
Online
seminar

Audience
People developing devices using the Linux kernel
People supporting embedded Linux system developers.

Training objectives
• Be able to understand the overall architecture of Embedded Linux systems.
• Be able to choose, build, setup and use a cross-compilation toolchain.
• Be able to understand the booting sequence of an embedded Linux system, and to

set up and use the U-Boot bootloader.
• Be able to select a Linux kernel version, to configure, build and install the Linux

kernel on an embedded system.
• Be able to create from scratch a Linux root filesystem, including all its elements:

directories, applications, configuration files, libraries.
• Be able to choose and setup the main Linux filesystems for block and flash storage

devices, and understand their main characteristics.
• Be able to interact with hardware devices, configure the kernel with appropriate

drivers and extend the Device Tree
• Be able to select, cross-compile and integrate open-source software components

(libraries, applications) in an Embedded Linux system, and to handle license com-
pliance.

• Be able to setup and use an embedded Linux build system, to build a complete
system for an embedded platform.

• Be able to develop and debug applications on an embedded Linux system.

Prerequisites
• Knowledge and practice of UNIX or GNU/Linux commands: participants must

be familiar with the Linux command line. Participants lacking experience on this
topic should get trained by themselves, for example with our freely available on-line
slides.

• Minimal English language level: B1, according to the Common European Frame-
work of References for Languages, for our sessions in English. See the CEFR grid
for self-evaluation.

Pedagogics
• Lectures delivered by the trainer, over video-conference. Participants can ask ques-

tions at any time.
• Practical demonstrations done by the trainer, based on practical labs, over video-

conference. Participants can ask questions at any time. Optionally, participants
who have access to the hardware accessories can reproduce the practical labs by
themselves.

• Instant messaging for questions between sessions (replies under 24h, outside of
week-ends and bank holidays).

• Electronic copies of presentations, lab instructions and data files. They are freely
available here.

Certificate
Only the participants who have attended all training sessions, and who have scored over
50% of correct answers at the final evaluation will receive a training certificate from
Bootlin.

Disabilities
Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

1

Embedded Linux system
development training

Course duration
U 7 half days – 28 hours

Language

Materials English

Oral Lecture English
French
Portuguese
Italian

Trainer
One of the following engineers

• Alexandre Belloni
• Alexis Lothoré
• Antonin Godard
• Grégory Clement
• Jérémie Dautheribes
• João Marcos Costa
• Luca Ceresoli
• Maxime Chevallier
• Miquèl Raynal
• Richard Genoud
• Thomas Petazzoni

Contact
@ training@bootlin.com
T +33 484 258 097

bootlin.com

https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/embedded-linux
mailto:training@bootlin.com
mailto:training@bootlin.com
https://bootlin.com/company/staff/alexandre-belloni/
https://bootlin.com/company/staff/alexis-lothore/
https://bootlin.com/company/staff/antonin-godard/
https://bootlin.com/company/staff/gregory-clement/
https://bootlin.com/company/staff/jeremie-dautheribes/
https://bootlin.com/company/staff/joaomarcos-costa/
https://bootlin.com/company/staff/luca-ceresoli/
https://bootlin.com/company/staff/maxime-chevallier/
https://bootlin.com/company/staff/miquel-raynal/
https://bootlin.com/company/staff/richard-genoud/
https://bootlin.com/company/staff/thomas-petazzoni/
mailto:training@bootlin.com
https://bootlin.com


Required equipement
Mandatory equipment:

• Computer with the operating system of your choice, with the Google Chrome or Chromium browser for videoconferencing.
• Webcam and microphone (preferably from an audio headset).
• High speed access to the Internet.

Optionnally, if the participants want to be able to reproduce the practical labs by themselves, they must separately purchase the
hardware platform and accessories, and must have a PC computer with a native installation of Ubuntu Linux 24.04.

Hardware platform for practical labs

STM32MP1 Discovery Kit
One of these Discovery Kits from STMi-
croelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-
DK2 or STM32MP157F-DK2

• STM32MP157, dual Cortex-A7 processor
from STMicroelectronics

• USB powered
• 512 MB DDR3L RAM
• Gigabit Ethernet port
• 4 USB 2.0 host ports
• 1 USB-C OTG port
• 1 Micro SD slot
• On-board ST-LINK/V2-1 debugger
• Arduino compatible headers
• Audio codec, buttons, LEDs
• LCD touchscreen (DK2 kits only)

BeagleBone Black
BeagleBone Black or BeagleBone Black
Wireless board

• An ARM AM335x (single Cortex-A8) pro-
cessor from Texas Instruments

• USB powered
• 512 MB of RAM
• 2 or 4 GB of on-board eMMC storage
• USB host and device
• HDMI output
• 2 x 46 pins headers, to access UARTs, SPI

buses, I2C buses and more.
• Ethernet or WiFi

BeaglePlay
BeaglePlay board

• Texas Instruments AM625x (4xARM
Cortex-A53 CPU)

• SoC with 3D acceleration, integrated
MCU and many other peripherals.

• 2 GB of RAM
• 16 GB of on-board eMMC storage
• USB host and USB device, microSD,

HDMI
• 2.4 and 5 GHz WiFi, Bluetooth and also

Ethernet
• 1 MicroBus Header (SPI, I2C, UART, ...),

OLDI and CSI connector.

2



Training Schedule

Half day 1
Lecture Introduction to embedded Linux • Advantages of Linux versus traditional embedded operating systems.

• Typical hardware platforms used to run embedded Linux systems.
• Overall architecture of embedded Linux systems: overview of the ma-

jor software components.
• Development environment for Embedded Linux development.

Lecture Cross-compiling toolchain and C
library

• What’s inside a cross-compiling toolchain
• Choosing the target C library
• What’s inside the C library
• Ready to use cross-compiling toolchains
• Building a cross-compiling toolchain with automated tools.

Demo Cross compiling toolchain • Getting and configuring Crosstool-NG
• Executing it to build a custom cross-compilation toolchain
• Exploring the contents of the toolchain

Lecture Boot process, firmware, bootload-
ers

• Booting process of embedded platforms, focus on the x86 and ARM
architectures

• Boot process and bootloaders on x86 platforms (legacy and UEFI)
• Boot process on ARM platforms: ROM code, bootloaders, ARM

Trusted Firmware
• Focus on U-Boot: configuration, installation, and usage.
• U-Boot commands, U-Boot environment, U-Boot scripts, U-Boot

generic distro boot mechanism

Half day 2
Demo Bootloader and U-boot • Set up serial communication with the board.

• Configure, compile and install U-Boot for the target hardware.
• Only on STM32MP1: configure, compile and install Trusted

Firmware-A
• Become familiar with U-Boot environment and commands.
• Set up TFTP communication with the board. Use TFTP U-Boot

commands.

Lecture Linux kernel • Role and general architecture of the Linux kernel
• Separation between kernel and user-space, and interfaces between

user-space and the Linux kernel
• Understanding Linux kernel versions: choosing between vendor-

provided kernel and upstream kernel, Long Term Support versions
• Getting the Linux kernel source code

Demo Fetching Linux kernel sources • Clone the mainline Linux tree
• Accessing stable releases

Lecture Configuring, compiling and boot-
ing the Linux kernel

• Configuring the Linux kernel: ready-made configuration files, config-
uration interfaces

• Concept of Device Tree
• Cross-compiling the Linux kernel
• Study of the generated files and their role
• Installing and booting the Linux kernel
• The Linux kernel command line

3



Demo Kernel cross-compiling and boot-
ing

• Configuring the Linux kernel and cross-compiling it for the embedded
hardware platform.

• Downloading your kernel on the board through U-boot’s TFTP client.
• Booting your kernel.
• Automating the kernel boot process with U-Boot scripts.

Half day 3
Lecture Root filesystem in Linux • Filesystems in Linux.

• Role and organization of the root filesystem.
• Location of the root filesystem: on storage, in memory, from the

network.
• Device files, virtual filesystems.
• Contents of a typical root filesystem.

Lecture BusyBox • Detailed overview. Detailed features.
• Configuration, compiling and deploying.

Demo Tiny root filesystem built from
scratch with BusyBox

• Setting up a kernel to boot your system on a workstation directory
exported by NFS

• Passing kernel command line parameters to boot on NFS
• Creating the full root filesystem from scratch. Populating it with

BusyBox based utilities.
• System startup using BusyBox init
• Using the BusyBox HTTP server.
• Controlling the target from a web browser on the PC host.
• Setting up shared libraries on the target and compiling a sample exe-

cutable.

Half day 4
Lecture Accessing hardware devices • How to access hardware on popular busses: USB, SPI, I2C, PCI

• Usage of kernel drivers and direct user-space access
• The Device Tree syntax, and how to use it to describe additional

devices and pin-muxing
• Finding Linux kernel drivers for specific hardware devices
• Using kernel modules
• Hardware access using /dev and /sys
• User-space interfaces for the most common hardware devices: storage,

network, GPIO, LEDs, audio, graphics, video

Demo Accessing hardware devices • Exploring the contents of /dev and /sys and the devices available
on the embedded hardware platform.

• Using GPIOs and LEDs.
• Modifying the Device Tree to control pin multiplexing and to declare

an I2C-connected joystick.
• Adding support for a USB audio card using Linux kernel modules
• Adding support for the I2C-connected joystick through an out-of-tree

module.

Lecture Block filesystems • Accessing and partitioning block devices.
• Filesystems for block devices.
• Usefulness of journaled filesystems.
• Read-only block filesystems.
• RAM filesystems.
• How to create each of these filesystems.
• Suggestions for embedded systems.

4



Demo Block filesystems • Creating partitions on your SD card
• Booting a system with a mix of filesystems: SquashFS for the root

filesystem, ext4 for system data, and tmpfs for temporary system files.

Half day 5
Lecture Flash filesystems • The Memory Technology Devices (MTD) filesystem.

• Filesystems for MTD storage: JFFS2, Yaffs2, UBIFS.
• Kernel configuration options
• MTD storage partitions.
• Focus on today’s best solution, UBI and UBIFS: preparing, flashing

and using UBI images.

Note: as the embedded hardware platform used for the labs does not have
any flash-based storage, this lecture will not be illustrated with a corre-
sponding practical lab.

Lecture Cross-compiling user-space li-
braries and applications

• Configuring, cross-compiling and installing applications and libraries.
• Concept of build system, and overview of a few common build systems

used by open-source projects: Makefile, autotools, CMake, meson
• Overview of the common issues encountered when cross-compiling.

Demo Cross-compiling applications and
libraries

• Manual cross-compilation of several open-source libraries and applica-
tions for an embedded platform.

• Learning about common pitfalls and issues, and their solutions.
• This includes compiling alsa-utils package, and using its

speaker-test program to test that audio works on the tar-
get.

Half day 6
Lecture Embedded system building tools • Approaches for building embedded Linux systems: build systems and

binary distributions
• Principle of build systems, overview of Yocto Project/OpenEmbedded

and Buildroot.
• Principle of binary distributions and useful tools, focus on De-

bian/Ubuntu
• Specialized software frameworks/distributions: Tizen, AGL, Android

Demo System build with Buildroot • Using Buildroot to rebuild the same basic system plus a sound playing
server (MPD) and a client to control it (mpc).

• Driving music playback, directly from the target, and then remotely
through an MPD client on the host machine.

• Analyzing dependencies between packages.

Lecture Open source licenses and compli-
ance

• Presentation of the most important open-source licenses: GPL, LGPL,
MIT, BSD, Apache, etc.

• Concept of copyleft licenses
• Differences between (L)GPL version 2 and 3
• Compliance with open-source licenses: best practices

Lecture Overview of major embedded
Linux software stacks

• systemd as an init system
• Hardware management with udev
• Inter-process communication with D-Bus
• The graphics software stack: DRM/KMS, X.org, Wayland, Qt, Gtk,

OpenGL
• The multimedia software stack: Video4Linux, GStreamer, Pulseaudio,

Pipewire

Half day 7

5



Demo Integration of additional software
stacks

• Integration of systemd as an init system
• Use udev built in systemd for automatic module loading

Lecture Application development and de-
bugging

• Programming languages and libraries available.
• Build system for your application, an overview of CMake and meson
• The gdb debugger: remote debugging with gdbserver, post-mortem

debugging with core files
• Performance analysis, tracing and profiling tools, memory checkers:

strace, ltrace, perf, valgrind

Demo Application development and de-
bugging

• Creating an application that uses an I2C-connected joystick to control
an audio player.

• Setting up an IDE to develop and remotely debug an application.
• Using strace, ltrace, gdbserver and perf to debug/investigate buggy

applications on the embedded board.

Lecture Useful resources • Books about embedded Linux and system programming
• Useful online resources
• International conferences

6


