Allows reading from the socket error queue

• The error queue contains the original packet content and associated errors
• Also used for timestamping

ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags)

▶ Sends single or scatter-gather buffers to a designed peer
▶ Also accepts ancilliary data

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/298

Summary - Server
1. Create the socket

int sockfd = socket(AF_INET, SOCK_STREAM, 0);

2. Bind to the local IP address and port
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_port = htons(80);
inet_aton("87.98.181.233", &addr.in_saddr);
bind(sockfd, &addr, sizeof(addr));

3. Listen for new inbound connections
listen(sockfd, 10);

4. Wait and accept a new connection
conn_fd = accept(sockfd, &peer_addr, &peer_addr_len);

5. Receive data from the client
recv(conn_fd, buf, 128);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/298

Summary - Client

1. Create the socket
int sockfd = socket(AF_INET, SOCK_STREAM, 0);

2. Connect to the server
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_port = htons(80);
inet_aton("87.98.181.233", &addr.sin_addr);
connect(sockfd, (struct sockaddr *)&addr, sizeof(addr));

3. Send data to the server
recv(conn_fd, buf, 128);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/298

Waiting for data

▶ The standard file descriptor polling methods also work on sockets
▶ select() and poll() can be used to wait for incoming packets
▶ The epoll API is becoming the preferred method nowadays
▶ epoll_create() allows creating epoll instances to listen on interest lists
▶ epoll_ctl() is used to add, modify or remove descriptors to an instance
▶ epoll_wait() is then used to wait and process events
▶ This mechanism interacts directly with NAPI instances for events
▶ New features such as IRQ suspension rely on epoll

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/298

Timestamping

▶ Timestamping traffic is useful for debugging and time synchronisation (PTP)
▶ The SO_TIMESTAMP sockopt causes timestamp creation for ingress datagrams
▶ The newer SO_TIMESTAMPING allows configuring the timestamp source :

• Hardware timestamp generation (configurable through ethtool)
• Software timestamp generation, in the driver
• TX sched timestamping, can help measure the queueing delay
• TX ACK for TCP, when the acknowledgement was received
• TX completion timestamping, when the packet finished being sent

▶ Timestamping can also be configured per-packet with sendmsg() and recvmsg()

▶ Timestamps are received through recvmsg ancilliary data in RX
▶ TX timestamps are accessible through the socket’s error queue

• Packets are looped-back through the error queue with an associated timestamp

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/298

io_uring

▶ io_uring is an alternative to socket programming
▶ It is an asynchronous API, originally developped for the Storage subsystem
▶ Aims at reducing the amount of syscalls such as read and write
▶ Recently, io_uring gained network support

• Applications have to crate special ring-buffers shared with the kernel
• Transfers are queued in a TX ring-buffer by userspace
• A completion ring-buffer is used to know when data has been sent
• A similar mecanism exists for RX

▶ Still new and gaining features, see this introduction post

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/298

https://developers.redhat.com/articles/2023/04/12/why-you-should-use-iouring-network-io

Sockets in the kernel

struct
socket

struct
sock

int fd

userspace

kernel

process

struct file

▶ Sockets have a file descriptor
▶ It is handled internally with a pseudo file
▶ struct socket is the generic representation

• stores the SOCK_xxx types
• holds the struct proto_ops pointer
• interfaces with the syscall API

▶ struct sock is what the network stack manipulates
• more internal representation
• for use mostly by the network stack
• maintains the queues, locks, and internal state

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/298

https://elixir.bootlin.com/linux/latest/ident/socket
https://elixir.bootlin.com/linux/latest/ident/proto_ops
https://elixir.bootlin.com/linux/latest/ident/sock

struct proto_ops

struct
socket

struct
sock

int fd

userspace

kernel

process

struct file
inet_stream_ops

inet_dgram_ops

inet6_dgram_ops

…
netlink_ops

▶ struct proto_ops implement the
protocol-specific operations

▶ Selected at socket creation based on
the family

▶ Very close to the syscall interface
struct proto_ops{
...
int (*bind) (struct socket *sock,

struct sockaddr *myaddr,
int sockaddr_len);

int (*sendmsg) (struct socket *sock,
struct msghdr *m,
size_t total_len);

...
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/298

https://elixir.bootlin.com/linux/latest/ident/proto_ops
https://elixir.bootlin.com/linux/latest/ident/proto_ops

sending through a socket

1. Userspace program calls write(), send(), sendto() or sendmsg()
2. The corresponding syscall is invoked
3. All above syscalls end-up calling __sock_sendmsg()

4. sock->ops->sendmsg() is called (inet6_sendmsg(), inet_sendmsg(), etc.)
5. sock->sk_prot->sendmsg() is called (tcp_sendmsg(), udpv6_sendmsg(), etc.)
6. skb chain gets created through ip_make_skb() or ip6_make_skb()
7. skb is then sent with e.g.udp_send_skb(), which calls ip_send_skb()

8. The target struct net_device is retrieved with ip_route_output_key_hash()
• This is cached in struct sock

9. dst_output() is eventually called, handing over from L4 to L3

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/298

https://elixir.bootlin.com/linux/latest/ident/__sock_sendmsg
https://elixir.bootlin.com/linux/latest/ident/inet6_sendmsg
https://elixir.bootlin.com/linux/latest/ident/inet_sendmsg
https://elixir.bootlin.com/linux/latest/ident/tcp_sendmsg
https://elixir.bootlin.com/linux/latest/ident/udpv6_sendmsg
https://elixir.bootlin.com/linux/latest/ident/ip_make_skb
https://elixir.bootlin.com/linux/latest/ident/ip6_make_skb
https://elixir.bootlin.com/linux/latest/ident/udp_send_skb
https://elixir.bootlin.com/linux/latest/ident/ip_send_skb
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/ip_route_output_key_hash
https://elixir.bootlin.com/linux/latest/ident/sock
https://elixir.bootlin.com/linux/latest/ident/dst_output

L3 processing

▶ In ip_finish_output() or ip6_finish_output()
▶ The Layer 2 MTU is looked-up (skb->dev->mtu)
▶ The skb is fragmented if needed
▶ Once the routing information is found, the neighbour is looked up
▶ This is usually done by looking the gateway in the ARP table

• ARP tables can be dumped with ip neigh (or arp)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/298

https://elixir.bootlin.com/linux/latest/ident/ip_finish_output
https://elixir.bootlin.com/linux/latest/ident/ip6_finish_output

Practical lab - Experimenting with Sockets

▶ Create a simple TCP client
▶ Use TCPDump
▶ Create a simple traffic monitoring tool

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/298

Sockets and Data Path

Socket Buffers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/298

struct sk_buff (1)

▶ Object that represents a packet through the stack : socket buffer
• struct sk_buff defined in include/linux/skbuff.h

▶ Created when user writes data into a socket
▶ Created by drivers upon receiving a packet
▶ Core object of the Networking Stack, often named skb
▶ It contains meta-data about the packet :

• Origin/destination struct sock (skb->sk)
• Origin/destination struct net_device (skb->dev)
• Arrival timestamp, priority, etc.

▶ Also contains a lot of specific flags :
• wifi_acked : Was the packet ack’d, wifi-specific
• decrypted : Does the packet needs decryption ?
• redirected : Was the skb redirected ?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/298

https://elixir.bootlin.com/linux/latest/ident/sk_buff
https://elixir.bootlin.com/linux/latest/ident/sk_buff
https://elixir.bootlin.com/linux/latest/source/include/linux/skbuff.h
https://elixir.bootlin.com/linux/latest/ident/sock
https://elixir.bootlin.com/linux/latest/ident/net_device

skb payload

…

sk_buff

end
tail

data
head

tailroom

data

headroom

…

0x0000

0xffff…

skb_shared_info

▶ skb maintains positions to the data buffer
▶ The data section is the current payload
▶ The payload boundaries (data and tail) depend on the

current Layer
▶ skb->len identifies the current length of data
▶ skb->head : Start of the allocated buffer
▶ skb->data : Start of the payload section of the

current layer
▶ skb->tail : End of the payload section
▶ skb->end : End of the buffer
▶ These pointers are moved when the skb traverses the

stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/298

skb geometry : Paged skb

tailroom

data

headroom

…

0x0000

0xffff…

skb_shared_info

skb_frag_t
skb_frag_t

frag

frag

sk_buff

end
tail

data
head

▶ The data section of an skb may be non-contiguous
▶ We talk about non-linear or paged skb.
▶ Sections of the payload are stored in the skb_shared_info

▶ Each part of the buffer is stored in an array of skb_frag_t
▶ This happens when transmitting scatter-gather (SG)

buffers
▶ skb_linearize() will convert it to a single-buffer skb.

• Useful for drivers that don’t support SG.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/298

https://elixir.bootlin.com/linux/latest/ident/skb_linearize

skb geometry : Fragmented skb

tailroom

data

headroom

…

0x0000

0xffff…

skb_shared_info

frag_list

sk_buff

 end
tail

data
head
next

sk_buff

next

sk_buff

next ▶ Buffers bigger than the MTU needs to be fragmented
▶ The original skb gets split into multiple parts
▶ Each fragment is its own skb
▶ Fragments are chained together through :

• skb_shared_info->frag_list for the first skb
• skb->next for the other fragments

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/298

skb cloning and duplication

…

sk_buff

end
tail

data
head tailroom

data

headroom

…

0x0000

0xffff…

skb_shared_info

sk_buff

end
tail

data
head

skb_clone()

▶ skb_clone() allocates a new struct sk_buff pointing
to an existing buffer

▶ Useful when the skb needs to be delivered multiple
times

• For Multicast, AF_PACKET, capturing, etc.
▶ The fragments are also cloned
▶ The buffer memory is refcounted
▶ Destroy the clone with consume_skb() or kfree_skb()
▶ skb_copy() duplicates the skb and all its associated

memory
▶ pskb_copy() duplicates the skb and the header but

clones the payload
▶ skb can also be shared, tracked with skb->shared

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/298

https://elixir.bootlin.com/linux/latest/ident/skb_clone
https://elixir.bootlin.com/linux/latest/ident/sk_buff
https://elixir.bootlin.com/linux/latest/ident/consume_skb
https://elixir.bootlin.com/linux/latest/ident/kfree_skb
https://elixir.bootlin.com/linux/latest/ident/skb_copy
https://elixir.bootlin.com/linux/latest/ident/pskb_copy

skb layer offsets

…

sk_buff

end
tail

data
head

tailroom

payload

headroom

…

0x0000

0xffff…

skb_shared_info

Ethernet hdr
IPv4 hdr
TCP hdr

transport_header
network_header

mac_header

▶ struct sk_buff maintains layer offsets starting from
skb->head

▶ Set and modified by each encapsulation or
decapsulation step

▶ When processing a packet, each layer moves skb->data
▶ skb_reset_xxx_header() sets the given header where

skb->data currently is
• skb_reset_mac_header() : Called by drivers
• skb_reset_network_header() : Called after MAC

processing
• skb_reset_transport_header() : Called in L3 (IP)

processing

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/298

https://elixir.bootlin.com/linux/latest/ident/sk_buff
https://elixir.bootlin.com/linux/latest/ident/skb_reset_mac_header
https://elixir.bootlin.com/linux/latest/ident/skb_reset_network_header
https://elixir.bootlin.com/linux/latest/ident/skb_reset_transport_header

skb_pull()

…

sk_buff

end
tail

data
head

tailroom

data

headroom

…

0x0000

0xffff…

skb_shared_info

skb_pull(skb, len)

▶ Pulls header data, used during decapsulation
▶ Decreases skb->len

▶ Usually followed by a layer offset readjustment
▶ Returns the new skb->data pointer
▶ May fail if skb->len is too short
▶ May require a checksum recompute

• skb_pull_rcsum() will update checksums

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/298

https://elixir.bootlin.com/linux/latest/ident/skb_pull
https://elixir.bootlin.com/linux/latest/ident/skb_pull_rcsum

skb_push()

…

sk_buff

end
tail

data
head

tailroom

data

headroom

…

0x0000

0xffff…

skb_shared_info

skb_push(skb, len)

▶ Pushes the skb->data into the headroom
▶ Increases skb->len

▶ Used during encapsulation, when creating the
headers

▶ May fail if the headroom is too short
▶ May require a checksum recompute

• skb_push_rcsum() will update checksums

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/298

https://elixir.bootlin.com/linux/latest/ident/skb_push
https://elixir.bootlin.com/linux/latest/ident/skb_push_rcsum

skb_put()

…

sk_buff

end
tail

data
head

tailroom

data

headroom

…

0x0000

0xffff…

skb_shared_info

skb_put(skb, len)

▶ Expands the payload section into the tailroom
▶ Increases skb->len

▶ Used in drivers to set the full packet size
▶ Also used by some DSA taggers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/298

https://elixir.bootlin.com/linux/latest/ident/skb_put

skb_trim()

…

sk_buff

end
tail

data
head

tailroom

data

headroom

…

0x0000

0xffff…

skb_shared_info

skb_trim(skb, new_len)

▶ Shrinks down the payload from its end
▶ Decreases skb->len

▶ Only works on linear skb
▶ Used to remove padding
▶ Also useful to decapsulate protocols that insert

a trailer
• e.g. PRP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/298

https://elixir.bootlin.com/linux/latest/ident/skb_trim
https://elixir.bootlin.com/linux/v6.15.1/source/net/hsr/hsr_forward.c#L196

pskb helpers

▶ potentially fragmented skb helpers manipulate non-linear skb
▶ Useful if you don’t know and don’t mind if the skb is paged
▶ Not all helper have a matching pskb equivalent, not always relevant
▶ skb_put() => pskb_put()

▶ skb_pull() => pskb_pull()

▶ skb_trim() => pskb_trim()
▶ pskb_may_pull() indicates if a pskb_pull operation will succedd

• pskb_may_pull_reason() returns a drop reason if it will fail

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/298

https://elixir.bootlin.com/linux/latest/ident/skb_put
https://elixir.bootlin.com/linux/latest/ident/pskb_put
https://elixir.bootlin.com/linux/latest/ident/skb_pull
https://elixir.bootlin.com/linux/latest/ident/pskb_pull
https://elixir.bootlin.com/linux/latest/ident/skb_trim
https://elixir.bootlin.com/linux/latest/ident/pskb_trim
https://elixir.bootlin.com/linux/latest/ident/pskb_may_pull
https://elixir.bootlin.com/linux/latest/ident/pskb_may_pull_reason

skb allocation

▶ build_skb() allocates a new skb around an existing buffer
▶ A new linear skb is allocated with alloc_skb(). It also allocates its data buffer.
▶ A paged skb can be allocated with alloc_skb_with_frags()

▶ A newly-allocated skb is empty : skb->data == skb->head == skb->tail

▶ skb_reserve() grows the headroom, then skb_push() to prepares the data
section

…

sk_buff

end
tail

data
head

tailroom

…

skb_shared_info

…

sk_buff

end
tail

data
head

tailroom

…

skb_shared_info

headroom
skb_reserve()

…

sk_buff

end
tail

data
head

tailroom

…

skb_shared_info

headroom

skb_push()
data

1 2 3

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/298

https://elixir.bootlin.com/linux/latest/ident/build_skb
https://elixir.bootlin.com/linux/latest/ident/alloc_skb
https://elixir.bootlin.com/linux/latest/ident/alloc_skb_with_frags
https://elixir.bootlin.com/linux/latest/ident/skb_reserve
https://elixir.bootlin.com/linux/latest/ident/skb_push

Dropping packets

▶ At any point, we may decide to discard an skb, it is dropped
▶ an skb is dropped with :

void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);

▶ The reason allows reporting to users the cause of the drop
▶ Around 120 different reasons currently exist

• see include/net/dropreason-core.h

▶ Drop reasons are not part of the userspace API, but can be retrieved with :
• ftrace, via the skb:kfree_skb and skb:consume_skbtracepoints :

trace-cmd record -e skb:kfree_skb <cmd>
• dropwatch : Uses the kernel’s dropmon mechanism through netlink
• retis : eBPF-based, uses the BTF information to display reasons

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/298

https://elixir.bootlin.com/linux/latest/source/include/net/dropreason-core.h

SKB decapsulation

tailroom

data

headroom

ETH hdr

IP hdr

TCP hdr

end

tail

ethhdr = skb->data

head

iphdr = skb->data

tcphdr = skb->data

buff = skb->data

skb_pull()

skb_pull()

skb_pull()

▶ When ingress packets traverse the stack, they are
decapsulated

▶ Each header usually have a field indicating the nature of
the upper layer

• Ethernet header : Ethertype (2 bytes)
• IPv4 header : Protocol (1 byte)
• IPv6 header : Next Header (1 byte)

▶ The ptype list maps Ethertypes to packet handlers

▶ The proto list maps Protocols to
Transport handlers

▶ Each stage parses its header, and moves skb->data

▶ In the last stage, skb->data points to the final payload

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/298

struct packet_type

▶ L2 protocols such as 802.3 and 802.11 usually include an Ethertype
▶ 2-byte value indicating the higher-level protocol :

• 0x0800 for IPv4, 0x0806 for ARP
• 0x86dd for IPv6, 0x8100 for 802.1Q (vlan)
• See include/uapi/linux/if_ether.h

▶ We can associate struct packet_type with Ethertypes :
struct packet_type {

__be16 type;
struct net_device *dev;
int (*func) (struct sk_buff *skb,

struct net_device *dev,
struct packet_type *ptype,
struct net_device *orig_dev);

/* ... truncated */
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/298

https://elixir.bootlin.com/linux/latest/ident/packet_type
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/if_ether.h
https://elixir.bootlin.com/linux/latest/ident/packet_type

dev_add_pack()

▶ dev_add_pack() registers a struct packet_type (ptype)
▶ if ptype->dev is NULL, the handler is registered system-wide

• e.g. IPv4, IPv6, ARP
▶ otherwise, the ptype will only be handled on ptype->dev.

• e.g. AF_PACKET sockets bound to an interface
▶ Upon match of the Ethertype, ptype->func() is called with the skb

▶ ptype->list_func can be implemented to handle multiple skb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/298

https://elixir.bootlin.com/linux/latest/ident/dev_add_pack
https://elixir.bootlin.com/linux/latest/ident/dev_add_pack
https://elixir.bootlin.com/linux/latest/ident/packet_type

IPv4 example
static struct packet_type ip_packet_type __read_mostly = {

.type = cpu_to_be16(ETH_P_IP),

.func = ip_rcv,

.list_func = ip_list_rcv,
};

static int __init inet_init(void) /* truncated */
{

/* For TX : Used by the socket's sendmsg */
proto_register(&tcp_prot, 1);
proto_register(&udp_prot, 1);
proto_register(&ping_prot, 1);

/* For RX : Handle the IP Ethertype */
dev_add_pack(&ip_packet_type);

}
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/298

Exception : Vlan

▶ VLANs (802.1Q and 802.1AD) have a dedicated Ethertype, but no
struct packet_type

▶ VLANS are handled directly in the receive path
▶ Some hardware can strip the VLAN tag themselves

• The tag is reported out-of-band, such as in the DMA descriptors
• The VLAN information is set in skb->vlan_proto and skb->vlan_tci

▶ This also allows optimizing speed by avoiding indirect branches
▶ Some hardware may also perform Vlan filtering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/298

https://elixir.bootlin.com/linux/latest/ident/packet_type
https://elixir.bootlin.com/linux/v6.15.1/source/net/core/dev.c#L5756
https://elixir.bootlin.com/linux/v6.15.1/source/drivers/net/ethernet/freescale/enetc/enetc.c#L1363
https://elixir.bootlin.com/linux/v6.15.1/source/drivers/net/ethernet/marvell/mvpp2/mvpp2_main.c#L5295

RX handlers

▶ Protocol information alone may not always be sufficient for custom processing
▶ e.g. MACVlan has no dedicated Ethertype
▶ We can attach a callback function to a netdev, executed before protocol handling

rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);

▶ Attached with netdev_rx_handler_register() (One handler per netdev)
▶ Handler may change the skb, including skb->dev, and return :

• RX_HANDLER_CONSUMED : skb’s processing stops here
• RX_HANDLER_PASS : continue as if the handler didn’t exist
• RX_HANDLER_EXACT : PASS to protocol only if ptype->dev == skb->dev
• RX_HANDLER_ANOTHER : Re-process the skb as if it came from skb->dev

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/298

https://elixir.bootlin.com/linux/latest/ident/netdev_rx_handler_register

struct net_protocol

▶ Layer 3 protocols include an 8-bit identifier describing the L4 layer
• 6 for TCP, 17 for UDP
• 1 for ICMP, 41 for IPv6-in-IPv4
• see include/uapi/linux/in.h

▶ A transport protocol handler is represented by struct net_protocol
• For IPv6, it is represented by struct inet6_protocol

struct net_protocol {
int (*handler)(struct sk_buff *skb);
int (*err_handler)(struct sk_buff *skb, u32 info);
...

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/298

https://elixir.bootlin.com/linux/latest/ident/net_protocol
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/in.h
https://elixir.bootlin.com/linux/latest/ident/net_protocol
https://elixir.bootlin.com/linux/latest/ident/inet6_protocol

inet_add_protocol() and inet6_add_protocol()

▶ Transport protocols are registered in each L3 stack
▶ int inet_add_protocol(struct net_protocol *prot, u8 num);

▶ int inet6_add_protocol(struct inet6_protocol *prot, u8 num);

▶ Associate protocols with their respective identifiers
▶ Upon matching the num identifier, prot->handler() is called

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/298

https://elixir.bootlin.com/linux/latest/ident/inet_add_protocol
https://elixir.bootlin.com/linux/latest/ident/inet6_add_protocol

struct net_offload

▶ Some Layer 4 protocols may be associated with a struct net_offload
▶ Used to offload segmentation : Let the hardware or driver do it

• Segmentation and re-assembly is protocol-specific
• Each protocol can register a struct net_offload
• int inet_add_offload(const struct net_offload *prot, unsigned char num);

int inet6_add_offload(const struct net_offload *prot, unsigned char num);

▶ skbs bigger than the MTU are passed to the driver
▶ The driver or the hardware handles splitting the packet

• L2 and L3 headers are added, and a shorter L4 header
▶ On the receive side, the hardware or driver re-assembles the packets

• Intermediate headers are stripped and the packet is re-assembled

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/298

https://elixir.bootlin.com/linux/latest/ident/net_offload
https://elixir.bootlin.com/linux/latest/ident/net_offload
https://elixir.bootlin.com/linux/latest/ident/net_offload

Generic Receive Offload

▶ GRO may be used if the driver or the hardware doesn’t handle re-assembly
• May be toggled with ethtool -K <iface> gro off|on

▶ It is generic, works with any Layer 4 protocol
▶ This still requires driver support :

• Upon receiving packets, fragmented or not, call napi_gro_receive()
• Drivers that do not support it call netif_receive_skb()

▶ GRO accumulates skbs and asks L3 and L4 to act upon it
• inet_gro_receive() : e.g. Checks if Don’t Fragment flag is set
• tcp_gro_receive() : e.g. Flush if we exceed the TCP MSS

▶ GRO-held skbs are merged and eventually flushed to the regular receive path
▶ Can be problematic for latency or throughput in router mode

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/298

https://elixir.bootlin.com/linux/latest/ident/napi_gro_receive
https://elixir.bootlin.com/linux/latest/ident/netif_receive_skb
https://elixir.bootlin.com/linux/latest/ident/inet_gro_receive
https://elixir.bootlin.com/linux/latest/ident/tcp_gro_receive

Generic Segmentation Offload

▶ Perform the segmentation either in hardware, or just before passing to the driver
▶ Avoids having all the segments traverse the stack

• Routing, filtering, scheduling decisions are the same for all segments
▶ Pure software implementation, but can be offloaded to hardware :

• TCP Segmentation Offload (TSO)
• Hardware will split the TCP data based on the MSS
• Support for partial checksum offload is required

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/298

routing

Tap - capture

TC -Qdisc

NF - ingress

NF -
prerouting

Routing

NF - Input

NF - forward

NF -
postrouting

driver

to socket from socket

Routing

NF - Output

Layer 2

Layer 4

Layer 3

▶ Routing happens on ingress and egress
▶ Done by looking-up the Forwarding

Information Base
▶ Decision taken in fib_lookup()

▶ The table can be shown with ip route

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/298

https://elixir.bootlin.com/linux/latest/ident/fib_lookup

Flow tables

▶ Allows a slow-path and fast-path for routing and bridging
▶ The first packet of a given flow goes through the whole stack
▶ The final routing or bridging decision is cached
▶ The next packet from the same flow will go through the fastpath
▶ These decisions may be offloaded to hardware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/298

Practical lab - Manipulating socket buffers

▶ Implement a simple custom Layer 2 protocol
▶ Manipulate SKBs for encapsulation and

decapsulation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/298

Sockets and Data Path

Traffic Filtering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/298

current solutions

▶ The Networking stack can filter egress and ingress traffic
• Necessary for firewalling

▶ Filters can also identify packets of interest for on-the-fly modification
• e.g. NAT : The destination IPv4 address is re-written

▶ Historically, multiple solutions have been implemented in the Linux Kernel :
• iptables and ip6tables for Layer 3
• arptables and ebtables for Layers 2 and 3
• These solutions have been replaced by netfilter and its nftables

▶ Alternative solutions exist :eBPF, P4 and TC

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/298

Legacy filtering solutions

▶ There used to be multiple traffic filtering, each for a different layer
▶ iptables and ip6tables : IP-level filtering and mangling

• net/ipv4/netfilter/ip_tables.c and net/ipv6/netfilter/ip6_tables.c

▶ ebtables : Filtering based on Layer 2 information
• Filter and forward VLANs and bridging operations
• ARP filtering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/298

https://elixir.bootlin.com/linux/latest/source/net/ipv4/netfilter/ip_tables.c
https://elixir.bootlin.com/linux/latest/source/net/ipv6/netfilter/ip6_tables.c

nftables

▶ Originates from the Netfilter project
▶ More modern approach, with a centralised filtering table and multiple hooks
▶ Rules expressed in a low-level language
▶ Users attach chains to hooks to express rules
▶ Chains are stored within tables created by users
▶ See the project provided examples

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/298

https://www.netfilter.org/
https://wiki.nftables.org/wiki-nftables/index.php/Simple_ruleset_for_a_server

Netfilter hooks

Tap - capture

TC -Qdisc

NF - ingress

NF -
prerouting

Routing

NF - Input

NF - forward

NF -
postrouting

driver

to socket from socket

Routing

NF - Output

Layer 2

Layer 4

Layer 3

▶ ingress : Filter as soon as the packet is
received

▶ pre-routing : Filter before taking a routing
decision

▶ input : Filter packets going to sockets
▶ forward : Filter packets forwarded to the

outside
▶ output : Filter local outgoing packets
▶ post-routing : Filter all outgoing packets

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/298

netfilter in userspace

▶ Netfilter was integrated as another backed for existing tools like iptables
▶ Dedicated tool is called nft, see man 8 nft

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/298

https://man7.org/linux/man-pages/man8/nft.8.html

Sockets and Data Path

Traffic Control

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/298

Packet Scheduling

▶ On complex systems, thousands of applications may use the same interface
▶ The scheduling of egress traffic needs to be configurable and predicatble
▶ Queueing strategies can be tunes for throughput and latency
▶ tc is the main component that deals with traffic scheduling

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/298

Packet Scheduling in the stack

Tap - capture

TC -Qdisc

NF - ingress

NF -
prerouting

Routing

NF - Input

NF - forward

NF -
postrouting

driver

to socket from socket

Routing

NF - Output

Layer 2

Layer 4

Layer 3
▶ The scheduling decision occurs between

routing and the driver
▶ On egress, decides which packet to enqueue
▶ On ingress, may decide to drop or redirect

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/298

TC : Traffic Control

▶ tc is a subsystem in charge of traffic control operations, namely :
• Traffic Shaping : Control the transmission rate for traffic classes
• Traffic Scheduling : Control the ordering and burst behaviour of outgoing traffic
• Traffic Policing : Control the reception rate for traffic classes
• Drop control : Control discard conditions for egress and ingress traffic
• Classification : Identify packets of interest for further actions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/298

TC use-cases

▶ tc mqprio - Assign priorities to the Network Controller’s queues
▶ tc taprio - Time-aware queue priorisation, for TSN
▶ tc flower - Flow-based actions, can be offloaded to hardware
▶ tc ingress - Attach TC actions to ingress traffic

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/298

TC QDisc : Queueing Disciplines

▶ Controls how traffic is enqueued, in the tx direction
▶ Allows shaping the traffic very precisely on a per flow basis
▶ Flows can be assigned different Qdisc to define how to schedule transmission

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/298

Queues

▶ Queue management is crucial for Lantency and Throughput
▶ Long queues allows absorbing network instabilities...
▶ ... but may cause to latencies, leading to bufferbloat
▶ The Network Interface’s queues are exposed to TC
▶ qdisc algorithms select which queue is used for a given flow

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/298

Traffic flows
▶ Packets with same addressing parameters are part of the same flow
▶ A Layer 4 flow is defined by 4 parameters : It’s a 4-tuple

• Source and Destination ports
• Source and Destination IP address

▶ A Layer 3 flow is defined by 2 parameters : It’s a 2-tuple
• Source and Destination IP address

▶ The vlan id, if applicable, may be included in the flow definition
• FLows may thefore be 3-tuple or 5-tuple

▶ When acting on a packet, we need to identify the flow it belongs to :
▶ This is called n-tuple classification. The n-tuple is extracted, and its hash is

computed
▶ Extracting the n-tuple value from a packet is called bissection
▶ The hash is used for the subsequent lookup operations, and may be computed in

hardware.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/298

TC example : QDisc

Root Qdisc

class 1 class 2

QDisc QDisc

▶ Queueing Disciplines, or qdisc, allow configuring the
queue policy

▶ Multiple qdisc can co-exist, separated in diffent classes
▶ classes are used to split traffic, and enforce policing
▶ Traffic is assigned to classes through classification

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/298

TC example : Classification

▶ Match traffic with priority 0 or 4, and assign it to class ”1:20”
tc filter add dev eth0 parent 1: basic match 'meta(priority eq 0)' \
or 'meta(priority eq 4)' classid 1:20

▶ In ingress, classification is usually done to assign traffic to queues
▶ It can also be used for early filtering :

tc qdisc add dev eth0 ingress
tc filter add dev eth0 protocol ip parent ffff: flower \
ip_proto tcp dst_port 80 \
action drop

▶ tc-flower can also be offloaded to hardware, see man 8 tc-flower

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/298

https://man7.org/linux/man-pages/man8/tc-flower.8.html

TC example : shaping

▶ Traffic Shaping, consists in limiting the egress rate of a flow
▶ Multiple strategies exist :

• Add Jitter on purpose : tc qdisc add dev eth0 root netem delay 10ms 5ms
• Use a Token Bucket filter :

tc qdisc add dev eth0 parent 1:1 handle 10: tbf rate 256kbit

▶ This can be combined with classification :
tc qdisc add dev eth0 root handle 1: prio
tc qdisc add dev eth0 parent 1:3 handle 30: tbf rate 250kbit
tc filter add dev eth0 protocol ip parent 1:0 prio 3 u32 match ip \
dst 192.168.42.2/32 flowid 1:3

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/298

TC example : editing

▶ TC also allows editing traffic or metadata on-the-fly
▶ This is done with the skbedit action
▶ This can be used to change the skb->priority field
▶ Can also control which Hardware tx queue will be used

tc filter add dev eth0 parent 1: protocol ip prio 1 u32 \
match ip dst 192.168.0.3 \
action skbedit priority 6

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/298

TC mqprio

MAC

txq
1

txq
2

txq
3

▶ Most Network Controllers today have mutilple queues in
tx and rx

▶ They implement in hardware a policing algorithmm to
select the next tx queue to use

• It can be a simple weighted round robin algorithm
• Alternatively a strict priority selection
• Some controllers also implement Time-aware scheduling

for queue selection

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/298

TC mqprio

hardware

kernel

txq-0

tb-0

arbiter

tb-eth0

qdisc

tc-0

prio - tc map

iptables

netfilter

SO_PRIORITY

tc

tb-1

txq-1

tb-2

txq-2

tb-3

txq-3

qdisc qdisc qdisc

tc-2

tc qdisc add dev eth0 \

parent root handle 100 \

mqprio num_tc 4 \

map 3 1 0 2 \

queues 1@0 1@1 1@2 1@3 \

hw 1 mode channel shaper \
bw_rlimit \

min_rate 0 0 0 0 \

max_rate 10Mbit 20Mbit 50Mbit 100Mbit

tc-1 tc-3 prio tc
0 3
1 1
2 0
3 2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/298

TC offloads

▶ Some TC operations can be offloaded to the Ethernet Controler, if supported
▶ tc mqprio - The Hardware will implement the queue-selectin algorithm
▶ tc taprio - For TSN-enabled hardware
▶ tc flower - Classication in ingress is done by hardware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/298

eBPF

eBPF

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/298

The ancestor: Berkeley Packet filter

▶ BPF stands for Berkeley Packet Filter and was initially used for network packet
filtering

▶ BPF is implemented and used in Linux to perform Linux Socket Filtering (see
networking/filter)

▶ tcpdump and Wireshark heavily rely on BPF (through libpcap) for packet capture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/298

https://www.kernel.org/doc/html/latest/networking/filter.html

BPF in libpcap: setup

▶ tcpdump passes the capture filter string from the user to
libpcap

▶ libpcap translates the capture filter into a binary program
• This program uses the instruction set of an abstract machine

(the “BPF instruction set”)
▶ libpcap sends the binary program to the kernel via the

setsockopt() syscall

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/298

BPF in libpcap: capture

▶ The kernel implements the BPF “virtual
machine”

▶ The BPF virtual machine executes the
program for every packet

▶ The program inspects the packet data and
returns a non-zero value if the packet must
be captured

▶ If the return value is non-zero, the packet
is captured in addition to regular packet
processing

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/298

eBPF (1/2)
▶ eBPF is a new framework allowing to run small user programs directly in the

kernel, in a safe and efficient way. It has been added in kernel 3.18 but it is still
evolving and receiving updates frequently.

▶ eBPF programs can capture and expose kernel data to userspace, and also alter
kernel behavior based on some user-defined rules.

▶ eBPF is event-driven: an eBPF program is triggered and executed on a specific
kernel event

▶ A major benefit from eBPF is the possibility to reprogram the kernel behavior,
without performing kernel development:

• no risk of crashing the kernel because of bugs
• faster development cycles to get a new feature ready

Image credits: https://ebpf.io/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/298

https://ebpf.io/
https://ebpf.io/

eBPF (2/2)

▶ The most notable eBPF features are:
• A new instruction set, interpreter and verifier
• A wide variety of ”attach” locations, allowing to hook programs almost anywhere in

the kernel
• dedicated data structures called ”maps”, to exchange data between multiple eBPF

programs or between programs and userspace
• A dedicated bpf() syscall to manipulate eBPF programs and data
• plenty of (kernel) helper functions accessible from eBPF programs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/298

eBPF program lifecycle

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/298

Kernel configuration for eBPF

▶ CONFIG_NET to enable eBPF subsystem
▶ CONFIG_BPF_SYSCALL to enable the bpf() syscall
▶ CONFIG_BPF_JIT to enable JIT on programs and so increase performance
▶ CONFIG_BPF_JIT_ALWAYS_ON to force JIT
▶ CONFIG_BPF_UNPRIV_DEFAULT_OFF=n in development to allow eBPF usage

without root
▶ You may then want to enable more general features to ”unlock” specific hooking

locations:
• CONFIG_KPROBES to allow hooking programs on kprobes
• CONFIG_TRACING to allow hooking programs on kernel tracepoints
• CONFIG_NET_CLS_BPF to write packets classifiers
• CONFIG_CGROUP_BPF to attach programs on cgroups hooks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/298

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NET
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_BPF_SYSCALL
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_BPF_JIT
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_BPF_JIT_ALWAYS_ON
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_BPF_UNPRIV_DEFAULT_OFF
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KPROBES
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_TRACING
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NET_CLS_BPF
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CGROUP_BPF

eBPF ISA

▶ eBPF is a ”virtual” ISA, defining its own set of instructions: load and store
instruction, arithmetic instructions, jump instructions,etc

▶ It also defines a set of 10 64-bits wide registers as well as a calling convention:
• R0: return value from functions and BPF program
• R1, R2, R3, R4, R5: function arguments
• R6, R7, R8, R9: callee-saved registers
• R10: stack pointer

; bpf_printk("Hello %s\n", "World");
0: r1 = 0x0 ll
2: r2 = 0xa
3: r3 = 0x0 ll
5: call 0x6

; return 0;
6: r0 = 0x0
7: exit

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/298

The eBPF verifier

▶ When loaded into the kernel, a program must first be validated by the eBPF
verifier.

▶ The verifier is a complex piece of software which checks eBPF programs against a
set of rules to ensure that running those may not compromise the whole kernel.
For example:

• a program must always return and so not contain paths which could make them
”infinite” (e.g: no infinite loop)

• a program must make sure that a pointer is valid before dereferencing it
• a program can not access arbitrary memory addresses, it must use passed context

and available helpers
▶ If a program violates one of the verifier rules, it will be rejected.
▶ Despite the presence of the verifier, you still need to be careful when writing

programs! eBPF programs run with preemption enabled (but CPU migration
disabled), so they can still suffer from concurrency issues

• There are mechanisms and helpers to avoid those issues, like per-CPU maps types.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/298

Program types and attach points
▶ There are different categories of hooks to which a program can be attached:

• an arbitrary kprobe
• a kernel-defined static tracepoint
• a specific perf event
• throughout the network stack
• and a lot more, see bpf_attach_type

▶ A specific attach-point type can only be hooked with a set of specific program
types, see bpf_prog_type and bpf/libbpf/program_types.

▶ The program type then defines the data passed to an eBPF program as input
when it is invoked. For example:

• A BPF_PROG_TYPE_TRACEPOINT program will receive a structure containing all data
returned to userspace by the targeted tracepoint.

• A BPF_PROG_TYPE_SCHED_CLS program (used to implement packets classifiers) will
receive a struct __sk_buff, the kernel representation of a socket buffer.

• You can learn about the context passed to any program type by checking
include/linux/bpf_types.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/298

https://elixir.bootlin.com/linux/latest/ident/bpf_attach_type
https://elixir.bootlin.com/linux/latest/ident/bpf_prog_type
https://www.kernel.org/doc/html/latest/bpf/libbpf/program_types.html
https://elixir.bootlin.com/linux/latest/ident/__sk_buff
https://elixir.bootlin.com/linux/latest/source/include/linux/bpf_types.h

eBPF maps

▶ eBPF programs exchange data with userspace or other programs through maps of
different nature:

• BPF_MAP_TYPE_ARRAY: generic array storage. Can be differentiated per CPU
• BPF_MAP_TYPE_HASH: a storage composed of key-value pairs. Keys can be of

different types: __u32, a device type, an IP address...
• BPF_MAP_TYPE_QUEUE: a FIFO-type queue
• BPF_MAP_TYPE_CGROUP_STORAGE: a specific hash map keyed by a cgroup id. There

are other types of maps specific to other object types (inodes, tasks, sockets, etc)
• etc...

▶ For basic data, it is easier and more efficient to directly use eBPF global variables
(no syscalls involved, contrary to maps)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/298

The bpf() syscall

▶ The kernel exposes a bpf() syscall to allow interacting with the eBPF subsystem
▶ The syscall takes a set of subcommands, and depending on the subcommand,

some specific data:
• BPF_PROG_LOAD to load a bpf program
• BPF_MAP_CREATE to allocate maps to be used by a program
• BPF_MAP_LOOKUP_ELEM to search for an entry in a map
• BPF_MAP_UPDATE_ELEM to update an entry in a map
• etc

▶ The syscall works with file descriptors pointing to eBPF resources. Those
resources (program, maps, links, etc) remain valid while there is at least one
program holding a valid file descriptor to it. Those are automatically cleaned once
there are no user left.

▶ For more details, see man 2 bpf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/298

https://elixir.bootlin.com/linux/latest/ident/BPF_PROG_LOAD
https://elixir.bootlin.com/linux/latest/ident/BPF_MAP_CREATE
https://elixir.bootlin.com/linux/latest/ident/BPF_MAP_LOOKUP_ELEM
https://elixir.bootlin.com/linux/latest/ident/BPF_MAP_UPDATE_ELEM
https://man7.org/linux/man-pages/man2/bpf.2.html

Writing eBPF programs

▶ eBPF programs can either be written directly in raw eBPF assembly or in higher
level languages (e.g: C or rust), and are compiled using the clang compiler.

▶ The kernel provides some helpers that can be called from an eBPF program:
• bpf_trace_printk Emits a log to the trace buffer
• bpf_map_{lookup,update,delete}_elem Manipulates maps
• bpf_probe_{read,write}[_user] Safely read/write data from/to kernel or

userspace
• bpf_get_current_pid_tgid Returns current Process ID and Thread group ID
• bpf_get_current_uid_gid Returns current User ID and Group ID
• bpf_get_current_comm Returns the name of the executable running in the current

task
• bpf_get_current_task Returns the current struct task_struct
• Many other helpers are available, see man 7 bpf-helpers

▶ Kernel also exposes kfuncs (see bpf/kfuncs), but contrary to bpf-helpers, those
do not belong to the kernel stable interface.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/298

https://elixir.bootlin.com/linux/latest/ident/task_struct
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://www.kernel.org/doc/html/latest/bpf/kfuncs.html

Manipulating eBPF program

▶ There are different ways to build, load and manipulate eBPF programs:
• One way is to write an eBPF program, build it with clang, and then load it, attach it

and read data from it with bare bpf() calls in a custom userspace program
• One can also use bpftool on the built ebpf program to manipulate it (load, attach,

read maps, etc), without writing any userspace tool
• Or we can write our own eBPF tool thanks to some intermediate libraries which

handle most of the hard work, like libbpf
• We can also use specialized frameworks like BCC or bpftrace to really get all

operations (bpf program build included) handled

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 171/298

BCC

▶ BPF Compiler Collection (BCC) is (as its name suggests) a
collection of BPF based tools.

▶ BCC provides a large number of ready-to-use tools written
in BPF.

▶ Also provides an interface to write, load and hook BPF
programs more easily than using ”raw” BPF language.

▶ Available on a large number of architecture (Unfortunately,
not ARM32).

• On debian, when installed, all tools are named
<tool>-bpfcc.

▶ BCC requires a kernel version >= 4.1.
▶ BCC evolves quickly, many distributions have old versions:

you may need to compile from the latest sources

Image credits:
https://github.com/iovisor/bcc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 172/298

https://github.com/iovisor/bcc

BCC tools

Image credits: https://www.brendangregg.com/ebpf.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/298

https://www.brendangregg.com/ebpf.html

BCC Tools example

▶ profile.py is a CPU profiler allowing to capture stack traces of current
execution. Its output can be used for flamegraph generation:

$ git clone https://github.com/brendangregg/FlameGraph.git
$ profile.py -df -F 99 10 | ./FlameGraph/flamegraph.pl > flamegraph.svg

▶ tcpconnect.py script displays all new TCP connection live

$ tcpconnect
PID COMM IP SADDR DADDR DPORT
220321 ssh 6 ::1 ::1 22
220321 ssh 4 127.0.0.1 127.0.0.1 22
17676 Chrome_Child 6 2a01:cb15:81e4:8100:37cf:d45b:d87d:d97d 2606:50c0:8003::154 443
[...]

▶ And much more to discover at https://github.com/iovisor/bcc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/298

https://github.com/iovisor/bcc

Using BCC with python

▶ BCC exposes a bcc module, and especially a BPF class
▶ eBPF programs are written in C and stored either in external files or directly in a

python string.
▶ When an instance of the BPF class is created and fed with the program (either as

string or file), it automatically builds, loads, and possibly attaches the program
▶ There are multiple ways to attach a program:

• By using a proper program name prefix, depending on the targeted attach point
(and so the attach step is performed automatically)

• By explicitly calling the relevant attach method on the BPF instance created earlier

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/298

Using BCC with python
▶ Hook with a kprobe on the clone() system call and display "Hello, World!"

each time it is called

#!/usr/bin/env python3

from bcc import BPF

define BPF program
prog = """
int hello(void *ctx) {

bpf_trace_printk("Hello, World!\\n");
return 0;

}
"""
load BPF program
b = BPF(text=prog)
b.attach_kprobe(event=b.get_syscall_fnname("clone"), fn_name="hello")

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 176/298

libbpf

▶ Instead of using a high level framework like BCC, one can use libbpf to build
custom tools with a finer control on every aspect of the program.

▶ libbpf is a C-based library that aims to ease eBPF programming thanks to the
following features:

• userspace APIs to handle open/load/attach/teardown of bpf programs
• userspace APIs to interact with attached programs
• eBPF APIs to ease eBPF program writing

▶ Packaged in many distributions and build systems (e.g.: Buildroot)
▶ Learn more at https://libbpf.readthedocs.io/en/latest/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/298

https://libbpf.readthedocs.io/en/latest/

eBPF programming with libbpf (1/2)
my_prog.bpf.c

#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>

#define TASK_COMM_LEN 16
struct {

__uint(type, BPF_MAP_TYPE_ARRAY);
__type(key, __u32);
__type(value, __u64);
__uint(max_entries, 1);

} counter_map SEC(".maps");

struct sched_switch_args {
unsigned long long pad;
char prev_comm[TASK_COMM_LEN];
int prev_pid;
int prev_prio;
long long prev_state;
char next_comm[TASK_COMM_LEN];
int next_pid;
int next_prio;

};

▶ The fields to define in the *_args structure are obtained from the event
description in /sys/kernel/tracing/events (see this example)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 178/298

https://elixir.bootlin.com/linux/v6.12/source/tools/testing/selftests/bpf/progs/test_stacktrace_map.c#L41

eBPF programming with libbpf (2/2)

my_prog.bpf.c

SEC("tracepoint/sched/sched_switch")
int sched_tracer(struct sched_switch_args *ctx)
{

__u32 key = 0;
__u64 *counter;
char *file;

char fmt[] = "Old task was %s, new task is %s\n";
bpf_trace_printk(fmt, sizeof(fmt), ctx->prev_comm, ctx->next_comm);

counter = bpf_map_lookup_elem(&counter_map, &key);
if(counter) {

*counter += 1;
bpf_map_update_elem(&counter_map, &key, counter, 0);

}

return 0;
}

char LICENSE[] SEC("license") = "Dual BSD/GPL";

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/298

Building eBPF programs

▶ An eBPF program written in C can be built into a loadable object thanks to clang:

$ clang -target bpf -O2 -g -c my_prog.bpf.c -o my_prog.bpf.o

• The -g option allows to add debug information as well as BTF information
▶ GCC can be used too with recent versions

• the toolchain can be installed with the gcc-bpf package in Debian/Ubuntu
• it exposes the bpf-unknown-none target

▶ To easily manipulate this program with a userspace program based on libbpf, we
need ”skeleton” APIs, which can be generated with to bpftool

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/298

bpftool

▶ bpftool is a command line tool allowing to interact with bpf object files and the
kernel to manipulate bpf programs:

• Load programs into the kernel
• List loaded programs
• Dump program instructions, either as BPF code or JIT code
• List loaded maps
• Dump map content
• Attach programs to hooks (so they can run)
• etc

▶ You may need to mount the bpf filesystem to be able to pin a program (needed to
keep a program loaded after bpftool has finished running):

$ mount -t bpf none /sys/fs/bpf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 181/298

bpftool

▶ List loaded programs

$ bpftool prog
348: tracepoint name sched_tracer tag 3051de4551f07909 gpl
loaded_at 2024-08-06T15:43:11+0200 uid 0
xlated 376B jited 215B memlock 4096B map_ids 146,148
btf_id 545

▶ Load and attach a program

$ mkdir /sys/fs/bpf/myprog
$ bpftool prog loadall trace_execve.bpf.o /sys/fs/bpf/myprog autoattach

▶ Unload a program

$ rm -rf /sys/fs/bpf/myprog

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/298

bpftool
▶ Dump a loaded program

$ bpftool prog dump xlated id 348
int sched_tracer(struct sched_switch_args * ctx):
; int sched_tracer(struct sched_switch_args *ctx)

0: (bf) r4 = r1
1: (b7) r1 = 0

; __u32 key = 0;
2: (63) *(u32 *)(r10 -4) = r1

; char fmt[] = "Old task was %s, new task is %s\n";
3: (73) *(u8 *)(r10 -8) = r1
4: (18) r1 = 0xa7325207369206b
6: (7b) *(u64 *)(r10 -16) = r1
7: (18) r1 = 0x7361742077656e20

[...]

▶ Dump eBPF program logs

$ bpftool prog tracelog
kworker/u80:0-11 [013] d..41 1796.003605: bpf_trace_printk: Old task was kworker/u80:0, new task is swapper/13
<idle>-0 [013] d..41 1796.003609: bpf_trace_printk: Old task was swapper/13, new task is kworker/u80:0
sudo-18640 [010] d..41 1796.003613: bpf_trace_printk: Old task was sudo, new task is swapper/10
<idle>-0 [010] d..41 1796.003617: bpf_trace_printk: Old task was swapper/10, new task is sudo
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/298

bpftool
▶ List created maps

$ bpftool map
80: array name counter_map flags 0x0

key 4B value 8B max_entries 1 memlock 256B
btf_id 421

82: array name .rodata.str1.1 flags 0x80
key 4B value 33B max_entries 1 memlock 288B
frozen

96: array name libbpf_global flags 0x0
key 4B value 32B max_entries 1 memlock 280B

[...]

▶ Show a map content

$ sudo bpftool map dump id 80
[{

"key": 0,
"value": 4877514
}

]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/298

bpftool

▶ Generate libbpf APIs to manipulate a program

$ bpftool gen skeleton trace_execve.bpf.o name trace_execve > trace_execve.skel.h

▶ We can then write our userspace program and benefit from high level APIs to
manipulate our eBPF program:

• instantiation of a global context object which will have references to all of our
programs, maps, links, etc

• loading/attaching/unloading of our programs
• eBPF program directly embedded in the generated header as a byte array

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/298

Userspace code with libbpf

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include "trace_sched_switch.skel.h"

int main(int argc, char *argv[])
{

struct trace_sched_switch *skel;
int key = 0;
long counter = 0;

skel = trace_sched_switch__open_and_load();
if(!skel)

exit(EXIT_FAILURE);
if (trace_sched_switch__attach(skel)) {

trace_sched_switch__destroy(skel);
exit(EXIT_FAILURE);

}

while(true) {
bpf_map__lookup_elem(skel->maps.counter_map, &key, sizeof(key), &counter, sizeof(counter), 0);
fprintf(stderr, "Scheduling switch count: %d\n", counter);
sleep(1);

}

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/298

eBPF programs portability (1/2)
▶ Kernel internals, contrary to userspace APIs, do not expose stable APIs. This

means that an eBPF program manipulating some kernel data may not work with
another kernel version

▶ The CO-RE (Compile Once - Run Everywhere) approach aims to solve this issue
and make programs portable between kernel versions. It relies on the following
features:

• your kernel must be built with CONFIG_DEBUG_INFO_BTF=y to have BTF data
embedded. BTF is a format similar to dwarf which encodes data layout and
functions signatures in an efficient way.

• your eBPF compiler must be able to emit BTF relocations (both clang and GCC are
capable of this on recent versions, with the -g argument)

• you need a BPF loader capable of processing BPF programs based on BTF data and
adjust accordingly data accesses: libbpf is the de-facto standard bpf loader

• you then need eBPF APIs to read/write to CO-RE relocatable variables. libbpf
provides such helpers, like bpf_core_read

▶ To learn more, take a look at Andrii Nakryiko’s CO-RE guide
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/298

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_INFO_BTF
https://nakryiko.com/posts/bpf-core-reference-guide/

eBPF programs portability (2/2)

▶ Despite CO-RE, you may still face different constraints on different kernel
versions, because of major features introduction or change, since the eBPF
subsystem keeps receiving frequent updates:

• eBPF tail calls (which allow a program to call a function) have been added in
version 4.2, and allow to call another program only since version 5.10

• eBPF spin locks have been added in version 5.1 to prevent concurrent accesses to
maps shared between CPUs.

• Different attach types keep being added, but possibly on different kernel versions
when it depends on the architecture: fentry/fexit attach points have been added in
kernel 5.5 for x86 but in 6.0 for arm32.

• Any kind of loop (even bounded) was forbidden until version 5.3
• CAP_BPF capability, allowing a process to perform eBPF tasks, has been added in

version 5.8

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/298

eBPF for tracing/profiling

▶ eBPF is a very powerful framework to spy on kernel internals: thanks to the wide
variety of attach point, you can expose almost any kernel code path and data.

▶ In the mean time, eBPF programs remain isolated from kernel code, which makes
it safe (compared to kernel development) and easy to use.

▶ Thanks to the in-kernel interpreter and optimizations like JIT compilation, eBPF
is very well suited for tracing or profiling with low overhead, even in production
environments, while being very flexible.

▶ This is why eBPF adoption level keeps growing for debugging, tracing and
profiling in the Linux ecosystem. As a few examples, we find eBPF usage in:

• tracing frameworks like BCC and bpftrace
• network infrastructure components, like Cilium or Calico
• network packet tracers, like pwru or dropwatch
• And many more, check ebpf.io for more examples

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/298

https://github.com/iovisor/bcc
https://github.com/bpftrace/bpftrace
https://github.com/cilium/cilium
https://github.com/projectcalico/calico
https://github.com/cilium/pwru
https://github.com/feiskyer/dropwatch
https://ebpf.io/applications/

eBPF: resources

▶ BCC tutorial: https://github.com/iovisor/bcc/blob/master/docs/
tutorial_bcc_python_developer.md

▶ libbpf-bootstrap: https://github.com/libbpf/libbpf-bootstrap
▶ A Beginner’s Guide to eBPF Programming - Liz Rice, 2020

• Video: https://www.youtube.com/watch?v=lrSExTfS-iQ
• Resources: https://github.com/lizrice/ebpf-beginners

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/298

https://github.com/iovisor/bcc/blob/master/docs/tutorial_bcc_python_developer.md
https://github.com/iovisor/bcc/blob/master/docs/tutorial_bcc_python_developer.md
https://github.com/libbpf/libbpf-bootstrap
https://www.youtube.com/watch?v=lrSExTfS-iQ
https://github.com/lizrice/ebpf-beginners

eBPF

XDP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 191/298

eXpress Data Path

▶ Run an eBPF program as close to frame reception as possible
▶ Support is Hardware-specific and driver-specific
▶ Introduced for high-performance networking, but available on embedded devices
▶ Take very fast decisions in the driver, with user-configurable eBPF code
▶ Used for fast routing, DDoS protection, firewalling, etc.
▶ With AF_XDP, offers an upstream alternative to kernel bypass

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/298

XDP program

XDP
eBPF
prognapi loop

rx queue

XDP_REDIRECT

XDP_TX

XDP_PASS

XDP_DROP

X

MAC driver

▶ XDP programs are run by the MAC driver in the NAPI
loop

▶ XDP programs may edit the received frame, and take a
decision :

• XDP_PASS : Packet continues to the Networking stack
• XDP_DROP : Packet is immediately dropped
• XDP_ABORTED : Similar XDP_DROP but triggers a

tracepoint
• XDP_TX : Packet is sent back from the same interface
• XDP_REDIRECT : Packet is sent either :

back from another interface
to another CPU for processing
to an AF_XDP socket

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 193/298

https://elixir.bootlin.com/linux/v6.12.32/A/ident/xdp_exception

XDP hook - driver side

u32 bpf_prog_run_xdp(const struct bpf_prog *prog, struct xdp_buff *xdp);

…

xdp_buff

data_end
data

data_meta
data_hard_start

data

metadata

headroom

…

0x0000

0xffff…

▶ struct bpf_prog : The XDP program attached to the
interface

▶ struct xdp_buff : A representation of the buffer
▶ XDP runs before the skb is even created
▶ a struct xdp_buff is a very simple and lightweight

representation of a frame

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 194/298

https://elixir.bootlin.com/linux/latest/ident/bpf_prog
https://elixir.bootlin.com/linux/latest/ident/xdp_buff
https://elixir.bootlin.com/linux/latest/ident/xdp_buff

XDP hook - eBPF side

example program
SEC("xdp")
int xdp_dummy_prog(struct xdp_md *ctx)
{

return XDP_PASS;
}

struct xdp_md definition
struct xdp_md {

__u32 data;
__u32 data_end;
__u32 data_meta;
__u32 ingress_ifindex; /* rxq->dev->ifindex */
__u32 rx_queue_index; /* rxq->queue_index */
__u32 egress_ifindex; /* txq->dev->ifindex */

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/298

https://elixir.bootlin.com/linux/v6.12.32/source/tools/testing/selftests/bpf/progs/xdp_dummy.c
https://elixir.bootlin.com/linux/latest/ident/xdp_md

XDP_DROP

▶ Used for firewalling and DDoS protection
▶ A XDP Program returning XDP_DROP causes the frame to be dropped immediately
▶ XDP_ABORTED is similar, but triggers a tracepoint.
▶ Happens before the struct sk_buff is even created
▶ If the driver uses page_pool, the buffer is recycled
▶ Extremely efficient way of filtering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 196/298

https://elixir.bootlin.com/linux/latest/ident/sk_buff

XDP_PASS

▶ A XDP Program returning XDP_PASS causes the frame to continue through the
network stack

▶ The XDP program may modify the frame
▶ After XDP_PASS, a struct sk_buff will be created by the MAC driver
▶ The usual processing of the packet through the stack will occur

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/298

https://elixir.bootlin.com/linux/latest/ident/sk_buff

XDP_TX

server A server B

Switch

XDP prog

XDP_PASS

XDP_TX ▶ A XDP Program returning XDP_TX re-emits the frame
on the same interface

▶ The frame may be modified by the program
▶ Main advertised use-case is to perform load-balancing

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/298

XDP_REDIRECT

▶ Redirects the frame towards a target identified by a map
▶ Programs don’t directly return XDP_REDIRECT
▶ The special bpf helper bpf_redirect_map() must be used

• See man 7 bpf-helpers

Example XDP redirect
struct {

__uint(type, BPF_MAP_TYPE_DEVMAP);
__uint(max_entries, 8);
__uint(key_size, sizeof(int));
__uint(value_size, sizeof(int));

} tx_port SEC(".maps");

SEC("xdp")
int xdp_redirect_map_0(struct xdp_md *xdp)
{

return bpf_redirect_map(&tx_port, 0, 0);
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/298

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://elixir.bootlin.com/linux/v6.15.1/source/tools/testing/selftests/bpf/progs/xdp_redirect_map.c

bpf_redirect_map

long bpf_redirect_map(void *map, __u64 key, __u64 flags)

▶ See man 7 bpf-helpers

▶ eBPF helper for XDP_REDIRECT actions
▶ The redirection target is map[key], where map can be :

• A BPF_MAP_TYPE_DEVMAP, value is an ifindex
• A BPF_MAP_TYPE_CPUMAP, value is a cpu number
• A BPF_MAP_TYPE_XSKMAP, value is a queue index

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/298

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://elixir.bootlin.com/linux/latest/ident/BPF_MAP_TYPE_DEVMAP
https://elixir.bootlin.com/linux/latest/ident/BPF_MAP_TYPE_CPUMAP
https://elixir.bootlin.com/linux/latest/ident/BPF_MAP_TYPE_XSKMAP

XDP_REDIRECT - To device

eth0 eth1

XDP

.ndo_xdp_xmit()

▶ Uses BPF_MAP_TYPE_DEVMAP, Documented here
▶ Forwards the frame to another XDP-enabled

struct net_device

▶ The target device must implement .ndo_xdp_xmit()
▶ No struct sk_buff is created, the struct xdp_buff

is sent directly
▶ bpf_redirect() can be used directly

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/298

https://elixir.bootlin.com/linux/latest/ident/BPF_MAP_TYPE_DEVMAP
https://docs.kernel.org/bpf/map_devmap.html
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/sk_buff
https://elixir.bootlin.com/linux/latest/ident/xdp_buff

XDP_REDIRECT - To CPU

CPU 0

napi loop

XDP

CPU 1
hw queue

worker kthread

skb
creation

xdp_bulkq

▶ Uses BPF_MAP_TYPE_CPUMAP, Documented here
▶ Make the packet processing occur on another

CPU core
▶ Useful for CPU load balancing
▶ Also used to circumvent hardware issues

• Flawed hash computation in hardware for RSS
• Wrong internal interrupt routing

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/298

https://elixir.bootlin.com/linux/latest/ident/BPF_MAP_TYPE_CPUMAP
https://docs.kernel.org/bpf/map_cpumap.html
https://elixir.bootlin.com/linux/v6.15.1/source/drivers/net/ethernet/marvell/mvneta.c#L4424

XDP_REDIRECT - To Socket

App B

MAC driver

Networking
stack

xsk (AF_XDP socket)

XDP

ethernet

IP

TCP

AF_INET

XDP_REDIRECT

XDP_PASS

App A

▶ Uses BPF_MAP_TYPE_XSKMAP, Documented here
▶ Frames are forwarded directly to user memory

attached to an AF_XDP socket (XSK)
▶ Upstream Linux’s response to out-of-tree kernel

bypass (e.g. DPDK)
▶ The driver is still in kernel, and the XDP

program choses if bypass is needed for each
frame

▶ No copy occurs, a dedicated hardware queue
is needed

▶ Memory is shared with the UMEM, bound to
a queue_id with bind()

▶ UMEM regions are shared ring-buffers, where
user buffers are directly mapped to hw queues

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/298

https://elixir.bootlin.com/linux/latest/ident/BPF_MAP_TYPE_XSKMAP
https://docs.kernel.org/bpf/map_xskmap.html
https://elixir.bootlin.com/linux/latest/ident/AF_XDP

XDP support in a driver

1. Implement the execution and return-code handling of the BPF XDP programs
• Fairly straightforward, done in the main NAPI loop

2. Make sure the data handling meets the following constraints :
• Frame must be readable and writeable
• There must be a headroom big enough to fit struct xdp_frame
• There must be a tailroom big enough to fit all skb_shared_info

3. XDP frags is supported since v5.16
• Allows using XDP with non-linear frames, which used to be impossible

4. The struct xdp_buff layout uses struct skb_frag as well

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/298

https://lore.kernel.org/netdev/cover.1642758637.git.lorenzo@kernel.org/
https://elixir.bootlin.com/linux/latest/ident/xdp_buff
https://elixir.bootlin.com/linux/latest/ident/skb_frag

Loading an XDP program

▶ XDP programs are built like any other eBPF program :
clang -O2 -g -target bpf -c xdp_prog.c -o xdp_prog.o

▶ They can be loaded with iproute2 :
ip link set dev eth0 xdp obj xdp-prog.o

▶ iproute2 xdp support is recent, xdp-loader from xdp-tools can be used :
xdp-loader load eth0 xdp_drop.o

▶ bpftool can also be used to attach XDP programs
▶ ethtool -S <iface> shows the XDP statistics
▶ xdp-monitor shows detailed statistics using BPF tracing

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/298

Practical lab - Using eBPF, XDP example

▶ Write a simple XDP program

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/298

Network device drivers

Network device drivers

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 207/298

NIC and MAC
▶ Terms NIC and MAC are sometimes used interchangeably
▶ Network Interface Controller, usually refers to ”Network Cards”

• MAC and PHY integrated in a single component. Usually, the PHY is transparent
▶ On embedded systems, we control each individual component

Host

NIC

CPU
RAM

PCI

PHY
RAM

MAC MDIO

CPU DDR
controller

RGMII

“NIC” Embedded
system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/298

Low level networking components
▶ Multiple drivers are involved to configure a Network Interface
▶ Not all of them are required (depending on the design)
▶ Some MAC drivers also include DMA, Serdes, PCS and even PHY drivers

Switch

Serdes

PCS

MAC DMA

MDIO

PHY PHY

drivers/net/ethernet/ drivers/dma/

drivers/net/mdio/

drivers/net/pcs/

drivers/phy/

drivers/net/dsa/

drivers/net/phy/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/298

Low level networking components - MAC

Switch

Serdes

PCS

MAC DMA

MDIO

PHY PHY

▶ The main component of a network interface
▶ Represented by struct net_device

▶ Drivers are in drivers/net/ethernet/

▶ In charge of Sending and Receiving frames
▶ Configures all the Hardware offloaded features
▶ Reports status and statistics
▶ Some devices include a PCS, Serdes, MDIO, PHY,

DMA and even a Switch controller in the MAC
• The single MAC driver handles it all

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/298

https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/

Low level networking components - DMA

Switch

Serdes

PCS

MAC DMA

MDIO

PHY PHY

▶ Some MAC controllers are connected to a shared DMA
Controller

▶ The controller handles DMA transfers for multiple
devices

▶ The MAC requests struct dma_chan for TX and RX
• This is done using the dmaengine API

▶ Drivers are in drivers/dma/
▶ It is not unusual to have MAC with an integrated DMA

controller
• In that case, we don’t use the dmaengine API

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/298

https://elixir.bootlin.com/linux/latest/ident/dma_chan
https://elixir.bootlin.com/linux/latest/source/drivers/dma/

Low level networking components - PCS

Switch

Serdes

PCS

MAC DMA

MDIO

PHY PHY

▶ Physical Coding Sublayer
▶ Represented by struct phylink_pcs

▶ Drivers in drivers/net/pcs/
▶ Component in charge of Data Encoding

• For signal integrity, bits are encoded into symbols
• At 100Mbps : 4 bits data, 5 bits symbols (4b/5b)
• At 1000Mbps : 8b/10b
• At 10Gbps : 64b/66b

▶ Also in charge of in-band signaling
• Link status, speed, duplex, flow-control

▶ Can be transparently handled by the MAC (no driver)
▶ The MAC driver may register its own PCS instance(s)
▶ Some IPs are re-used across vendors, dedicated drivers

are then used
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/298

https://elixir.bootlin.com/linux/latest/ident/phylink_pcs
https://elixir.bootlin.com/linux/latest/source/drivers/net/pcs/

Low level networking components - Generic PHY

Switch

Serdes

PCS

MAC DMA

MDIO

PHY PHY

▶ Generic PHY, driving the physical link that come out of
the MAC

▶ Represented by struct phy
▶ Drivers in drivers/phy/

• Not to be confused with drivers/net/phy/

▶ Usually drives SerDes lanes if the MAC interface is
serialized

▶ Also used by other subsystems : USB, PCI, Sata, etc.
▶ Controls the physical link parameters

• Drive strength
• Timings
• link training, etc.

▶ Sometimes transparently handled by the MAC without a
dedicated driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 213/298

https://elixir.bootlin.com/linux/latest/ident/phy
https://elixir.bootlin.com/linux/latest/source/drivers/phy/
https://elixir.bootlin.com/linux/latest/source/drivers/net/phy/

Low level networking components - MDIO

Switch

Serdes

PCS

MAC DMA

MDIO

PHY PHY

▶ Management Data Input Output
• a.k.a. SMI : Serial Management Interface
• a.k.a. MIIM : Media Independent Interface Management

▶ Bus controller represented by struct mii_bus

▶ Peripherals represented by struct mdio_device

▶ Drivers in drivers/net/mdio/
▶ Management bus for most Ethernet PHYs and DSA

Switches
• Only bus for PHYs
• Some DSA switches can be controlled by SPI or I²C

▶ Provides ways to access registers, physically similar to I²C
▶ Often controlled by the MAC driver, but can be standalone

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 214/298

https://elixir.bootlin.com/linux/latest/ident/mii_bus
https://elixir.bootlin.com/linux/latest/ident/mdio_device
https://elixir.bootlin.com/linux/latest/source/drivers/net/mdio/

Low level networking components - Switch

Switch

Serdes

PCS

MAC DMA

MDIO

PHY PHY

▶ DSA Switches are standalone chips, with one more
ports connected to the SoC’s MAC

• Distributed Switch Architecture
• Relies on switchdev for the switching operations

▶ Switches can also be integrated within the SoC
• The MAC driver implements the switchdev operations

▶ DSA switch represented by struct dsa_switch

▶ DSA switch port represented by struct dsa_port

▶ Switch port represented by struct net_device (even
for DSA)

▶ Drivers in drivers/net/dsa/ and
drivers/net/ethernet/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/298

https://docs.kernel.org/networking/switchdev.html
https://elixir.bootlin.com/linux/latest/ident/dsa_switch
https://elixir.bootlin.com/linux/latest/ident/dsa_port
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/source/drivers/net/dsa/
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/

Low level networking components - Ethernet PHY

Switch

Serdes

PCS

MAC DMA

MDIO

PHY PHY

▶ In charge of 802.3 Layer 1 (PHY) operations
▶ Represented by struct phy_device

▶ Drivers in drivers/net/phy/

▶ Specific to MDIO PHYs, as per the 802.3 specification
▶ In charge of link management :

• Auto-negociation of Speed and Duplex
• Link detection

▶ A generic driver exists using only standard registers
▶ The PHY management framework is called phylib

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/298

https://elixir.bootlin.com/linux/latest/ident/phy_device
https://elixir.bootlin.com/linux/latest/source/drivers/net/phy/

Network device drivers

Ethernet controller driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/298

Ethernet driver endpoints

▶ Ethernet controllers are represented by struct net_device

▶ Entry points are the struct net_device_ops

▶ Extra ethernet-specific callbacks implemented with struct ethtool_ops

dev->netdev_ops = &mvneta_netdev_ops;
dev->ethtool_ops = &mvneta_eth_tool_ops;

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/298

https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/net_device_ops
https://elixir.bootlin.com/linux/latest/ident/ethtool_ops

Queues

MAC

rxqs txqs

▶ Most Ethernet controllers today have multiple transmit
and receive queues

▶ tx queues hold descriptors for packets that are
yet-to-be-sent

▶ The NIC will dequeue une packet at a time during
transmission, from one of the tx queues

▶ The TX de-queueing behaviour can sometimes be
controlled : Weighted Round-Robin, Per-queue
priorities, etc.

▶ rx queues hold descriptors for packets received that
weren’t yet handled by the CPU

▶ the RX buffer size depends on the configured MTU

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/298

RX filtering

▶ The receive filtering is adjusted with :
void (*ndo_set_rx_mode)(struct net_device *dev);

▶ dev->flags contains the new filtering parameters :
• IFF_PROMISC : If set, the interface must go in promiscuous mode

No hardware filtering of incoming frames must occur
Used by tools like tcpdump, or ip link set dev eth0 promisc on

• IFF_ALLMULTI : If set, all multicast frames must be accepted
▶ The unicast and multicast address list must be updated :

• dev->uc contains all the Unicast addresses the interface must accept
• dev->mc contains all the Multicast addresses the interface must accept

▶ The address list in maintained by the Networking stack, updated through
dev_uc_add(), dev_uc_del(), dev_mc_add(), etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 220/298

https://elixir.bootlin.com/linux/latest/ident/dev_uc_add
https://elixir.bootlin.com/linux/latest/ident/dev_uc_del
https://elixir.bootlin.com/linux/latest/ident/dev_mc_add

Changing the MTU
▶ Maximum Transmit Unit, used by the upper layers for fragmentation

• Stored in netdev->mtu

▶ User-modifiable with ip link set dev eth0 mtu 1500
• Triggers a call to the .ndo_change_mtu netdev ops

▶ Changing the MTU may require the re-allocation of RX buffers in the queues

.ndo_change_mtu() - option 1
if (netif_running(ndev

return -EBUSY; /* Can't change the MTU while the interface is UP */

WRITE_ONCE(ndev->mtu, new_mtu);

.ndo_change_mtu() - option 2
WRITE_ONCE(ndev->mtu, new_mtu);

foo_stop_dev(dev); /* Stop sending and receiving, empty the queues*/
foo_realloc_queues(dev); /* Re-allocate buffers for the new MTU */
foo_start_dev(dev); /* Resume */

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 221/298

Channels

MAC

CPU

▶ tx and rx queues will notify queueing and dequeueing
through interrupts

▶ Multiple queues may share the same interrupt line
▶ A channel represents an interrupt line and its

associated queues
▶ Channels can be added or removed, depending on

hardware support
void (*get_channels)(struct net_device *, struct ethtool_channels *);
int (*set_channels)(struct net_device *, struct ethtool_channels *);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/298

Receiving data

▶ The receive path for a Ethernet Controller Driver must use the NAPI API
▶ The entry-point is an interrupt handler that will be called upon frame reception
▶ There may be multiple interrupts for RX (per-queue, per-cpu...)
▶ NAPI mandates a short top half that acknowledges the interrupt and masks it
▶ The handler then calls napi_schedule().
▶ Most of the processing occurs in softirq context, on the same CPU that handled

the interrupt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 223/298

https://elixir.bootlin.com/linux/latest/ident/napi_schedule

NAPI principle

▶ NAPI does not stand for New API
• it was new in Linux v2.4, today NAPI means NAPI

▶ Designed to avoid interrupt interference, as traffic often occurs in bursts
▶ The first packet of a burst is handled through interrupt
▶ The interrupt stays disabled, each subsequent packet is pulled using polling
▶ The polling stops when the budget is exhausted (by default, 50 packets)
▶ The driver must then re-enable the interrupts for further processing
▶ NAPI is not a batch processing mechanism, which is achievable through interrupt

coalescing

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 224/298

NAPI Loop

▶ Register the NAPI polling function (per-queue) : netif_napi_add

▶ Polling function runs in softirq context : Cannot sleep

1. Hardware IRQ fires upon receiving a first packet
2. IRQ handler disables interrupts for that queue, and calls napi_schedule

3. The NAPI system calls the polling function
int (*poll)(struct napi_struct *napi, int budget

4. Each received frame counts as 1 budget item
• If the budget is exhausted but there are still packets to process, return budget
• The polling function may be called with a budget of 0, for TX processing only

5. If the budget isn’t exahusted but all packets are processed, call
napi_complete_done() and unmask interrupts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 225/298

NAPI instances
▶ NAPI poll handlers are registered with netif_napi_add()
▶ Multiple NAPI instances can be registered

• Usually one per channel or per CPU

napi .poll()

static int foo_poll(struct napi_struct *napi, int budget)
{

while(rx_done < budget) {
buff = foo_queue_get_next_desc();
foo_do_xdp(buff);
skb = foo_build_skb(buff);
napi_gro_receive(skb);
rx_done++;

}
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/298

https://elixir.bootlin.com/linux/latest/ident/netif_napi_add

Interrupt Coalescing

▶ Hardware feature where the MAC waits for multiple packets to be received
before triggering the interrupt

▶ Users configure a number of pending packets and a timeout for RX interrupt
generation

▶ Must be fine-tuned depending on the use-case :
• High threshold allows batching the interrupts, suitable for high-throughput workloads
• Low threshold allows triggering interrupts as soon as data is received, for low-latency

workloads
▶ ethtool -C eth0 adaptive-rx on adaptive-tx on tx-usecs-irq 50

▶ Software IRQ coalescing also exists, using NAPI and a polling-rearm timer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/298

Transmit path

▶ Packets are sent from a network controller through the .ndo_start_xmit callback
• netdev_tx_t .ndo_start_xmit(struct sk_buff *skb, struct net_device

*dev)
• it is the only mandatory net_device_ops member !

▶ The .ndo_start_xmit() callback enqueues and sends the skb

▶ If the skb is fragmented, all fragments must be sent
▶ In case of an error, the skb is dropped, but we still return NETDEV_TX_OK

▶ The dev->stats and driver-specific counters must be updated

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 228/298

NAPI TX

▶ TX completions are handled in the NAPI loop
▶ The driver acknowledges that packets were correctly sent
▶ During a NAPI poll, drivers are free to acknowledge as many TX packets as they

want
▶ budget does not apply to TX packets

• The NAPI poll function can acknowledge as my TX packets as it wants

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 229/298

Buffer management

▶ Hardware queues contain pre-populated dma descriptors
▶ On the receive side, when receiving packets the queues must be refilled
▶ Usually done at the end of the NAPI loop
▶ This is driver specific, but the buffers can be kept in pools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 230/298

Page pool

▶ Page pools allows fast page allocation without locking
▶ One struct page_pool must be allocated per-queue
▶ Getting a page from page_pool happens without locking
▶ This is only used on the receive side
▶ Using page_pool is strongly recommended to support XDP
▶ See the page pool documentation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 231/298

https://docs.kernel.org/networking/page_pool.html

Timestamping

▶ Packet timestamping can be done in RX and TX
▶ Hardware timestamping is configured in the .ndo_ioctl()

• Being replaced in favor of .ndo_timestamping()
▶ Timestamp is stored in the skb_shared_info
▶ On TX timestamping, the skb is cloned, timestamp is attached to the clone

• The clone is sent back to the socket error queue

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/298

Netdev features

▶ features represents hardware offload capabilities
• Checksumming, Scatter-gather, segmentation, filtering (mac / vlan)
• see ethtool -k <iface>
• attributes of struct net_device

▶ Drivers set netdev.hw_features at init, and can also set netdev.features
• features : The current active features
• hw_features : Features that can be changed (hw != hardware)

▶ Users but also the core might want to change the enabled features
• Child devices might require some features to be disabled

▶ .ndo_fix_features() filters incompatible feature sets for the driver
▶ .ndo_set_features() applies the new feature set
▶ https://docs.kernel.org/networking/netdev-features.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/298

https://docs.kernel.org/networking/netdev-features.html

Offloading

▶ Most modern controllers can perform themselves some operations on packets
▶ checksumming offload makes so the CPU doesn’t have to check or compute

checksums
▶ filtering offloads makes so that the MAC drops unknown MAC addresses and

VLANs
▶ classification-capable controllers may implement more powerful features :

• header hashing computes a has of a specific set of fields in the header. Useful for
RSS.

• flow steering allows specific actions (enqueueing, drop, redirection) to be done
based on specific header values

▶ crypto offload for some tunneling technologies such as MACSec
▶ Offloading can however make debugging harder, as decisions are taken before

packets reach the CPU
• Most controllers will expose counters, accessible over ethtool -S <iface>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 234/298

Checksumming

▶ Some protocols include a checksum of the header or payload in the frame
• Ethernet has the FCS that checksums the whole frame
• IPv4 header includes a Header Checksum for the IPv4 header itself
• TCP and UDP checksums the header and the payload

▶ Checksum computation and verification need to be done for every frame
▶ Some devices can compute and verify checksums at the hardware level
▶ TX checksumming involves computing the checksum of a section of the packet,

and editing the checksum inline
▶ caution : Outgoing traffic will be shown with wrong checksums in captures

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 235/298

RSS

Receive Side Steering
▶ Hardware feature on the receive side to spread traffic handling across queues and

cores
▶ Requires per-queue or per-cpu interrupt support in the Ethernet controller
▶ Incoming packets can’t be arbitrarily steered to any CPU or queue

• Risk of out-of-order delivery, and bad caching behaviour
▶ The hardware parses the packet header and computes a hash of some of its fields

• Usually CRC32 or Toeplitz
▶ The Hash is then used as a lookup index in a RSS table to get the RX queue
▶ .get_rxfh and .set_rxfh

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 236/298

XPS

▶ Associate TX queues with CPU cores
▶ Frames enqueued from a given core always go in the same queue
▶ Avoids contention on enqueueing

• Each CPU can enqueue without cross-CPU locking
▶ Optimizes the completion handling
▶ netif_set_xps_queue(dev, cpumask_of(queue), queue);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 237/298

Flow steering

▶ Advances controllers have the ability to parse packet headers
▶ This is complex, as the header fields are not at fixed offsets (presence of VLAN

tags, encapsulation, etc.)
▶ This is usually achieved with internal TCAM-based lookup engines
▶ Traffic is classified based on specific fields : src/dst MAC, src/dst IP, src/dst Port,

VLAN, etc.
▶ Classified traffic are assigned actions :

• Drop (DoS mitigation)
• Redirection
• Enqueueing
• Policing (rate limiting)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/298

TC and ethtool steering

▶ Flow steering can be offloaded via ethtool :
ethtool -K eth0 ntuple on
ethtool -N eth0 flow-type tcp4 vlan 0xa000 m 0x1fff action 3 loc 1

▶ Steers Vlan-tagged TCP over IPv3 with priority 6 (0xa000 & 0x1fff) in queue 3
▶ Implemented in the .set_rxnfc ethtool op, e.g. mvpp2_ethtool_set_rxnfc()
▶ Can also be done with tc flower

• Through .ndo_setup_tc

▶ Both APIs use the same representation : struct flow_rule

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 239/298

https://elixir.bootlin.com/linux/latest/ident/mvpp2_ethtool_set_rxnfc
https://elixir.bootlin.com/linux/latest/ident/flow_rule

Multi-queue and priorisation

▶ Some Ethernet Controllers have multiple tx andrx queues
▶ On the transmit side, allows shaping and priorizing traffic
▶ On the receive side, allows load-balancing and per-queue actions
▶ flows can be assigned to dedicated rx queues
▶ These queues can in turn be pinned to CPUs, apps, VMs, of be rate-limited.
▶ Most of this is controlled through tc in .ndo_setup_tc

▶ Example in mvneta_setup_mqprio()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 240/298

https://elixir.bootlin.com/linux/latest/ident/mvneta_setup_mqprio

Other struct ethtool_ops

▶ .get_ringparam and .set_ringparam
• Adjust the size of queues

▶ .get_strings and get_ethtool_stats
• Returns hardware stats

▶ .get_link_ksettings and set_link_ksettings
• Get the link speed and duplex
• Usually the driver queries the PHY driver to get this information

▶ .get_wol and .set_wol
• Configure Wake-on-Lan

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 241/298

https://elixir.bootlin.com/linux/latest/ident/ethtool_ops

Network device drivers

PHY driver and link management

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 242/298

PHY devices

SoC

MAC

PHY

Connector

MDIO
controller

MII

MDI

MDIO
interrupt

reset

▶ Ethernet PHYs handle Layer 1 of the OSI model
▶ Standardised by IEEE 802.3
▶ Media Independent Interface

• Communication bus between MAC and PHY
▶ Media Dependent Interface

• Communication medium with the link partner
• Can be Cat6 cable, Fibre, Coax, backplane, etc.

▶ Management Data Input Output
• Control bus for PHY devices
• Can be shared by multiple PHYs
• Allows accessing PHY registers

▶ Optionally, PHYs can raise interrupts
• e.g. to report link status change

▶ Optionally, PHYs can have a reset line
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 243/298

MDIO Bus

SoC

MAC

PHY

Connector

MDIO
controller

MII

MDI

MDIO

▶ Most common bus to access Ethernet PHYs
▶ Addressable, 32 addresses
▶ Physically very similar to i2c

• An adapter initiates all transfers to devices
• 2 physical signals : MDC for the clock, MDIO for data

▶ 802.3 defines 2 protocols for MDIO :
• Clause 22 : 5 bits device address, 5 bits register address, 16 bits data
• Clause 45 : 3-part addresses : 5 bits addresses, 5 bits devtype, 16 bits register

address, 16 bits data
• devtype allows addressing sub-components of the PHY : PCS, PMA/PMD, etc.
• C45 is backwards compatible with C22

▶ Register layout is defined by 802.3, with room for vendor-specific registers
▶ a gpio bitbang MDIO driver exists

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/298

https://elixir.bootlin.com/linux/v6.15.1/source/drivers/net/mdio/mdio-bitbang.c

MDIO driver

▶ MDIO controller drivers are represented by struct mii_bus

▶ Contains callback ops for C22 and C45 access :

struct mii_bus {
const char *name;
void *priv;
int (*read)(struct mii_bus *bus, int addr, int regnum);
int (*write)(struct mii_bus *bus, int addr, int regnum, u16 val);
int (*read_c45)(struct mii_bus *bus, int addr, int devnum, int regnum);
int (*write_c45)(struct mii_bus *bus, int addr, int devnum, int regnum, u16 val);
int (*reset)(struct mii_bus *bus);

/* ... truncated ... */
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/298

https://elixir.bootlin.com/linux/latest/ident/mii_bus

MDIO accessors

▶ Raw read/write operations :
int mdiobus_read(struct mii_bus *bus, int addr, u32 regnum);
int mdiobus_write(struct mii_bus *bus, int addr, u32 regnum, u16 val);
int mdiobus_c45_read(struct mii_bus *bus, int addr, int devad, u32 regnum);
int mdiobus_c45_write(struct mii_bus *bus, int addr, int devad, u32 regnum, u16 val);

▶ Wrapped by phylib for convenience : phy_read(), phy_read_mmd(), etc.
▶ Unlocked versions : __mdiobus_write(), __phy_write(), etc.

• Caller implements their own locking
• Useful for large transfers, e.g. loading a firmware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 246/298

https://elixir.bootlin.com/linux/latest/ident/phy_read
https://elixir.bootlin.com/linux/latest/ident/phy_read_mmd
https://elixir.bootlin.com/linux/latest/ident/__mdiobus_write
https://elixir.bootlin.com/linux/latest/ident/__phy_write

MDIO access from userspace

▶ ioctl based API, limited on purpose
▶ Useful for debugging, but interferes with phylib

• Phylib and drivers have no way to track user-made configuration
▶ Main userspace tool is phytool

• phytool read eth0/1/2 : Read register 2 from mdio device at address 1
• phytool read eth0/1:2/3 : Read register 3 on MMD 2 from mdio device at

address 1
▶ Can be tedious for indirect accesses
▶ mdio-tools uses an out-of-tree module to access MDIO over Netlink

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 247/298

MDIO controllers in devicetree

arch/arm64/boot/dts/marvell/armada-37xx.dtsi

mdio: mdio@32004 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "marvell,orion-mdio";
reg = <0x32004 0x4>;

};

arch/arm/boot/dts/st/stm32mp15xx-dkx.dtsi

ðernet0 {
mdio {

compatible = "snps,dwmac-mdio";
/* ... */

};
};

▶ SoCs may have dedicated MDIO
controllers

• Dedicated drivers with their own
compatible

▶ Some MACs and DSA switches have
an integrated MDIO controller

• mdio child node within the MAC
controller’s node

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 248/298

https://elixir.bootlin.com/linux/latest/source/arch/arm64/boot/dts/marvell/armada-37xx.dtsi
https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/st/stm32mp15xx-dkx.dtsi

Ethernet PHYs identification

▶ 802.3 specifies that registers 0x2 and 0x3 are identifiers
• OUI (24 bits) and Model information (10 bits)

▶ PHY drivers register which identifier they support
• phy_driver.phy_id

▶ We don’t need per-device compatible strings in devicetree
▶ PHY compatible is used to indicate :

• The MDIO clause :
ethernet-phy-ieee802.3-c22
ethernet-phy-ieee802.3-c45

• The PHY id, if PHY reports the wrong information
e.g. ethernet-phy-id2000.a231

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 249/298

Ethernet PHYs in devicetree

arch/arm64/boot/dts/marvell/armada-8040-mcbin.dtsi

&cp0_mdio {
status = "okay";

ge_phy: ethernet-phy@0 {
reg = <0>;

};
};

ð0 {
phy-handle = <&ge_phy>;

}

▶ reg - mandatory
• The PHY’s address on the MDIO bus
• Usually assigned via PCB straps

▶ reset-gpios : GPIO reset line
▶ rx|tx-internal-delay-ps

• RGMII delays adjustments
▶ leds : LEDs driven by the PHY
▶ interrupts :

• Status interrupt, level-triggered
▶ sfp : phandle to an SFP cage

description

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 250/298

https://elixir.bootlin.com/linux/latest/source/arch/arm64/boot/dts/marvell/armada-8040-mcbin.dtsi

PHY devices in the kernel

SoC

MAC

PHY

Connector

MDIO
controller

MII

MDI

MDIO

▶ A PHY driver is represented by struct phy_driver
▶ PHY instances are represented by struct phy_device

• By convention, objects are named phydev or phy
▶ All Ethernet PHY devices are mdio devices

• Fixed-PHY uses an emulated bus
• Memory-mapped PHYs can use a regmap conversion layer

▶ Managed by the phylib PHY framework
▶ PHY drivers mostly handle the vendor-specific aspects
▶ Most of the standardised logic is generic, and implemented in phylib
▶ A Generic driver implements only the standard logic

• Used as a fallback when a PHY is detected with no associated driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 251/298

https://elixir.bootlin.com/linux/latest/ident/phy_driver
https://elixir.bootlin.com/linux/latest/ident/phy_device
https://elixir.bootlin.com/linux/v6.15.1/source/drivers/net/phy/swphy.c
https://elixir.bootlin.com/linux/v6.15.1/source/drivers/net/mdio/mdio-regmap.c
https://elixir.bootlin.com/linux/v6.15.1/source/drivers/net/phy/phy_device.c#L3510

PHY device role

▶ The PHY driver reports the link status :
• Updated by phy_driver.read_status()

Called upon PHY interrupt, or polled
• phydev.link : Link with the partner is UP or DOWN
• phydev.speed : Established link speed, in Mbps
• phydev.duplex : Established duplex (half or full)

▶ It is in charge of configuring and performing the Link negociation
• Based on what the MAC can do and user-specified parameters
• e.g. ethtool -s eth0 speed 100 duplex full autoneg on on a 1G interface

▶ It may implement some offloaded operations
• Some PHYs can offload MACSec
• PHY timestamping is implemented by some devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 252/298

PHY device role - 2

▶ Wake on Lan can be implemented at the PHY level
• The PHY receives the magic packet
• It triggers an interrupt to wake the system up
• phy_driver.set_wol() and phy_driver.get_wol()

▶ Some PHYs can perform cable testing
• Detects cable and connector faults
• ethtool --cable-test eth0

▶ They may report stats, useful for debugging link bringup
• ethtool --phy-statistics eth0

▶ BaseT1S PHYs can configure the plca parameters

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 253/298

https://en.wikipedia.org/wiki/Wake-on-LAN#Magic_packet
https://docs.kernel.org/networking/ethtool-netlink.html#plca-get-cfg

Fixed-link

▶ The PHY is responsible for reporting the link state, but doesn’t always exist
▶ e.g. MAC to MAC links, between a SoC and a DSA switch
▶ Fixed-link allows describing a link that is always UP

▶ In creates a virtual PHY internally that reports fixed parameters

fixed link example

ð0 {
/* ... */
fixed-link {

speed = <1000>;
full-duplex;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 254/298

MII

SoC

MAC

PHY

Connector

MDIO
controller

MII

MDI

MDIO

▶ Media Independent Interface
▶ Conveys the data stream between MAC and PHY
▶ Specified in devicetree via phy-mode or phy-connection-type
▶ In some scenarios, the mode may change dynamically

• For serialized modes that are physically compatible
• Depending on the negociated link speed, the PHY may change its mode
• example: the Marvell 88x3310 PHY
• When link speed is negociated at 1Gbps, uses SGMII
• When link speed is negociated at 2.5Gbps, uses 2500BaseX
• When link speed is negociated at 10Gbps, uses 10GBaseR

▶ On the MAC side, may require spefific PCS and Serdes configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/298

https://elixir.bootlin.com/linux/v6.15.1/source/drivers/net/phy/marvell10g.c

MII flavours - Parallel interfaces

▶ MII : Also describes a 8-bit, 10/100Mbps interface
▶ RMII : Reduced MII : 4 bits, 10/100Mbps

• Popular mode for 100Mbps interfaces
▶ GMII : Gigabit MII : 8 bits, 10/100/1000Mbps

• Rarely found on PCBs, mostly unsed within the SoC
▶ RGMII : Reduced Gigabit MII : 4 bits, 10/100/1000Mbps

• Popular mode for 1Gbps interfaces
▶ XGMII : X (Roman Numeral 10) Gigabit MII : 32 bits, 10Gbps
▶ XLGMII : XL (Roman Numeral 40) Gigabit MII : 32 bits, 40Gbps

• XGMII and XLGMII are on-silicon modes, not used on PCBs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 256/298

MII flavours - Serial interfaces

Differential pairs for Data (1 RX + 1 TX = 1 lane), clock optional, inband signaling
▶ Cisco SGMII : Serialized Gigabit MII, 1 lane, 10/100/1000Mbs

• de facto standard. Lane always clocked at 1.25GHz
• Frames are repeated for 10 and 100Mbps
• Inband signalling : Special word sent on the link to negotiate speed, duplex and flow

control
▶ QSGMII (Quad SGMII) : Mux 4 different MAC to PHY links on a single 5Gbps lane
▶ USXGMII : Standard for 10Gbps link. Supports 10/100/1000Mbps, 2.5/5/10Gbps

• Implements rate matching : The clock speed adjusts to follow the link speed
• Supports multiplexing up to 8 links on the same lane

▶ XAUI and RXAUI : Standard, 10Gbps on 4 or 2 lanes, 10b/8b encoding.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 257/298

RGMII delay

▶ RGMII is a popular interface on embedded sytems
▶ Per the specification, clock must have a 2ns delay from data
▶ This is to ensure data signals have settled when sampled

data

clk

data data

2ns

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/298

RGMII modes

MAC PHY

rx_clk

tx_clk

rx_data

tx_data

MAC PHY

rx_clk

tx_clk

rx_data

tx_data

MAC PHY

rx_clk

tx_clk

rx_data

tx_data

rgmii

rgmii-id

▶ The delays can be added using different
methods :

▶ Longer PCB lines for the clock
• Very rarely done

▶ Most PHYs and some MACs can insert delays
internally

• RGMII-ID modes : Internal Delay
• Preferred solution, delays are adjustable

▶ Delays may only need to be added in one
direction

• RGMII-TXID : TX delays are internal
• RGMII-RXID : RX delays are internal

▶ Some MAC and PHYs have hardwired delays

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 259/298

RGMII modes in devicetree

▶ phy-mode in devicetree : Hardware representation
• phy-mode = "rgmii"; : No delays needs to be added
• phy-mode = "rgmii-id"; : delays need to be added internally
• phy-mode = "rgmii-txid"; : delays need to be added in TX
• phy-mode = "rgmii-rxid"; : delays need to be added in RX

▶ Internally, these mode are represented as
PHY_INTERFACE_MODE_RGMII[_ID|_TXID|_RXID]

▶ The MAC driver reads the mode, and passes it to the PHY driver
▶ If the MAC inserts delays, it modifies the mode passed to the PHY

1. e.g. phy-mode = "rgmii-id";
2. MAC inserts delays in TX, but not in RX
3. MAC passes PHY_INTERFACE_MODE_RXID to the PHY

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/298

MDI - Media Dependent Interface

SoC

MAC

PHY

Connector

MDIO
controller

MII

MDI

MDIO

▶ A huge number of physical protocols are defined by the 802.3 standard
▶ As of v6.15, 120 linkmodes are supported
▶ They follow a specific naming convention from IEEE 802.3
▶ speedBand-MediumEncodingLanes : 1000Base-T, 10GBase-KR, 10Base-T1…
▶ Band: BASEband, BROADband or PASSband.
▶ Medium

• Base-T: Link over twisted-pair copper cables (Classic RJ45).
• Base-K: Backplanes (PCB traces) links.
• Base-C: Copper links.
• Base-L, Base-S, Base-F: Fiber links.
• Base-H: Plastic Fiber.

▶ Encoding: Describe the block encoding used by the PCS
• Base-X: 10b/8b encoding.
• Base-R: 66b/64b encoding.

▶ Lanes: Number of lanes per link (for Base-T, number of twisted pairs used).
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 261/298

https://elixir.bootlin.com/linux/v6.15.1/source/include/uapi/linux/ethtool.h#L1950

linkmodes

▶ In 802.3 Clauses 22 and 45, standard registers report the capabilities
▶ Allows dynamically building the list of MDI modes supported by the PHY
▶ Done in genphy_read_abilities() and genphy_c45_pma_read_abilities()

▶ PHY drivers can implement their own phy_driver.get_features()
▶ Get the supported linkmodes on the interface : ethtool eth0

• Intersection between :
• what the PHY can do : phydev->supported
• what the MAC can do based on the mac capabilities
• what the in-use MII interface can convey

▶ The advertised linkmodes take into account the user settings

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 262/298

https://elixir.bootlin.com/linux/latest/ident/genphy_read_abilities
https://elixir.bootlin.com/linux/latest/ident/genphy_c45_pma_read_abilities

Interactions between MAC and PHY drivers

▶ phylib provides an simple API for PHY consumers
• phy_start(), phy_stop(), phy_connect()
• phy_suspend(), phy_resume() for power management

▶ MAC drivers may use that API, however it has some limitations :
• It can’t handle MII reconfiguration
• It introduces some layering violations : MAC driver access phydev->* fields
• It makes it difficult to support other Layer 1 technologies such as SFP

▶ phylink is a framework that sits between MAC drivers and PHY drivers
▶ It abstracts away the PHY from the MAC, and provides a feature-full set of

callbacks for MAC configuration
▶ It also handles PCS configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 263/298

https://elixir.bootlin.com/linux/latest/ident/phy_start
https://elixir.bootlin.com/linux/latest/ident/phy_stop
https://elixir.bootlin.com/linux/latest/ident/phy_connect
https://elixir.bootlin.com/linux/latest/ident/phy_suspend
https://elixir.bootlin.com/linux/latest/ident/phy_resume
https://elixir.bootlin.com/linux/v6.15.1/source/drivers/net/phy/phylink.c

phylib usage in MAC drivers

▶ MAC drivers that use phylib directly call phy_connect() to link with the PHY
• Their .ndo_open() calls phy_start() to establish the link
• Their .ndo_close() calls phy_stop() to quiesce it

▶ They register an .adjust_link callback to the phydev for link change notification

user mac driver

ip link set eth0 up

phylib phy driver phy

.ndo_open()
phy_start() .config_aneg()

register config

link
establishedinterrupt or poll

.read_status().adjust_link()
netif_carrier_on()

“Link is Up”

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 264/298

https://elixir.bootlin.com/linux/latest/ident/phy_connect
https://elixir.bootlin.com/linux/latest/ident/phy_start
https://elixir.bootlin.com/linux/latest/ident/phy_stop

phylink
▶ The phylink framework abstracts the Layer 1 configuration away
▶ MAC driver can transparently connect to a PHY or an SFP module
▶ Handles MII reconfiguration, PCS configuration, ethtool reconfiguration
▶ Doesn’t superseeds phylib, but complements it for the MAC API

phylink_start/stop()

MAC driver phylink

PCS driver

PHY driver

SFP

phylink_create() phy_attach_direct()

configure / notify

phy_start/stop()

notify

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/298

phylink - MAC ops

▶ MAC driver populate a set of callbacks in struct phylink_mac_ops registered to
phylink

▶ .mac_config : Reconfigure the MII mode and parameters, major reconfig
▶ .mac_link_up : Notify that the link with the partner is established

• Negociated speed, duplex and flow control are passed
• The MAC should re-adjust its settings, if possible without bringing the link down

▶ .mac_link_down : Notify that the link partner is gone
▶ .mac_select_pcs : The MAC returns which struct phylink_pcs must be used

• MACs may have multiple PCS, chosen based on the MII
▶ .mac_enable/disable_tx_lpi : Configures the Low Power Idle modes, for

Energy Efficient Ethernet

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 266/298

https://elixir.bootlin.com/linux/latest/ident/phylink_mac_ops
https://elixir.bootlin.com/linux/latest/ident/phylink_pcs
https://elixir.bootlin.com/linux/v6.15.1/source/drivers/net/ethernet/marvell/mvpp2/mvpp2_main.c#L6468

phylink - MAC capabilities

▶ When creating the struct phylink instance, the MAC indicates its capabilities
▶ This is done by populating a struct phylink_config object
▶ mac_capabilities : indicates all Speeds and Duplex settings supported
▶ supported_interfaces : indicates all MII interfaces this MAC can output

phylink config example
phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | MAC_10 |

MAC_100 | MAC_1000FD | MAC_2500FD;
phy_interface_set_rgmii(phylink_config.supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_MII, phylink_config.supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_GMII, phylink_config.supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_SGMII, phylink_config.supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_1000BASEX, phylink_config.supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_2500BASEX, phylink_config.supported_interfaces);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 267/298

https://elixir.bootlin.com/linux/latest/ident/phylink
https://elixir.bootlin.com/linux/latest/ident/phylink_config

SFP

▶ Small Formfactor Pluggable is defined by the SFF standards
▶ It allows having a hot-pluggable module that deals with the Media side
▶ Useful for Fibre links, but also exists in Copper flavours (BaseT or DAC)
▶ Each module has a standardized behaviour and interface :

• An i2c bus and some GPIOs are used to control the module
• An eeprom is accessible on the i2c bus, at address 0x50
• Its content is standardized, indicating the capabilities, vendor, model, etc.
• Some modules also provide Diagnostics and Montoring over i2c : Temperature,

Power output, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 268/298

SFP

▶ The internals of an SFP module are a black box, but some modules may have a
PHY within

▶ The PHY may be accessed over the i2c bus, but not always
▶ If accessible, the embedded PHY can be managed by the kernel
▶ If the SoC can’t output a serialized interface, a media converter can be used

MAC PHY SFP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 269/298

Ethtool reporting

▶ Userspace can retrieve information reported by the PHY drivers through ethtool

▶ Contrary to struct net_device, struct phy_drivers don’t implement
ethtool ops

▶ phylib implements the struct ethtool_phy_ops, and calls into
struct phy_driver

▶ The netdev ethtool_ksettings_get and ethtool_ksettings_set have
PHY-centric implementation :

• They report the current link settings : Speed, duplex, linkmodes
• Also report Link-partner information : The advertised linkmodes
• See phylink_ethtool_ksettings_set() and phy_ethtool_ksettings_set()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/298

https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/phy_driver
https://elixir.bootlin.com/linux/latest/ident/ethtool_phy_ops
https://elixir.bootlin.com/linux/latest/ident/phy_driver
https://elixir.bootlin.com/linux/latest/ident/phylink_ethtool_ksettings_set
https://elixir.bootlin.com/linux/latest/ident/phy_ethtool_ksettings_set

PHY reporting with Netlink

SoC
CPU

Ethernet MAC

PHY

PCS

PHY

▶ Some hardware topologies may have more than one PHY
attached to a MAC

• When an SFP module is driven by a PHY, and contains a PHY
itself

• When a PHY is used as a media converter
▶ Netlink requests targetting PHY devices can now be passed a

phy index
• Implemented by drivers/net/phy/phy_link_topology.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 271/298

https://elixir.bootlin.com/linux/latest/source/drivers/net/phy/phy_link_topology.c

Network device drivers

Switch drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 272/298

Ethernet switches in Linux
▶ The switchdev framework allows configuring the switching fabric
▶ Switch ports are represented as regular net_device

switch fabric

switch fabric

CPU CPU

DSA switchRegular switch

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 273/298

Ethernet switches in Linux

▶ By default, without any further configuration, each port is independent
▶ As each port has their net_device, they have a their own net_device_ops

▶ Non-DSA switches are just regular Ethernet drivers, with extra logic for switchdev
▶ DSA switches have their ports handled by the DSA port infrastructure

• Implemts the .ndo_start_xmit

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 274/298

https://elixir.bootlin.com/linux/v6.15.2/source/net/dsa/port.c

Switchdev

switch fabric

CPU
br0

wan lan0 lan1

switchdev

fdb

fdb ▶ switchdev is a framework allowing drivers to
implement switching configuration ops

▶ Bridging, VLANs, filtering, queueing,
redirection, snooping, etc.

▶ The hardware must be able to report internal
reconfiguration events

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 275/298

Notifiers

▶ Drivers don’t implement any kind of switchdev_ops
• Switch-related events don’t specifically target a single netdev

▶ Drivers instead subscribe to kernel notifications through notifiers
▶ Userspace bridging configuration triggers reconfiguration events

• NETDEV_CHANGEUPPER : A netdev has a new upper_dev
• BR_STATE_FORWARDING : A bridge port is set in forwarding state

▶ The switch reports internal events, that the driver notifies to the kernel
• call_switchdev_notifiers()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 276/298

https://elixir.bootlin.com/linux/latest/ident/NETDEV_CHANGEUPPER
https://elixir.bootlin.com/linux/latest/ident/BR_STATE_FORWARDING
https://elixir.bootlin.com/linux/latest/ident/call_switchdev_notifiers

Switchdev notifiers - example

switchdev example
static int adin1110_switchdev_event(struct notifier_block *unused,

unsigned long event, void *ptr)
{

if (!adin1110_port_dev_check(netdev))
return NOTIFY_DONE;

switch (event) {
case SWITCHDEV_FDB_ADD_TO_DEVICE:
case SWITCHDEV_FDB_DEL_TO_DEVICE:

/* Add item to FDB */
}

return NOTIFY_DONE;
}

static struct notifier_block adin1110_switchdev_notifier = {
.notifier_call = adin1110_switchdev_event,

};

static int adin1110_setup_notifiers(void)
{

register_switchdev_notifier(&adin1110_switchdev_notifier);
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 277/298

Switchdev notifications

▶ NETDEV_CHANGEUPPER : A netdev was added to or removed from a bridge
▶ SWITCHED_FDB_ADD_TO_DEVICE : A FDB entry was added by user
▶ SWITCHED_PORT_OBJ_ADD : Generic notifier to add an entry to a port

• SWITCHDEV_OBJ_ID_PORT_VLAN : A port belongs to a VLAN
• SWITCHDEV_OBJ_ID_PORT_MDB : Add a Multicast address to a port

▶ Drivers notify the kernel when the operation was able to be offloaded
• e.g. call_switchdev_notifiers(SWITCHDEV_FDB_OFFLOADED, ndev, &info.

info, NULL);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 278/298

DSA

Distributed Switch Architecture

SoC

Switch

MAC

PHY

PHY

PHY

▶ Mainly used by dedicated switch chips
▶ One or more ports are connected to SoC interfaces
▶ DSA switches may be chained together
▶ The CPU to Switch link is called the cpu conduit or cpu port
▶ Switch to Switch links are called dsa conduits
▶ Other interfaces are called user ports
▶ Frames on conduits are often tagged to identify the destination

port
▶ DSA uses switchdev, and does not replace it

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 279/298

DSA tagging

switch

Ethernet frame

Ethernet frame

Ethernet frame

T
A
G

Ethernet frameT
A
G

MAC

wan

cpu
port

MAC

lan0 lan1

wan lan0 lan1

▶ A vendor-specific TAG is added to the
frame

▶ It contains the identifier of the egress
port

▶ The frame is sent from the CPU to
the switch

▶ The switch strips the tag and sends it
on the port

▶ The opposite happens on receive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 280/298

DSA in devicetree

&mdio {
switch0: ethernet-switch@1 {
compatible = "marvell,mv88e6085";
reg = <1>;

dsa,member = <0 0>;

ethernet-ports {
#address-cells = <1>;
#size-cells = <0>;
[...]

};
};

};

▶ reg : Address on the MDIO
bus

▶ dsa,member : Position in
the cluster, if applicable

▶ ethernet-ports : Contains
the list of ports

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 281/298

DSA Ports in devicetree

...
ethernet-ports {
switch0port0: ethernet-port@0 {

reg = <0>;
label = "cpu";
ethernet = <ð0>;
phy-mode = "rgmii-id";
fixed-link {

speed = <1000>;
full-duplex;

};
};

switch0port1: ethernet-port@1 {
reg = <1>;
label = "wan";
phy-handle = <&switch0phy0>;

};

switch0port2: ethernet-port@2 {
reg = <2>;

^^Ilink = <&switch1port0>;
};

...
};
...

▶ reg : Port number
▶ label : Port name, will become the

interface name
▶ ethernet : phandle to the CPU-side

MAC interface
▶ link : phandle to another DSA

switch’s port, for cascading
▶ PHY mode and phandle

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 282/298

Tagging

▶ Tagging happens outside of the switch driver, in a dedicated tagger :
net/dsa/tag_*.c

▶ Some switches support multiple tagging formats
• It can be specified in devicetree

DSA tagger

static const struct dsa_device_ops foo_ops = {
.name = "foo",
.proto = DSA_TAG_PROTO_FOO,
.xmit = foo_tag_xmit,
.rcv = foo_tag_rcv,
.needed_headroom = FOO_HDR_LEN,
.promisc_on_conduit = true,

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 283/298

Chaining

▶ Some DSA switches can be daisy-chained
▶ The ports that link switches together don’t have associated net_device

SoC

MAC

switch switchswitch

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 284/298

Debugging and tracing the Network Stack

Debugging and tracing
the Network Stack

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 285/298

Challenges

▶ Latency issues : Can come from different locations
• The network itself
• Internal queueing and buffering
• Hardware and OS-level latencies

▶ Throughput issues
• May depend on the traffic type
• May simply be a symptom : TCP retransmissions due to bad L1 link quality

▶ Link issues
• May be hardware related
• The kernel can’t only tell you what it knows

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 286/298

Monitoring traffic and drops

▶ In case of large number of repeats or local drops
▶ dropwatch : monitor the in-kernel packet drops, see man 1 dropwatch

$ dropwatch -lkas
$ dropwatch> start
2 drops at ip6_mc_input+1a8 (0xffffffff83347ba8) [software]

▶ retis : eBPF based monitoring. monitor drops as well as skb lifetime
▶ See the official documentation

retis collect -c skb-drop --stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 287/298

https://man7.org/linux/man-pages/man1/dropwatch.1.html
https://retis.readthedocs.io/en/stable/

Monitoring traffic with a capture

▶ Tools such as wireshark and tcpdump use AF_PACKET sockets for monitoring
▶ Some hardware devices may include extra information

• e.g. the radiotap headers on 802.11 frames
▶ The monitoring happens between the driver and tc

▶ On the receive side, it happends before firewalling with netfilter
▶ Capture format is standardised with the pcap format

• frames can be replayed, or analysed on another host

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 288/298

Offloading

▶ Offloading issues are hard to troubleshoot, as the host doesn’t see them
▶ wireshark may tell you receive checksumming issues
▶ ethtool -k eth0 shows you the features
▶ Hardware counters should be used for debugging :

• ethtool -S eth0
• ethtool --phy-statistics eth0
• ethtool -S eth0 --groups eth-mac|eth-phy|eth-ctrl|rmon

▶ Some information may be available in debugfs
▶ ip -s link show eth0 shows software counters
▶ cat /proc/interrupts indicate the hardware interrupt counters
▶ cat /proc/softirq indicate the softirq counters

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 289/298

Traffic generation

▶ iperf3 : Troughput testing, fairly simple to use
▶ netperf : Made by kernel developers, similar to iperf3, more featureful
▶ scapy : Traffic generator written in python, craft arbitrary frames
▶ DPDK’s pktgen

• PKTgen uses kernel bypass, not supported on every platform
• Allows very fast packet crafting (10gbs)
• Useful to test multi-flow setups, or HW offloading

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 290/298

https://pktgen-dpdk.readthedocs.io/en/latest/

iperf3

▶ Widely used traffic generator
▶ iperf3 -s -D : Start in server mode
▶ iperf3 -c 192.168.1.1 : Start in client mode, default is TCP
▶ iperf3 -c 192.168.1.1 -u -b 0 : UDP mode, with unlimited bandwidth
▶ iperf3 -c 192.168.1.1 -u -b 0 -l 100 : UDP mode, small packets
▶ iperf3 -c 192.168.1.1 -P 16 : Multi-flow mode

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 291/298

scapy

▶ Traffic generator written in python. See the official website
▶ Allows generating arbitrary traffic very easily
▶ Each header can be crafted, for high flexibility
▶ Very easily scriptable

IPv4 with ToS field varying between 1 and 4
sendp(Ether()/IP(dst="1.2.3.4",tos=(1,4)), iface="eth0")

Raw ethernet frame
sendp(Ether(dst="00:51:82:11:22:02"), iface="eth0")

Send and wait for reply, simple ping implementation
packet = IP(dst="192.168.42.1", ttl=20)/ICMP()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 292/298

https://scapy.net/

Counters

▶ Layer 4 counters : Maintained by the kernel.
• netstat -s or cat /proc/net/netstat
• More statstics in /proc/net/stat

▶ Layer 3 counters : Provided by ip -s link show

▶ Layer 2 counters : Hardware-provided
▶ XDP programs can be custom-written to gather specific statistics
▶ xdp-monitor -s tracks XDP statistics such as the number of drops and redirects

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 293/298

profiling

▶ Allows identifying the bottlnecks in software
▶ perf can be used : Rely on hardware and software counters
▶ Flamegraphs help identify software bottlenecks, in kernel and userspace

• Covered in our debugging training
▶ ftrace will generate timelines of events, to track latencies
▶ See the ftrace documentation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 294/298

https://bootlin.com/training/debugging/
https://docs.kernel.org/trace/ftrace.html

Practical lab - Debugging performance issues

▶ Troubleshoot a performance issue
▶ Analyze traffic with tcpdump and wireshark
▶ Troubleshoot a link issue

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 295/298

Last slides

Last slides

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 296/298

Last slide

Thank you!
And may the Source be with you

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 297/298

Rights to copy

© Copyright 2004-2025, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of this work.
▶ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 298/298

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

	About Bootlin
	Generic course information
	Introduction - Networking Technologies
	The Linux Kernel Networking Stack
	Network Devices
	Control interfaces for the Network Stack

	Sockets and Data Path
	Socket Buffers
	Traffic Filtering
	Traffic Control

	eBPF
	XDP

	Network device drivers
	Ethernet controller driver
	PHY driver and link management
	Switch drivers

	Debugging and tracing the Network Stack
	Last slides

