
Embedded Linux networking Training

Espressobin variant

Practical Labs

https://bootlin.com

July 03, 2025

https://bootlin.com

Embedded Linux networking Training

About this document
Updates to this document can be found on https://bootlin.com/doc/training/networking.

This document was generated from LaTeX sources found on https://github.com/bootlin/training-materials.

More details about our training sessions can be found on https://bootlin.com/training.

Copying this document
© 2004-2025, Bootlin, https://bootlin.com.

This document is released under the terms of the Creative Commons CC BY-SA 3.0 license
. This means that you are free to download, distribute and even modify it, under certain
conditions.

Corrections, suggestions, contributions and translations are welcome!

2 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com/doc/training/networking
https://github.com/bootlin/training-materials
https://bootlin.com/training
https://bootlin.com
https://creativecommons.org/licenses/by-sa/3.0/
https://bootlin.com

Embedded Linux networking Training

Training setup
Download files and directories used in practical labs

Install lab data
For the different labs in this course, your instructor has prepared a set of data (kernel images, kernel config-
urations, root filesystems and more). Download and extract its tarball from a terminal:

$ cd
$ wget https://bootlin.com/doc/training/networking/networking-labs.tar.xz
$ tar xvf networking-labs.tar.xz

Lab data are now available in an networking-labs directory in your home directory. This directory contains
directories and files used in the various practical labs. It will also be used as working space, in particular to
keep generated files separate when needed.

Update your distribution
To avoid any issue installing packages during the practical labs, you should apply the latest updates to the
packages in your distro:

$ sudo apt update
$ sudo apt dist-upgrade

You are now ready to start the real practical labs!

Install extra packages
Feel free to install other packages you may need for your development environment. In particular, we
recommend to install your favorite text editor and configure it to your taste. The favorite text editors of
embedded Linux developers are of course Vim and Emacs, but there are also plenty of other possibilities,
such as Visual Studio Code1, GEdit, Qt Creator, CodeBlocks, Geany, etc.

It is worth mentioning that by default, Ubuntu comes with a very limited version of the vi editor. So if you
would like to use vi, we recommend to use the more featureful version by installing the vim package.

More guidelines
Can be useful throughout any of the labs

• Read instructions and tips carefully. Lots of people make mistakes or waste time because they missed
an explanation or a guideline.

• Always read error messages carefully, in particular the first one which is issued. Some people stumble
on very simple errors just because they specified a wrong file path and didn’t pay enough attention to
the corresponding error message.

• Never stay stuck with a strange problem more than 5 minutes. Show your problem to your colleagues
or to the instructor.

• You should only use the root user for operations that require super-user privileges, such as: mounting
a file system, loading a kernel module, changing file ownership, configuring the network. Most regular
tasks (such as downloading, extracting sources, compiling...) can be done as a regular user.

1This tool from Microsoft is Open Source! To try it on Ubuntu: sudo snap install code --classic

© 2004-2025 Bootlin, CC BY-SA license 3

https://bootlin.com

Embedded Linux networking Training

• If you ran commands from a root shell by mistake, your regular user may no longer be able to handle
the corresponding generated files. In this case, use the chown -R command to give the new files back
to your regular user.
Example: $ sudo chown -R myuser.myuser linux/

4 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux networking Training

Setup the build environment
Objective: Configure our testing setup for the labs

Goals
• Have an overview of the build setup

• Run our first buildroot build

• Setup the Host machine

Install the required packages
You need some packages installed on your host machine :

$ sudo apt install build-essential git tcpdump wireshark iperf3 python3-scapy ethtool \
clang linux-tools-common libbpf-dev pahole

Getting started with Buildroot
For this training session, we will be running a pre-configured Linux OS image that we will generate usnig
Buildroot version 2025.02

The Espressobin V7 is already well supported in Buildroot, the image we are using contains a few extra setup
options that will make the next labs easier to run :

• The Linux Kernel version is v6.12.y, the latest LTS release

• Some networking related packages are pre-installed, namely :

– ethtool, for low-level network interface configuration (see man 8 ethtool)

– iperf3, for traffic generation (see man 1 iperf3)

– iproute2, replacing the busybox-based implementation, for network configuration (see man 8 ip)

– tcpdump, for traffic analysis (see man 8 tcpdump)

– Custom packages for the various labs.

Our configuration also includes an overlay directory, which will allows us to very easily install custom-made
files into our rootfilesystem.

Understanding the Lab materials
In this training, we will be running some commands both on the Espressobin and the Host machine.

In order to quickly see where a given command should run, we have color-coded the instructions.

Target commands
Commands on a Yellow background are to be run on the Espressobin, also referred to as Target :

$ echo "Hello world, I am an Espressobin"

For simplicity, the expected output of commands running on the Espressbin also appear on a yellow back-
ground :

Hello world, I am an Espressobin

© 2004-2025 Bootlin, CC BY-SA license 5

https://buildroot.org/
https://man7.org/linux/man-pages/man8/ethtool.8.html
https://man7.org/linux/man-pages/man1/iperf3.1.html
https://man7.org/linux/man-pages/man8/ip.8.html
https://man7.org/linux/man-pages/man8/tcpdump.8.html
https://bootlin.com

Embedded Linux networking Training

Target commands
Commands that needs to run on your Host machine are on a Green background :
$ echo "Hello world, I am the host machine"

For simplicity, the expected output of commands running on the Espressbin also appear on a yellow back-
ground :
Hello world, I am the host machine

Setup the host machine for the neworking labs
You can use a built-in Ethernet port n your host machine, provided that it is not in use, and that it is capable
of 1Gbps speed. This can be checked with :
$ethtool <host_iface>

settings for enp0s20f0u1u1:
Supported ports: [TP MII]
Supported link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full

Supported pause frame use: No
Supports auto-negotiation: Yes
Supported FEC modes: Not reported
...

If you do not have such an interface, you can use the provided USB to Ethernet adapter. It supports 1Gbps,
but its driver doesn’t report that.

We will be doing some manual re-configuration of the host interface. Regardless if you chose to use the
built-in interface, you need to make sure that NetworkManager will not try to re-configure your interface,
thus overriding your configuration. You can achieve that temporarily by running :
$ nmcli device set <iface> managed no

This only temporary, as the interface will become managed again when your host machine reboots.

Building our image
Let’s now build our buildroot image :
$ cd /home/$USER/networking-labs/buildroot
$ make globalscale_espressobin_networking_defconfig
$ make

This should take a while :) The buildroot image provided is also hosted on our github, you can take a look
here for more details.

Preparing the Espressobin
The Espressobin is powered by a 12V DC external PSU. Make sure that your PSU is rated for 2A, and has
a center-positive Barrel Jack.

In addition, to access the debug serial console, you need to use a micro-USB cable connected to the micro-USB
port, near the Barrel Jack.

Once your micro-USB cable is connected, a /dev/ttyUSB0 device will apear on your PC. You can see this
device appear by looking at the output of dmesg on your workstation.

To communicate with the board through the serial port, install a serial communication program, such as
picocom:
sudo apt install picocom

6 © 2004-2025 Bootlin, CC BY-SA license

https://github.com/bootlin/buildroot
https://bootlin.com

Embedded Linux networking Training

If you run ls -l /dev/ttyUSB0, you can also see that only root and users belonging to the dialout group
have read and write access to this file. Therefore, you need to add your user to the dialout group:

sudo adduser $USER dialout

Important: for the group change to be effective, you have to completely reboot the system 2. A workaround
is to run newgrp dialout, but it is not global. You have to run it in each terminal.

Now, you can run picocom -b 115200 /dev/ttyUSB0, to start serial communication on /dev/ttyUSB0, with
a baudrate of 115200. If you wish to exit picocom, press [Ctrl][a] followed by [Ctrl][x].

There should be nothing on the serial line so far, as the board is not powered up yet.

Flashing the SDCard
You will now need to flash a sdcard with the output/images/sdcard.img file. Plug your sdcard on your
computer and check on which /dev/sdX it has been mounted (you can use the dmesg command to check
that). For instance, if the sdcard has been mounted on /dev/sde, use the following command:

$ sudo dd if=output/images/sdcard.img of=/dev/sde
$ sync

NOTE: Double-check that you are targeting the correct device before executing the dd command!

Once flashed, insert the sdcard into the Espressobin.

2As explained on https://askubuntu.com/questions/1045993/after-adding-a-group-logoutlogin-is-not-enough-in-18-04/.

© 2004-2025 Bootlin, CC BY-SA license 7

https://askubuntu.com/questions/1045993/after-adding-a-group-logoutlogin-is-not-enough-in-18-04/
https://bootlin.com

Embedded Linux networking Training

Interacting with the Networking Stack
Objective: learn how to manage Networking interfaces and create new ones

Goals
• Get familiar with the Espressobin’s network interfaces

• Use iproute2 for link configuration, vlan setup and bridiging

• Use the different VLAN configuration methods

• Use network namespaces for interface isolation

Getting familiar with the Espressobin
The Espressobin has 3 front-facing ports labelled ”wan”, ”lan0” and ”lan1” :

espressobin v7

wan lan0 lan1

List the network interfaces by running :

$ ip link show

Do you notice anything strange ? Besides the lo interface for loopback, we see 4 interfaces :

• eth0

• lan0@eth0

• lan1@eth0

• wan@eth0.

This is because the Espressobin uses a dedicated DSA switch to drive its ports, and eth0 is used as conduit
between the SoC’s Ethernet Interface and one of the switch’s ports.

In this lab, we will ignore eth0 and only focus on the other 3 interfaces. Although they appear as lan0@eth0,
you must use the shorter lan0 interface name in your commands.

8 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux networking Training

Sending our first packet
Let’s send out first ping between our Host machine and the Espressobin. This is the setup we’ll achieve :

espressobin v7

wan lan0 lan1

Host

eth0

192.168.42.1/24

192.168.42.2/24

The first step we need to take is to administratively bring the lan1 interface up :

$ ip link set lan1 up

You can check that an interface is ”admin UP” by running :

$ ip link show lan1
3: lan1@eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> ...

The ”UP” keywork appears as the last element betweek the chevrons following the interface name, this is the
admin link state. When the interface is ”admin down”, no keywork will appear in that spot.

The next step is to check that we have a working connection with the Host. Plug the Ethernet cable between
the lan1 port and your Host machine. Make sure that your Host’s interface is UP as well. Let’s check the
link status one more time :

$ ip link show lan1
lan1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP ...

The LOWER_UP indication tells you that there’s a link-partner detected, using PHY Layer information
when available. The state UP keywords indicates that the whole link between this interface and the link
partner is up and running, ready to transmit traffic.

© 2004-2025 Bootlin, CC BY-SA license 9

https://bootlin.com

Embedded Linux networking Training

To get information about the PHY layer attributes, you can use ethtool :
$ ethtool lan1

Settings for lan1:
Supported ports: [TP MII]
Supported link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full
1000baseT/Full

Supported pause frame use: Symmetric
Supports auto-negotiation: Yes
Supported FEC modes: Not reported
Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full
1000baseT/Full

Advertised pause frame use: Symmetric
Advertised auto-negotiation: Yes
Advertised FEC modes: Not reported
Link partner advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full
1000baseT/Full

Link partner advertised pause frame use: Symmetric Receive-only
Link partner advertised auto-negotiation: Yes
Link partner advertised FEC modes: Not reported
Speed: 1000Mb/s
Duplex: Full
Auto-negotiation: on
Port: Twisted Pair
PHYAD: 17
Transceiver: external
MDI-X: Unknown
Supports Wake-on: d
Wake-on: d
Link detected: yes

We can get from the above that :

• The link is up : Link detected: yes

• The link speed was established at 1Gbps : Speed: 1000Mb/s

• The Link-partner (Host machine) supports 10, 100 and 1000Mbps links

To send our first ping, we now need to assign IPv4 addresses to both lan1 as well as our Host’s interface.
Let’s use the 192.168.42.0/24 subnet :
$ ip address add 192.168.42.2/24 dev lan1

You can show the currently assigned IP addresses to each interface by running :
$ ip address

Run a similar command on your host machine to assign it the 192.168.42.1/24 address.

You can now send your first ping, running the following command on your Host machine :
$ ping 192.168.42.2

Create a VLAN
Now that we know that the link between our Host machine and the Espressobin works, let’s setup a VLAN
link.

10 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux networking Training

First, remove any prior IPv4 configuration we’ve done on lan1 :

$ ip address flush lan1

The setup we want to achieve is the following :

espressobin v7

wan lan0 lan1

Host

eth0

192.168.42.2/24
VLAN 10

lan1.10

192.168.42.1/24
VLAN 10

eth0.10

We’ll use a dedicated netdevice for the VLAN we want to create. We will use VLAN id 10, which is arbitrary
here. We assign an IP address to the vlan interface, and set it as admin-up :

$ ip link add link lan1 name lan1.10 type vlan id 10
$ ip address add 192.168.42.2/24 dev lan1.10
$ ip link set lan1.10 up

Configure your Host machine in the same way, with the same VLAN id, but adjusting the IP address.

You should now be able to ping your Espressobin from your Host. Leave the ping command running, we’ll
need some traffic to go through for this next part.

Let’s go a bit further and capture some traffic, to see what the encapsulation looks like. For now, we’ll only
use tcpdump as our capturing software.

$ tcpdump -n -e -i lan1.10

You should see the ICMP traffic generated by the ping command running on your host :

[...] ethertype IPv4 (0x0800), length 98: 192.168.42.1 > 192.168.42.2: ICMP echo request, ...
[...] ethertype IPv4 (0x0800), length 98: 192.168.42.2 > 192.168.42.1: ICMP echo reply, ...
[...] ethertype IPv4 (0x0800), length 98: 192.168.42.1 > 192.168.42.2: ICMP echo request, ...
[...] ethertype IPv4 (0x0800), length 98: 192.168.42.2 > 192.168.42.1: ICMP echo reply, ...

Traffic captured on lan1.10 doesn’t show any VLAN tag, as this interface will expose untagged traffic to
the user.

© 2004-2025 Bootlin, CC BY-SA license 11

https://bootlin.com

Embedded Linux networking Training

Exit tcpdump with ctrl-c, and now dump the traffic going through lan1 :

$ tcpdump -n -e -i lan1

[...] ethertype 802.1Q (0x8100), length 102: vlan 10, p 0, ethertype IPv4 (0x0800), 192.168.42
.1 ...
[...] ethertype 802.1Q (0x8100), length 102: vlan 10, p 0, ethertype IPv4 (0x0800), 192.168.42
.2 ...
[...] ethertype 802.1Q (0x8100), length 102: vlan 10, p 0, ethertype IPv4 (0x0800), 192.168.42
.1 ...
[...] ethertype 802.1Q (0x8100), length 102: vlan 10, p 0, ethertype IPv4 (0x0800), 192.168.42
.2 ...

You can now notice that traffic going through lan1 contains a 802.1Q tag with the VLAN id of 10. The
frames are also 4-bytes longer, which corresponds to the length of a 802.1Q tag.

Looping back
Let’s take a step back from VLANs for now, and focus on the other interfaces of the espressobin. Clean-up
the previous part’s setup by removing the vlan interface :

$ ip link del lan1.10

We’ll try to perform a simple test by looping back the wan and lan0 interface :

espressobin v7

wan lan0 lan1

192.168.42.1/24192.168.42.2/24

Connect wan and lan0 together with one of the provided Ethernet cables, and configure both interfaces with
the ip command, using the addresses indicated in the above schematic.

Check that your link parameters are sensible with ethtool, and that you can send simple ICMP traffic with
ping.

You will see the ping command working. However, we are pinging a local address, so make sure there’s traffic
flowing through our loopback cable. One of the ways of checking this is to looks at the hardware counters
exposed by our drivers. This is done with ethtool -S <iface> :

$ ethtool -S wan | grep tx_packets

Check that this counter increments when sending traffic with ping.

As you may have guessed, the counters aren’t incrementing although we do see the ping going through. This
is because the Linux Kernel sees we’re pinging a local addresses, and responds to it without involving our

12 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux networking Training

hardware interfaces.

To circumvent that, let’s use Network Namespaces to isolate our interfaces from one another :

espressobin v7

wan lan0
lan1

192.168.42.1/24192.168.42.2/24

blue net namespace green net namespace

We’ll use the blue netns for the wan interface, and the green netns for lan0 :
$ ip netns add blue
$ ip link set dev wan netns blue

$ ip netns add green
$ ip link set dev lan0 netns green

From that point on, you will no longer see the wan and lan0 interfaces when running ip link show, as they
are no longer in the init namespace. To interact with them, you need to execute the commands within the
namespace :

ip netns exec green <cmd>

You will now need to re-configure each interface, as they were flushed when entering the new namespace :
$ ip netns exec blue ip link set wan up
$ ip netns exec blue ip address add 192.168.42.2/24 dev wan

$ ip netns exec green ip link set lan0 up
$ ip netns exec green ip address add 192.168.42.1/24 dev lan0

Now, try to ping one the wan interface from the green namespace :
$ ip netns exec green ping 192.168.42.2

Check that the counters on wan are incrementing :
$ ip netns exec blue ethtool -S wan | grep tx_packets

Bridging
Let’s continue our quest to have the most convoluted setup with our espressobin.

We’ll re-use what we have configured so-far with our namespaces, let’s just flush the IP address from lan0 :
$ ip netns exec green ip address flush lan0

We will create a bridge lan0 and lan1 so that we can use them as ports of a same switch :

© 2004-2025 Bootlin, CC BY-SA license 13

https://bootlin.com

Embedded Linux networking Training

espressobin v7

wan lan0 lan1

blue net namespace green net namespace

br0

Host

eth0

First, let’s create a new bridge device (in the green netns) :

$ ip netns exec green ip link add name br0 type bridge
$ ip netns exec green ip link set br0 up

Next, let’s add lan1 to the green netns :

$ ip link set lan1 netns green
$ ip netns exec green ip link set lan1 up

Finally, add both lan0 and lan1 to the bridge :

$ ip netns exec green ip link set dev lan0 master br0
$ ip netns exec green ip link set dev lan1 master br0

Make sure your Host’s IP address is 192.168.42.2/24, then try to ping it !

Congratulations !

14 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux networking Training

Creating a new virtual netdev
Objective: learn how to interact with net devices in the kernel, and use netlink

Goals
• Create a very basic driver for a new Layer 2 network protocol

• Use rtnl_link

• Demonstrate stacked netdevice implementation

Bootlin LAN
In the next few labs, we will be implementing our custom Tagging protocol. It is similar to 802.1Q VLAN,
with the following differences:

• Ethertype is ASCII ”BL”, or hex 0x424C

• The BLAN id is encoded on 2 bytes, using the ascii representation of the tag’s numerical value

• e.g. BLAN id 12 has the tag ”12” or hex 0x3132

• Only one single BLAN can be added to a given trunk interface

MAC dst MAC src ethertype Payload FCS
BLAN

ethertype
“BL”

tag : ascii

Compiling and loading our new driver
For this lab, the code of the driver is located in /home/$USER/networking-labs/target/blan

This driver is out-of-tree, meaning that it is not compiled as part of the kernel, but as a separate kernel
module.

To compile it, you need to use buildroot :

$ cd /home/$USER/networking-labs/buildroot
$ # Only re-compile the blan driver :
$ make bootlinlabs-blan-rebuild
$ # OR
$ # Only re-compile the blan driver and the full image
$ make bootlinlabs-blan-rebuild all

After doing so, you need to re-flash your sdcard using dd.

You can now boot your Espressobin, and insert the module corresponding to our driver :

insmod blan.ko

You should see your Hello World message being printed out.

Adding a new rtnl_link device type
Let’s register our new link type to the rtnl_link family, by creating a new rtnl_link_ops object :

© 2004-2025 Bootlin, CC BY-SA license 15

https://bootlin.com

Embedded Linux networking Training

static struct rtnl_link_ops bootlinlan_link_ops = {
.kind = "blan",
.maxtype = IFLA_BLAN_MAX,
.setup = bootlinlan_setup,
.newlink = bootlinlan_newlink,
.dellink = bootlinlan_dellink,

};

We will need some private data structure to be associated to our struct net_device, that will store context
to be used in all our callback functions.

Create a new structure definition at the top of the file, for now empty :

struct bootlinlan_priv {
};

To make sure that the struct net_device associated to our new interface is allocated with enough room in
its net_device.priv field, we can pass the size of the private data in the rtnl_link info :

static struct rtnl_link_ops bootlinlan_link_ops = {
...

.priv_size = sizeof(struct bootlinlan_priv),
};

We now need to populate the 3 callback functions that were mentionned : bootlinlan_setup, bootlinlan_
newlink and bootlinlan_dellink.

Take a look at the struct rtnl_link_ops definition to know the signature of these functions.

bootlinlan_setup will be called when the rtnl_link framework will allocate and initialize the struct net_
device that will be created when running the ip link command.

There’s 3 steps we need to take care of in the setup function :

• Specify the struct net_device information about the encapsulation (MTU, header size, etc). In our
case, we can simply re-use the ones from a regular ethernet device by calling ether_setup()

• As we are not dealing with a driver for a real device (yet), rtnl_link will allocate a struct net_device
for us. Therefore, we can make so that the networking stack also takes care of freeing the struct net_
device for us when we are done with it. This is done by setting dev->needs_free_netdev to true

• Finally, all struct net_device objects need some NDOs (netdev ops) to be populated. Create a global
variable of type struct net_device_ops, and pass its address into dev->netdev_ops. Populate the only
required member of the ops, .ndo_start_xmit(). You can make a dummy function that does nothing
but return NETDEV_TX_OK;.

Let’s now focus on bootlinlan_newlink. This is were we’ll focus most of our efforts in this lab.

This function takes as parameters :

• struct net *src_net : The network namespace in which the new device is created

• struct net_device *dev : The newly created struct net_device, that we want to configure

• struct nlattr *tb[] : A Netlink Attribute array containing attributes from the RTNL Family

• struct nlattr *data[] : A Netlink Attribute array contaning attributes specific to our link type

• struct netlink_ext_ack *extack : A Netlink Extended ACK object, for error reporting

In our case, the patched version of iproute2 that is provided will :

• Place the parent’s interface index into tb[IFLA_LINK], as a u32 value

16 © 2004-2025 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/rtnl_link_ops
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/ether_setup
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/net_device_ops
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/v6.12.32/A/ident/IFLA_LINK
https://bootlin.com

Embedded Linux networking Training

– ip link add link eth0 name blan0 type blan id 10

Check that the IFLA_LINK value is provided (i.e that tb[IFLA_LINK] is not NULL). You can return -EINVAL
if that’s not the case.

You can retrieve the numerical values from attributes by using and nla_get_u32().

The bootlinlan id is hardcoded in our drver, pick a value between 0 and 99, and store it in our local
bootlinlan_priv struct for later use, make sure that you update the struct accordingly :

struct bootlinlan_priv {
u16 id;

};

A pointer to your private data structure is stored in net_device.priv :

struct bootlinlan_priv *priv = netdev_priv(dev);

Then, you need to retrieve a pointer to the parent netdev. This will be used to configure our netdev. To
get a netdev from its index, you can call __dev_get_by_index(). Take a look at its documentation to know
what are the expected parameters.

Now that you have a pointer tothe parent netdev, we can configure our device :

• The struct device that backs our netdev is the same as the parent’s. We can use SET_NETDEV_DEV(dev,
&parent_dev->dev); to set it.

• We want to inherit the same MAC address as the parent. Use eth_hw_addr_inherit() for that.

We can finally register our device ! We need to call either register_netdevice(), or register_netdev().
Only one of them will work in our case :)

Once your code compiles, reboot your board, insert the module, and try to add a new blan device :

ip link add link lan0 name blan10 type blan

You should see your new device with :

ip link show

You can now populate the bootlinlan_dellink function, that unregisters the device. In our case, we need
to use a special helper named unregister_netdevice_queue(), as we are currently holding the RTNL lock.

Configuring the stacked net devices
One final step is to notify the entire system that our blan0 interface is stacked on lan0. To do this, add a
call to netdev_upper_dev_link() after the registration of your netdev.

In the bootlinlan_dellink, the opposite is done by calling netdev_upper_dev_unlink(), however you’ll
notice that it takes as parameters both the parent device and our netdevice. So, let’s add a struct net_device
field in the bootlinlan_priv data structure :

struct bootlinlan_priv {
struct net_device *lowerdev;
u16 id;

};

© 2004-2025 Bootlin, CC BY-SA license 17

https://elixir.bootlin.com/linux/latest/ident/nla_get_u32
https://elixir.bootlin.com/linux/latest/ident/__dev_get_by_index
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/eth_hw_addr_inherit
https://elixir.bootlin.com/linux/latest/ident/register_netdevice
https://elixir.bootlin.com/linux/latest/ident/register_netdev
https://elixir.bootlin.com/linux/latest/ident/unregister_netdevice_queue
https://elixir.bootlin.com/linux/latest/ident/netdev_upper_dev_link
https://elixir.bootlin.com/linux/latest/ident/netdev_upper_dev_unlink
https://elixir.bootlin.com/linux/latest/ident/net_device
https://bootlin.com

Embedded Linux networking Training

Using Sockets in userspace
Objective: Learn the basics of socket programming

Goals
• Create a simple TCP client program

• Use tcpdump to visualise traffic

• Implement a simple packet dump program

Network configuration
In this lab, we’ll setup a direct connection between the host and the target on the 192.168.42.0/24 subnet.

$ ip address flush lan0
$ ip link set lan0 up
$ ip address add 192.168.42.2/24 dev lan0

$ ip address flush <iface>
$ ip link set <iface> up
$ ip address add 192.168.42.1/24 dev <iface>

You can then run a simple ping test to make sure everything works :

$ ping 192.168.42.2

Simple TCP client
Let’s start simple by creating a simple TCP client program, that will run on the Host, and connect to a
server running on the targe. We will use the netcat program on the target, which provides a very simple
implementation of TCP and UDP servers and clients.

Go in the lab3 host-side directory :

$ cd /home/$USER/networking-labs/host/lab3

In the tcp_client.c file, let’s implement a very simple program to get familiar with the socket programming
aspects. The program will take 2 parameters :

• The server’s address, using the dotted notation

• The server’s port

Start by creating your socket file descriptor, using the socket function. Use the AF_xxx family correspondig
to the IPv4 address family. Use the SOCK_xxx type corresponding to TCP :

int sockfd; sockfd = socket(AF_???, SOCK_???, 0);

We pass a 0 as the last paraemeter as we won’t be using any flags.

Next, create an object representing an IPv4 address : struct sockaddr_in addr;

You need to populate 3 fields within this struct :

• addr.sin_family : Use the AF_xxx family corresponding to IPv4

18 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux networking Training

• addr.sin_port : The server’s port. You can use atoi() to convert the user-pased ASCII string to an
integer. This field must be specified in network byte order, use htons() to convert the port in the
right endianness.

• addr.sin_addr : The server’s IP address. You can use inet_aton to convert from dotted notation to
the 32bits value.

Next, let’s connect to the server. The connect() call must be made, but it expects a generic struct sockaddr
as a parameter, which is subclassed by struct sockaddr_in, so we need to cast it back to the parent class :

connect(sockfd, (struct sockaddr *)&addr, sizeof(addr));

Finally, write the string ”hi !” into the socket, using write() or send().

Don’t forget to close() the socket before terminating the program.

You can compile it with :

$ make tcp_client

Once your program looks good, you can start testing it !

Start the netcat TCP server on the Espressobin, listening on port 3000 :

$ nc -l -p 3000

And test your client on the host machine :

$./tcp_client 192.164.42.2 3000

You should see the string ”hi !” printed on the Espressobin’s console :)

Visualize traffic with TCPdump
Let’s make sure that our data is indeed sent in TCP over IPv4. For that, we’ll use the tcpdump tool.

First let’s leave the netcat TCP server running in the background :

$ nc -l -k -p 3000 &

Now run tcpdump on the Espressobin, listening on lan0, with the following flags :

• -n : Print addresses instead of hostnames

• -e : Include Layer 2 information

$ tcpdump -n -e -i lan0

Send the message to the server from the client :

$./tcp_client 192.164.42.2 3000

You should see in the TCPDump output, on the target, the various packets exchanges during the establin-
shment of the TCP stream : SYN, SYN-ACK, ACK. Acknowledgments are represented with a . in the
flags.

... Flags [S], ...

... Flags [S.], ...

... Flags [.], ...

To dump the content of the packets, you can use :

$ tcpdump -XX -n -e -i lan0

The Espressobin integrates a DSA switch, all traffic running on lan0 goes through the conduit interface
eth0. Try running the capture on lan0 and eth0. Do you see any difference ?

© 2004-2025 Bootlin, CC BY-SA license 19

https://bootlin.com

Embedded Linux networking Training

RAW socket: Implementing our own custom TCPDUMP
TCPdump is based on the use of AF_PACKET sockets, which give access to raw Layer 2 frames. Let’s write
our very simple implementatin of tcpdump.

We will be running this program on the target, so move into the target-side of our lab folder :

$ cd /home/$USER/networking-labs/target/lab3

Open the monitor.c file and let’s start implementing it. Start by opening a new socket, with the AF_PACKET
family, SOCK_RAW type and using the htons(ETH_P_ALL) protocol to listen to everything.

To listen on a given interface, we need to bind the socket to the given interface.

As a reminder, bind() takes 3 parameters :

• int sockfd : The socket file descriptor

• struct sockaddr *addr : a sockaddr pointer. For AF_PACKET, we must use the struct sockaddr_ll
subclass

• socklen_t addrlen : The size of our addres object, that is sizeof(struct sockaddr_ll)

The stuct sockaddr_ll is a generic structure representing a Layer 2 address :

struct sockaddr_ll {
unsigned short sll_family; /* Always AF_PACKET */
unsigned short sll_protocol; /* Physical-layer protocol */
int sll_ifindex; /* Interface number */
unsigned short sll_hatype; /* ARP hardware type */
unsigned char sll_pkttype; /* Packet type */
unsigned char sll_halen; /* Length of address */
unsigned char sll_addr[8]; /* Physical-layer address */

};

We need to populate :

• sll_family : AF_PACKET

• sll_ifindex : The interface index to listen to. Use if_nametoindex() to convert the interface name
to its index

With these parameters constructed, call bind() on your socket.

You can now start reading traffic from your socket. To simplify a bit, let’s read only the first 40 bytes of
each packet.

In a while loop, call recv to read the first 40 bytes into a buffer, then display its content by calling the
provided ”hexdump” functin.

You can compile your code locally to test it :

$ make monitor

To install it on your target, you have to update your linux image :

$ # clean your host-compiled monitor program :
$ make clean
$ Go in your buildroot folder
$ cd ../../buildroot
$ make lab3-rebuild all

You can now re-flash your SDcard with the dd command, and reboot your Espressobin.

To run the monitor program :

20 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux networking Training

$ cd lab3
$./monitor lan0

© 2004-2025 Bootlin, CC BY-SA license 21

https://bootlin.com

Embedded Linux networking Training

Creating a new virtual netdev
Objective: learn how to interact with net devices in the kernel, and use netlink

Goals
• Create a very basic driver for a new Layer 2 network protocol

Transmit path
Our driver will behave somewhat like what a 802.1Q driver would, that is we will receive a frame to be
send (in the form of a struct sk_buff passed a parameter to our .ndo_start_xmit function), containing a
fully-formed Ethernet frame :

tailroom

data

headroom

ETH hdr

IP hdr

UDP/TCP hdr

end

tail

data

head

Our custom tag needs to be inserted before the Ethernet header, that is, between the Layer 3 header and
the Layer 2 header. We therefore need to move the Ethernet header down into the headroom of the SKB.

To guarantee that we have enough space in the headroom, we can add a constraint to our struct net_device
to indicate that when skb are allocated with our device as a destination, there needs to be mode headroom
for our tag.

This can be done by setting dev->needed_headroom to the size of our header, in our bootlinlan_setup
function.

The kernel doesn’t provide any helper to move the ethernet header around, so let’s re-build our skb header
in 3 steps :

1. Save a copy fof the original ethernet header, and remove it

2. Insert our custom tag

3. Re-add the original ethernet header

Consume and copy the original ethernet header
In the .ndo_start_xmit callback of our driver, skb->data points at the beginning of the ethernet header.
You can represent such a header by using struct ethhdr objects, which has the size ETH_HLEN (14 bytes).

Copy the ETH_HLEN bytes of skb->data into such an object.

22 © 2004-2025 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/ident/sk_buff
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/ethhdr
https://elixir.bootlin.com/linux/latest/ident/ETH_HLEN
https://elixir.bootlin.com/linux/latest/ident/ETH_HLEN
https://bootlin.com

Embedded Linux networking Training

Then, consume the first ETH_HLEN bytes of the payload section by calling the appropriate skb-manipulation
helper.

tailroom

data

headroom

IP hdr

UDP/TCP hdr

end

tail

data

head

ETH hdr ETH hdr
memcpy()

Re-create the Layer 2 header
We now need to reconstruct the Layer 2 header. Using the approprate skb helper, re-increase the size of the
skb by growing into the headroom the size of our blan header.

The helper will return a pointer to the newly grown section, you can directly assign it to your struct blan_
hdr.

Fill-in the blan_hdr :

• The blan->etype should be the original ethernet header’s Ethertype

• The blan->id should be the id associated to our netdev’s priv data structure

You can now re-construct the Ethernet header. A useful helper for that is eth_header(), which does all the
necessary skb manipulation (looking at its code may give you some clues :)).

tailroom

data

headroom

BLAN hdr
IP hdr

UDP/TCP hdr

end

tail

data

head

ETH hdr

orig_etype

tag

 etype=“BL”

dst addr

src addr

Congratulations, it’s now time to give your code a test :) Load the module, create the interface and assign
it an IP address :

insmod blan.ko
ip link add link lan0 name blan10 type blan

© 2004-2025 Bootlin, CC BY-SA license 23

https://elixir.bootlin.com/linux/latest/ident/ETH_HLEN
https://elixir.bootlin.com/linux/latest/ident/eth_header
https://bootlin.com

Embedded Linux networking Training

ip address add 192.168.10.2/24 dev blan10

Launch tcpdump on your host machine, on the interface connected to your target :

tcpdump -n -e -i eth0

Start a ping from the target. It will not fully work yet, as we didn’t implement the receive path, and the
host machine can’t understand our protocol :

ping 192.168.10.1

24 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux networking Training

XDP - Using eBPF
Objective: learn eBPF programming using the XDP hook

Goals
• Compile our first eBPF program, and use it to drop everything

• Use eBPF maps through a userspace program

• Circumvent the hardware flaws of the armada3720 with XDP_REDIRECT

Compiling and loading our first XDP program
The Armada 3720 uses the mvneta driver, which has support for XDP upstream.

Let’s first start by compiling and loading the simplest possible program, which will accept any incoming
frame.

Let’s do this work in our buildroot overlay directory :

$ cd /home/$USER/networking-labs/buildroot/overlay/root
$ mkdir xdp
$ cd xdp

Create a simple program named xdp-pass.bpf.c that always returns XDP_PASS, based on the following
skeleton :

#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>

SEC("xdp")
int xdp_pass_prog(struct xdp_md *ctx)
{
/* Your code here */
}

char _license[] SEC("license") = "GPL";

Compile it to eBPF with clang :

clang -target bpf -g -O2 -c xdp-pass.bpf.c -o xdp-pass.bpf.o

Finally, we need to re-generate our linux image, so that it now contains our XDP program. We need to
enable a few options in buildroot for that :

$ cd /home/$USER/networking-labs/buildroot
$ make menuconfig

Search with ’/’ the option ”bpftool”, enable it by pressing space. Then look for ”elfutils”, and also enable it.
Move to the ”Save” option, and hit ”Quit” mutiple times until you get out of the menuconfig interface.

You can now re-generate the image :

$ make

Now re-flash your micro SDcard with the dd command, as explained in the setup lab.

Once your Espressbin has started, let’s setup the network interface lan1

© 2004-2025 Bootlin, CC BY-SA license 25

https://bootlin.com

Embedded Linux networking Training

Filtering
Our first XDP test program will perform the simple task of dropping every packet that arrives onto the lan0
interface. This is not as simple as it sounds, as the Espressobin uses a DSA switch. This means that by
default, the eth0 port receives frames from ALL ports. It distinguises between the frames from each port by
looking at the DSA tag. This will be covered in greater details in the next section of the training.

Each frame that arrives into our interfaces has the following layout :

.----.----.--------.--------.-----.----.---------
| DA | SA | 0xdada | 0x0000 | DSA | ET | Payload ...
'----'----'--------'--------'-----'----'---------

6 6 2 2 4 2 N

This layout is called ”Extended DSA”, and includes an 8-byte in-between the MAC source address and the
Ethertype.

The tag contains :

• a 2-bytes etherype 0xdada

• 2 bytes of zeroes

• A 4-bytes DSA tag with the value :

dsa_header[0] = (1 << 6) | tag_dev;
dsa_header[1] = tag_port << 3;
dsa_header[2] = 0;
dsa_header[3] = 0;

In order to know the TAG id of a given interface, you need to look at the devicetree : arch/arm64/boot/dts/
marvell/armada-3720-espressobin.dtsi\#L182

The Tag id is set by the reg value.

If we summarize, we only need to get the 8-byte tag, and recover the tag_port with

/* Skip the first 4 bytes of the EDSA tag*/

/* Check byte 1 of the DSA tag */
source_port = (dsa_header[1] >> 3) & 0x1f;

Create a new file in buildroot/overlay/root/xdp named xdp-filter.bpf.c, and use the following skeleton
:

#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>

SEC("xdp")
int xdp_filter_prog(struct xdp_md *ctx)
{

void *data_end = (void *)(long)ctx->data_end;
void *data = (void *)(long)ctx->data;

/* Grab the Ethernet header */
struct ethhdr *eth = data;

/* Check the size */
if (eth + 1 > data_end)

return XDP_DROP;

26 © 2004-2025 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/source/arch/arm64/boot/dts/marvell/armada-3720-espressobin.dtsi#L182
https://elixir.bootlin.com/linux/latest/source/arch/arm64/boot/dts/marvell/armada-3720-espressobin.dtsi#L182
https://bootlin.com

Embedded Linux networking Training

/* Skip the 2 '0' bytes */
/* Get the next 4 bytes and check the source_port */

return XDP_PASS;
}
char _license[] SEC("license") = "GPL";

Compile and load that program.

You should now be only able to use the LAN1 and WAN, the LAN0 interface should drop any incoming
packet.

© 2004-2025 Bootlin, CC BY-SA license 27

https://bootlin.com

Embedded Linux networking Training

Investigating low level behaviour
Objective: Configure our testing setup for the labs

Goals
• Configure offloading and measure its impacts

• Analyse traffic and drops

• Use MQPrio to improve performances in specific setups

• Use traffic generation tools

Install the required packages
$ sudo apt install iperf3 dropwatch

Traffic generation with iperf3
Let’s use iperf3 to generate traffic between the Host and Target.

Run iperf3 in servermode (-s) and in the background (-D)
$ ip link set lan1 up
$ ip address add 192.168.42.2/24 dev lan1
$ iperf3 -s -D

Generate some traffic from your host :
$ iperf3 -c 192.168.42.2

By default, TCP traffic is sent. Let’s now try UDP, using 400 bytes datagrams
$ iperf3 -c 192.168.42.2 -u -b 0 -l 400

The speed you are seeing is the speed at which the Host sends UDP to the Target.

To see the speed at which the target manages to receive the packets, you need to run the iperf3 server in
the foreground :
$ killall iperf3
$ iperf3 -s

Run the host-side iperf3 again. What do you see ?

Analysing performances
One way of investigating the ingress processing is by profiling the system.

Run the iperf3 UDP stream in the background, and start perf :
$ perf top

Can you identify the bottleneck ?

Using mqprio for traffic priorisation
When using a tool such as MQPrio, the process is more involved as you will need to classify your traffic, to
indicate which packets are high-priority.

We will use VLANs for that purpose. We are going to create 2 flows between the host and target :

28 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux networking Training

• An untagged flow, with low-priority traffic, on 192.168.42.0/24

• A tagged flow, with high-priority traffic, on 192.168.50.0/24

Create a VLAN interface on your host machine, with an egress mapping :

$ ip link add link <iface> name e.10 type vlan id 10 egress 0:0 1:1 2:2 3:3 4:4 5:5 6:6 7:7
$ ip address add 192.168.50.1/24 dev e.10
$ ip address add 192.168.42.1/24 dev <iface>

Do the equivalent command on the Espressobin :

$ ip link add link lan1 name lan1.10 type vlan id 10 egress 0:0 1:1 2:2 3:3 4:4 5:5 6:6 7:7
$ ip address add 192.168.50.2/24 dev lan1.10
$ ip address add 192.168.42.2/24 dev lan1

Don’t forget to put your interfaces UP !

Now, run the iperf3 server on your Espressbin, in the background :

$ iperf3 -s -D

Let’s now mark all traffic on lan1.10 as priority 7 :

iptables -t mangle -A POSTROUTING -o lan1.100 -p udp -j CLASSIFY --set-class 0:7
iptables -t mangle -A POSTROUTING -o lan1.100 -p tcp -j CLASSIFY --set-class 0:7

Finally, let’s configure mqprio :

tc qdisc add dev eth0 parent root handle 100 mqprio num_tc 2 \
map 0 0 0 0 0 0 0 1 \
queues 7@0 1@7 hw 1 mode channel shaper \
bw_rlimit min_rate 0 0 max_rate 50Mbit 1000Mbit

Now check that traffic on lan1 is rate-limited to 50Mbps and that traffic on lan1.100 goes at full speed !

© 2004-2025 Bootlin, CC BY-SA license 29

https://bootlin.com

	About this document
	Copying this document
	Training setup
	Install lab data
	Update your distribution
	Install extra packages
	More guidelines

	Setup the build environment
	Goals
	Install the required packages
	Getting started with Buildroot
	Understanding the Lab materials
	Target commands
	Target commands

	Setup the host machine for the neworking labs
	Building our image
	Preparing the Espressobin
	Flashing the SDCard

	Interacting with the Networking Stack
	Goals
	Getting familiar with the Espressobin
	Sending our first packet
	Create a VLAN
	Looping back
	Bridging

	Creating a new virtual netdev
	Goals
	Bootlin LAN
	Compiling and loading our new driver
	Adding a new rtnl_link device type
	Configuring the stacked net devices

	Using Sockets in userspace
	Goals
	Network configuration

	Simple TCP client
	Visualize traffic with TCPdump
	RAW socket: Implementing our own custom TCPDUMP

	Creating a new virtual netdev
	Goals
	Transmit path
	Consume and copy the original ethernet header
	Re-create the Layer 2 header

	XDP - Using eBPF
	Goals
	Compiling and loading our first XDP program
	Filtering

	Investigating low level behaviour
	Goals
	Install the required packages
	Traffic generation with iperf3
	Analysing performances
	Using mqprio for traffic priorisation

