
Embedded Linux system development training

Embedded Linux system
development training

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Latest update: September 06, 2022.

Document updates and training details:
https://bootlin.com/training/embedded-linux

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@bootlin.com

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/375

https://bootlin.com/training/embedded-linux
mailto:feedback@bootlin.com

Embedded Linux system development training

▶ These slides are the training materials for Bootlin’s Embedded
Linux system development training course.

▶ If you are interested in following this course with an experienced
Bootlin trainer, we offer:

• Public online sessions, opened to individual registration. Dates
announced on our site, registration directly online.

• Dedicated online sessions, organized for a team of engineers
from the same company at a date/time chosen by our customer.

• Dedicated on-site sessions, organized for a team of engineers
from the same company, we send a Bootlin trainer on-site to
deliver the training.

▶ Details and registrations:
https://bootlin.com/training/embedded-linux

▶ Contact: training@bootlin.com

Icon by Eucalyp, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/375

https://bootlin.com/training/embedded-linux

About Bootlin

About Bootlin

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/375

Bootlin introduction

▶ Engineering company
• In business since 2004
• Before 2018: Free Electrons

▶ Team based in France and Italy
▶ Serving customers worldwide
▶ Highly focused and recognized expertise

• Embedded Linux
• Linux kernel
• Embedded Linux build systems

▶ Strong open-source contributor
▶ Activities

• Engineering services
• Training courses

▶ https://bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/375

https://bootlin.com

Bootlin engineering services

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/375

Bootlin training courses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/375

Bootlin, an open-source contributor

▶ Strong contributor to the Linux kernel
• In the top 30 of companies contributing to Linux worldwide
• Contributions in most areas related to hardware support
• Several engineers maintainers of subsystems/platforms
• 8000 patches contributed
• https://bootlin.com/community/contributions/kernel-contributions/

▶ Contributor to Yocto Project
• Maintainer of the official documentation
• Core participant to the QA effort

▶ Contributor to Buildroot
• Co-maintainer
• 5000 patches contributed

▶ Significant contributions to U-Boot, OP-TEE, Barebox, etc.
▶ Fully open-source training materials

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/375

https://bootlin.com/community/contributions/kernel-contributions/

Bootlin on-line resources

▶ Website with a technical blog:
https://bootlin.com

▶ Engineering services:
https://bootlin.com/engineering

▶ Training services:
https://bootlin.com/training

▶ Twitter:
https://twitter.com/bootlincom

▶ LinkedIn:
https://www.linkedin.com/company/bootlin

▶ Elixir - browse Linux kernel sources on-line:
https://elixir.bootlin.com

Icon by Freepik, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/375

https://bootlin.com
https://bootlin.com/engineering
https://bootlin.com/training
https://twitter.com/bootlincom
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

Generic course information

Generic course
information

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/375

Supported hardware

STMicroelectronics STM32MP157D-DK1 Discovery board
▶ STM32MP157D (Dual Cortex-A7 + Cortex-M4) CPU

from STMicroelectronics
▶ 512 MB DDR3L RAM
▶ Gigabit Ethernet port
▶ 4 USB 2.0 host ports
▶ 1 USB-C OTG port
▶ 1 Micro SD slot
▶ On-board ST-LINK/V2-1 debugger
▶ Misc: buttons, LEDs, Audio codec
▶ Currently sold at 65 EUR + VAT at Mouser

Board and CPU documentation, design files, software:
https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/375

https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html

Shopping list: hardware for this course

▶ STMicroelectronics STM32MP157D-DK1 Discovery kit - Available
from Mouser (65 EUR + VAT)

▶ USB-C cable for the power supply
▶ USB-A to micro B cable for the serial console
▶ RJ45 cable for networking
▶ A standard USB audio headset. We’re using Logitech USB H340 1

▶ A micro SD card with at least 128 MB of capacity
1
https://support.logitech.com/en_us/product/usb-headset-h340

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/375

https://support.logitech.com/en_us/product/usb-headset-h340

Labs proposed on another platform

After this course, you can also run all labs on the
Microchip SAMA5D3 Xplained ARM board.
In addition, you will also have real-time and NAND
flash labs!

Lab instructions available on https://bootlin.com/doc/training/embedded-linux/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/375

https://bootlin.com/doc/training/embedded-linux/

Labs proposed on another platform

After this course, you can also run most labs on the
QEMU emulated ARM Versatile Express Cortex A9
board EMU

Lab instructions available on
https://bootlin.com/doc/training/embedded-linux-qemu/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/375

https://bootlin.com/doc/training/embedded-linux-qemu/

Training quiz and certificate

▶ You have been given a quiz to test your knowledge on the topics covered by the
course. That’s not too late to take it if you haven’t done it yet!

▶ At the end of the course, we will submit this quiz to you again. That time, you
will see the correct answers.

▶ It allows Bootlin to assess your progress thanks to the course. That’s also a kind
of challenge, to look for clues throughout the lectures and labs / demos, as all the
answers are in the course!

▶ Another reason is that we only give training certificates to people who achieve at
least a 50% score in the final quiz and who attended all the sessions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/375

Participate!

During the lectures...
▶ Don’t hesitate to ask questions. Other people in the audience may have similar

questions too.
▶ Don’t hesitate to share your experience too, for example to compare Linux with

other operating systems you know.
▶ Your point of view is most valuable, because it can be similar to your colleagues’

and different from the trainer’s.
▶ In on-line sessions

• Please keep your camera on too if you have one.
• Also make sure your name is properly filled.
• If Jitsi Meet is used, you can also use the ”Raise your hand” button when you wish

to ask a question but don’t want to interrupt.
▶ All this helps the trainer to engage with participants, see when something needs

clarifying and make the session more interactive, enjoyable and useful for everyone.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/375

Collaborate!

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
▶ Use the dedicated Matrix channel for this session to add

questions.
▶ If your session offers practical labs, you can also report issues,

share screenshots and command output there.
▶ Don’t hesitate to share your own answers and to help others

especially when the trainer is unavailable.
▶ The Matrix channel is also a good place to ask questions outside

of training hours, and after the course is over.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/375

Introduction to Embedded Linux

Introduction to
Embedded Linux

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/375

Birth of Free Software

▶ 1983, Richard Stallman, GNU project and the free
software concept. Beginning of the development of gcc,
gdb, glibc and other important tools

▶ 1991, Linus Torvalds, Linux kernel project, a UNIX-like
operating system kernel. Together with GNU software and
many other open-source components: a completely free
operating system, GNU/Linux

▶ 1995, Linux is more and more popular on server systems
▶ 2000, Linux is more and more popular on embedded

systems
▶ 2008, Linux is more and more popular on mobile devices

and phones
▶ 2012, Linux is available on cheap, extensible hardware:

Raspberry Pi, BeagleBone Black

Richard Stallman in 2019
Image credits (Wikipedia):
https://frama.link/qC73jkk4

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/375

https://frama.link/qC73jkk4

Free software?

▶ A program is considered free when its license offers to all its users the following
four freedoms

• Freedom to run the software for any purpose
• Freedom to study the software and to change it
• Freedom to redistribute copies
• Freedom to distribute copies of modified versions

▶ These freedoms are granted for both commercial and non-commercial use
▶ They imply the availability of source code, software can be modified and

distributed to customers
▶ Good match for embedded systems!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/375

What is embedded Linux?

Embedded Linux is the usage of the Linux
kernel and various open-source components

in embedded systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/375

Advantages of Linux and Open-Source in embedded systems
▶ Ability to reuse components

Many features, protocols and hardware are
supported. Allows to focus on the added
value of your product.

▶ Low cost
No per-unit royalties. Development tools
free too. But of course deploying Linux
costs time and effort.

▶ Full control
You decide when to update components
in your system. No vendor lock-in. This
secures your investment.

▶ Easy testing of new features
No need to negotiate with third-party
vendors. Just explore new solutions
released by the community.

▶ Quality
Your system is built on high-quality
foundations (kernel, compiler, C-library,
base utilities...). Many Open-Source
applications have good quality too.

▶ Community support
Can get very good support from the
community if you approach it with a
constructive attitude.

▶ Participation in community work
Possibility to collaborate with peers and
get opportunities beyond corporate
barriers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/375

Introduction to Embedded Linux

A few examples of embedded systems running
Linux

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/375

Wireless routers

Image credits: Evan Amos (https://bit.ly/2JzDIkv)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/375

https://bit.ly/2JzDIkv

Video systems

Image credits: https://bit.ly/2HbwyVq

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/375

https://bit.ly/2HbwyVq

Bike computers

Product from BLOKS (http://bloks.de). Permission to use this picture only in this document, in updates and in translations.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/375

http://bloks.de

Robots

eduMIP robot (https://www.ucsdrobotics.org/edumip)
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/375

https://www.ucsdrobotics.org/edumip

In space

SpaceX Starlink satelites

SpaceX Falcon 9 and Falcon Heavy rockets

Image credits: Wikipedia

Mars Ingenuity Helicopter

See the Linux on Mars: How the Perseverance Rover and Ingenuity
Helicopter Leveraged Linux to Accomplish their Mission presentation from
Tim Canham (JPL, NASA): https://youtu.be/0_GfMcBmbCg?t=111

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/375

https://youtu.be/0_GfMcBmbCg?t=111

Introduction to Embedded Linux

Embedded hardware for Linux systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/375

Processor and architecture (1)

The Linux kernel and most other architecture-dependent components support a wide
range of 32 and 64 bit architectures
▶ x86 and x86-64, as found on PC platforms, but also embedded systems

(multimedia, industrial)
▶ ARM, with hundreds of different System on Chips

(SoC: CPU + on-chip devices, for all sorts of products)
▶ RISC-V, the rising architecture with a free instruction set

(from high-end cloud computing to the smallest embedded systems)
▶ PowerPC (mainly real-time, industrial applications)
▶ MIPS (mainly networking applications)
▶ Microblaze (Xilinx), Nios II (Altera): soft cores on FPGAs
▶ Others: ARC, m68k, Xtensa, SuperH...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/375

Processor and architecture (2)

▶ Both MMU and no-MMU architectures are supported, even though no-MMU
architectures have a few limitations.

▶ Linux does not support small microcontrollers (8 or 16 bit)
▶ Besides the toolchain, the bootloader and the kernel, all other components are

generally architecture-independent

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/375

RAM and storage

▶ RAM: a very basic Linux system can work within 8 MB of RAM, but a more
realistic system will usually require at least 32 MB of RAM. Depends on the type
and size of applications.

▶ Storage: a very basic Linux system can work within 4 MB of storage, but usually
more is needed.

• Block storage: SD/MMC/eMMC, USB mass storage, SATA, etc,
• Raw flash storage is supported too, both NAND and NOR flash, with specific

filesystems
▶ Not necessarily interesting to be too restrictive on the amount of RAM/storage:

having flexibility at this level allows to re-use as many existing components as
possible.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/375

Communication

▶ The Linux kernel has support for many common communication buses
• I2C
• SPI
• 1-wire
• SDIO
• PCI
• USB
• CAN (mainly used in automotive)

▶ And also extensive networking support
• Ethernet, Wifi, Bluetooth, CAN, etc.
• IPv4, IPv6, TCP, UDP, SCTP, DCCP, etc.
• Firewalling, advanced routing, multicast

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/375

Types of hardware platforms (1)

▶ Evaluation platforms from the SoC vendor. Usually
expensive, but many peripherals are built-in. Generally
unsuitable for real products, but best for product
development.

▶ Component on Module, a small board with only
CPU/RAM/flash and a few other core components, with
connectors to access all other peripherals. Can be used to
build end products for small to medium quantities.

STM32MP157C-EV1
evaluation board
Image credits (st.com):
https://frama.link/NySnaxuV

PocketBeagle
Image credits (Beagleboard.org):
https://beagleboard.org/pocket

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/375

https://frama.link/NySnaxuV
https://beagleboard.org/pocket

Types of hardware platforms (2)

▶ Community development platforms, to make a particular
SoC popular and easily available. These are ready-to-use
and low cost, but usually have fewer peripherals than
evaluation platforms. To some extent, can also be used for
real products.

▶ Custom platform. Schematics for evaluation boards or
development platforms are more and more commonly freely
available, making it easier to develop custom platforms.

Beaglebone Black Wireless
board

Olimex Open hardware
ARM laptop main board
Image credits (Olimex):
https://www.olimex.com/Products/
DIY-Laptop/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/375

https://www.olimex.com/Products/DIY-Laptop/
https://www.olimex.com/Products/DIY-Laptop/

Criteria for choosing the hardware

▶ Make sure the SoC you plan to use is already supported by the Linux kernel, and
has an open-source bootloader.

▶ Having support in the official versions of the projects (kernel, bootloader) is a lot
better: quality is better, new versions are available, and Long Term Support
releases are available.

▶ Some SoC vendors and/or board vendors do not contribute their changes back to
the mainline Linux kernel. Ask them to do so, or use another product if you can.
A good measurement is to see the delta between their kernel and the official one.

▶ Between properly supported hardware in the official Linux kernel and
poorly-supported hardware, there will be huge differences in development
time and cost.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/375

Introduction to Embedded Linux

Embedded Linux system architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/375

Host and target

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/375

Software components

▶ Cross-compilation toolchain
• Compiler that runs on the development machine, but generates code for the target

▶ Bootloader
• Started by the hardware, responsible for basic initialization, loading and executing

the kernel
▶ Linux Kernel

• Contains the process and memory management, network stack, device drivers and
provides services to user space applications

▶ C library
• Of course, a library of C functions
• Also the interface between the kernel and the user space applications

▶ Libraries and applications
• Third-party or in-house

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/375

Embedded Linux work

Several distinct tasks are needed when deploying embedded Linux in a product:
▶ Board Support Package development

• A BSP contains a bootloader and kernel with the suitable device drivers for the
targeted hardware

• Purpose of our Kernel Development course
▶ System integration

• Integrate all the components, bootloader, kernel, third-party libraries and
applications and in-house applications into a working system

• Purpose of this course
▶ Development of applications

• Normal Linux applications, but using specifically chosen libraries

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/375

https://bootlin.com/training/kernel

Embedded Linux development environment

Embedded Linux
development
environment

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/375

Embedded Linux solutions

▶ Two ways to switch to embedded Linux
• Use solutions provided and supported by vendors like MontaVista, Wind River or

TimeSys. These solutions come with their own development tools and environment.
They use a mix of open-source components and proprietary tools.

• Use community solutions. They are completely open, supported by the community.
▶ In Bootlin training sessions, we do not promote a particular vendor, and therefore

use community solutions
• However, knowing the concepts, switching to vendor solutions will be easy

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/375

OS for Linux development
We strongly recommend to use GNU/Linux as the desktop operating system to
embedded Linux developers, for multiple reasons.
▶ All community tools are developed and designed to run on Linux. Trying to use

them on other operating systems (Windows, Mac OS X) will lead to trouble.
▶ As Linux also runs on the embedded device, all the knowledge gained from using

Linux on the desktop will apply similarly to the embedded device.
▶ If you are stuck with a Windows desktop, at least you should use GNU/Linux in a

virtual machine (such as VirtualBox which is open source), though there could be
a small performance penalty. With Windows 10, you can also run your favorite
native Linux distro through Windows Subsystem for Linux (WSL2)

:-)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/375

Desktop Linux distribution

▶ Any good and sufficiently recent Linux desktop
distribution can be used for the development
workstation

• Ubuntu, Debian, Fedora, openSUSE, Red Hat, etc.
▶ We have chosen Ubuntu, derived from Debian, as it is a

widely used and easy to use desktop Linux
distribution.

▶ The Ubuntu setup on the training laptops has
intentionally been left untouched after the normal
installation process. Learning embedded Linux is also
about learning the tools needed on the development
workstation!

Image credits:
https://tinyurl.com/f4zxj5kw

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/375

https://tinyurl.com/f4zxj5kw

Host vs. target

▶ When doing embedded development, there is always a split between
• The host, the development workstation, which is typically a powerful PC
• The target, which is the embedded system under development

▶ They are connected by various means: almost always a serial line for debugging
purposes, frequently a networking connection, sometimes a JTAG interface for
low-level debugging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/375

Serial line communication program

▶ An essential tool for embedded development is a serial line communication
program, like HyperTerminal in Windows.

▶ There are multiple options available in Linux: Minicom, Picocom, Gtkterm, Putty,
screen and the new tio (https://github.com/tio/tio).

▶ In this training session, we recommend using the simplest of them: Picocom
• Installation with sudo apt install picocom
• Run with picocom -b BAUD_RATE /dev/SERIAL_DEVICE.
• Exit with [Ctrl][a] [Ctrl][x]

▶ SERIAL_DEVICE is typically
• ttyUSBx for USB to serial converters
• ttySx for real serial ports

▶ Most frequent command: picocom -b 115200 /dev/ttyUSB0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/375

https://github.com/tio/tio

Practical lab - Training Setup

Prepare your lab environment
▶ Download and extract the lab archive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/375

Cross-compiling toolchains

Cross-compiling
toolchains

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/375

Cross-compiling toolchains

Definition and Components

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/375

Toolchain definition (1)

▶ The usual development tools available on a GNU/Linux workstation is a native
toolchain

▶ This toolchain runs on your workstation and generates code for your workstation,
usually x86

▶ For embedded system development, it is usually impossible or not interesting to
use a native toolchain

• The target is too restricted in terms of storage and/or memory
• The target is very slow compared to your workstation
• You may not want to install all development tools on your target.

▶ Therefore, cross-compiling toolchains are generally used. They run on your
workstation but generate code for your target.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/375

Toolchain definition (2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/375

Machines in build procedures

▶ Three machines must be distinguished when discussing toolchain creation
• The build machine, where the toolchain is built.
• The host machine, where the toolchain will be executed.
• The target machine, where the binaries created by the toolchain are executed.

▶ Four common build types are possible for toolchains

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/375

Different toolchain build procedures

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/375

Components of gcc toolchains

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/375

Binutils

▶ Binutils is a set of tools to generate and manipulate binaries (usually with the
ELF format) for a given CPU architecture

• as, the assembler, that generates binary code from assembler source code
• ld, the linker
• ar, ranlib, to generate .a archives (static libraries)
• objdump, readelf, size, nm, strings, to inspect binaries. Very useful analysis tools!
• objcopy, to modify binaries
• strip, to strip parts of binaries that are just needed for debugging (reducing their

size).
▶ GNU Binutils: https://www.gnu.org/software/binutils/, GPL license
▶ The LLVM project now provides alternatives to GNU Binutils: llvm-strip,

llvm-readelf, lld... (https://www.llvm.org/docs/CommandGuide/)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/375

https://www.gnu.org/software/binutils/
https://www.llvm.org/docs/CommandGuide/

Kernel headers (1)

▶ The C library and compiled programs needs to interact
with the kernel

• Available system calls and their numbers
• Constant definitions
• Data structures, etc.

▶ Therefore, compiling the C library requires kernel
headers, and many applications also require them.

▶ Available in <linux/...> and <asm/...> and a few
other directories corresponding to the ones visible in
include/uapi/ and in arch/<arch>/include/uapi in
the kernel sources

▶ The kernel headers are extracted from the kernel sources
using the headers_install kernel Makefile target.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/375

https://elixir.bootlin.com/linux/latest/source/include/uapi/

Kernel headers (2)

▶ System call numbers, in <asm/unistd.h>

#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3

▶ Constant definitions, here in <asm-generic/fcntl.h>, included from
<asm/fcntl.h>, included from <linux/fcntl.h>

#define O_RDWR 00000002

▶ Data structures, here in <asm/stat.h> (used by the stat command)
struct stat {

unsigned long st_dev;
unsigned long st_ino;
[...]

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/375

Kernel headers (3)

The kernel to user space ABI is backward compatible
▶ ABI = Application Binary Interface - It’s about binary compatibility
▶ Kernel developers are doing their best to never break existing programs when the

kernel is upgraded. Otherwise, users would stick to older kernels, which would be
bad for everyone.

▶ Hence, binaries generated with a toolchain using kernel headers older than the
running kernel will work without problem, but won’t be able to use the new
system calls, data structures, etc.

▶ Binaries generated with a toolchain using kernel headers newer than the running
kernel might work only if they don’t use the recent features, otherwise they will
break.

What to remember: updating your kernel shouldn’t break your programs; it’s usually
fine to keep an old toolchain as long is it works fine for your project.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/375

C/C++ compiler

▶ GCC: GNU Compiler Collection, the famous free software
compiler

▶ https://gcc.gnu.org/

▶ Can compile C, C++, Ada, Fortran, Java, Objective-C,
Objective-C++, Go, etc. Can generate code for a large number
of CPU architectures, including x86, ARM, RISC-V, and many
others.

▶ Available under the GPL license, libraries under the GPL with
linking exception.

▶ Alternative: Clang / LLVM compiler
(https://clang.llvm.org/) getting increasingly popular and
able to compile most programs (license: MIT/BSD type). It can
offer better optimizations and make errors easier to interpret.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/375

https://gcc.gnu.org/
https://clang.llvm.org/

C library

▶ The C library is an essential component of a
Linux system

• Interface between the applications and the
kernel

• Provides the well-known standard C API to
ease application development

▶ Several C libraries are available: glibc, uClibc,
musl, klibc, newlib...

▶ The choice of the C library must be made at
cross-compiling toolchain generation time, as
the GCC compiler is compiled against a specific
C library.

Linux
process
scheduler

Linux
memory
manager

IPC
manager

I/O
interface

Network
interface

Virtual
file

system

Linux-specific

Application

system calls

system calls

functioncalls

functi
on

ca
lls

by Shmuel Csaba Otto Traian; GNU FDL 1.3 & CC-BY-SA 3.0; created 2014-02-27, last updated 2014-03-25

BusyBox
et al.

Application
POSIX-compatible

Source: Wikipedia (https://bit.ly/2zrGve2)

Comparing libcs by feature: https://www.etalabs.net/compare_libcs.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/375

https://bit.ly/2zrGve2
https://www.etalabs.net/compare_libcs.html

Cross-compiling toolchains

C Libraries

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/375

glibc

▶ License: LGPL
▶ C library from the GNU project
▶ Designed for performance, standards compliance and

portability
▶ Found on all GNU / Linux host systems
▶ Of course, actively maintained
▶ By default, quite big for small embedded systems. On

armv7hf, version 2.31: libc: 1.5 MB, libm: 432 KB,
source: https://toolchains.bootlin.com

▶ But some features not needed in embedded systems can
be configured out (merged from the old eglibc project).

▶ https://www.gnu.org/software/libc/
Image: https://bit.ly/2EzHl6m

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/375

https://toolchains.bootlin.com
https://www.gnu.org/software/libc/
https://bit.ly/2EzHl6m

uClibc-ng

▶ https://uclibc-ng.org/

▶ A continuation of the old uClibc project, license: LGPL
▶ Lightweight C library for small embedded systems

• High configurability: many features can be enabled or disabled through a
menuconfig interface.

• Supports most embedded architectures, including MMU-less ones (ARM Cortex-M,
Blackfin, etc.). The only library supporting ARM noMMU.

• No guaranteed binary compatibility. May need to recompile applications when the
library configuration changes.

• Some features may be implemented later than on glibc (real-time, floating-point
operations...)

• Focus on size (RAM and storage) rather than performance
• Size on armv7hf, version 1.0.34: libc: 712 KB, source:

https://toolchains.bootlin.com

▶ Actively supported, but Yocto Project stopped supporting it.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/375

https://uclibc-ng.org/
https://toolchains.bootlin.com

musl C library

https://www.musl-libc.org/

▶ A lightweight, fast and simple library for embedded systems
▶ Created while uClibc’s development was stalled
▶ In particular, great at making small static executables
▶ More permissive license (MIT), making it easier to release static

executables. We will talk about the requirements of the LGPL license
(glibc, uClibc) later.

▶ Supported by build systems such as Buildroot and Yocto Project.
▶ Used by the Alpine Linux lightweight distribution

(https://www.alpinelinux.org/)
▶ Size on armv7hf, version 1.2.0: libc: 748 KB, source:

https://toolchains.bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/375

https://www.musl-libc.org/
https://www.alpinelinux.org/
https://toolchains.bootlin.com

glibc vs uclibc-ng vs musl - small static executables

Let’s compile and strip a hello.c program statically and compare the size
▶ With musl 1.2.0:

9,084 bytes
▶ With uclibc-ng 1.0.34 :

21,916 bytes.
▶ With glibc 2.31:

431,140 bytes
Tests run with gcc 10.0.2 toolchains for armv7-eabihf
(from https://toolchains.bootlin.com)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/375

https://toolchains.bootlin.com

glibc vs uclibc vs musl - more realistic example

Let’s compile and strip BusyBox 1.32.1 statically
(with the defconfig configuration) and compare the size
▶ With musl 1.2.0:

1,176,744 bytes
▶ With uclibc-ng 1.0.34 :

1,251,080 bytes.
▶ With glibc 2.31:

1,852,912 bytes
Notes:
▶ Tests run with gcc 10.0.2 toolchains for armv7-eabihf
▶ BusyBox is automatically compiled with -Os and stripped.
▶ Compiling with shared libraries will mostly eliminate size differences

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/375

Other smaller C libraries

▶ Several other smaller C libraries have been developed, but none of them have the
goal of allowing the compilation of large existing applications

▶ They can run only relatively simple programs, typically to make very small static
executables and run in very small root filesystems.

▶ Choices:
• Newlib, https://sourceware.org/newlib/, maintained by Red Hat, used mostly in

Cygwin, in bare metal and in small POSIX RTOS.
• Klibc, https://en.wikipedia.org/wiki/Klibc, from the kernel community,

designed to implement small executables for use in an initramfs at boot time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/375

https://sourceware.org/newlib/
https://en.wikipedia.org/wiki/Klibc

Advise for choosing the C library

▶ Advice to start developing and debugging your applications with glibc, which is
the most standard solution, and is best supported by debugging tools (ltrace not
supported by musl in Buildroot, for example).

▶ Then, when everything works, if you have size constraints, try to compile your app
and then the entire filesystem with uClibc or musl.

▶ If you run into trouble, it could be because of missing features in the C library.
▶ In case you wish to make static executables, musl will be an easier choice in terms

of licensing constraints. The binaries will be smaller too. Note that static
executables built with a given C library can be used in a system with a different C
library.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/375

Cross-compiling toolchains

Toolchain Options

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/375

ABI

▶ When building a toolchain, the ABI used to generate binaries needs to be defined
▶ ABI, for Application Binary Interface, defines the calling conventions (how

function arguments are passed, how the return value is passed, how system calls
are made) and the organization of structures (alignment, etc.)

▶ All binaries in a system are typically compiled with the same ABI, and the kernel
must understand this ABI.

▶ On ARM, two main ABIs: OABI and EABI
• Nowadays everybody uses EABI

▶ On RISC-V, several ABIs: ilp32, ilp32f, ilp32d, lp64, lp64f, and lp64d
▶ https://en.wikipedia.org/wiki/Application_Binary_Interface

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/375

https://en.wikipedia.org/wiki/Application_Binary_Interface

Floating point support

▶ Some processors have a floating point unit, some others do not.
• For example, many ARMv4 and ARMv5 CPUs do not have a floating point unit.

Since ARMv7, a VFP unit is mandatory.
▶ For processors having a floating point unit, the toolchain should generate hard

float code, in order to use the floating point instructions directly
▶ For processors without a floating point unit, two solutions

• Generate hard float code and rely on the kernel to emulate the floating point
instructions. This is very slow.

• Generate soft float code, so that instead of generating floating point instructions,
calls to a user space library are generated

▶ Decision taken at toolchain configuration time
▶ Also possible to configure which floating point unit should be used

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/375

CPU optimization flags
▶ GNU tools (gcc, binutils) can only be compiled for a specific target architecture at

a time (ARM, x86, RiscV...)
▶ gcc offers further options:

• -march allows to select a specific target instruction set
• -mtune allows to optimize code for a specific CPU
• For example: -march=armv7 -mtune=cortex-a8
• -mcpu=cortex-a8 can be used instead to allow gcc to infer the target instruction set

(-march=armv7) and cpu optimizations (-mtune=cortex-a8)
• https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

▶ At the GNU toolchain compilation time, values can be chosen. They are used:
• As the default values for the cross-compiling tools, when no other -march, -mtune,

-mcpu options are passed
• To compile the C library

▶ Even if the C library has been compiled for armv5t, it doesn’t prevent from
compiling bare-metal programs or the kernel for armv7.

▶ Note: LLVM (clang, lld...) utilities support multiple target architectures at once.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/375

https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

Cross-compiling toolchains

Obtaining a Toolchain

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/375

Building a toolchain manually

Building a cross-compiling toolchain by yourself is a difficult and painful task! Can
take days or weeks!
▶ Lots of details to learn: many components to build, complicated configuration.

Need to be familiar with building and configuring tools.
▶ Many decisions to make about the components (such as C library, gcc and binutils

versions, ABI, floating point mechanisms...). Not trivial to find working
combinations of such components!

▶ Need to be familiar with current gcc issues and patches on your platform
▶ See the Crosstool-NG docs/ directory for details on how toolchains are built.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/375

Get a pre-compiled toolchain

▶ Solution that many people choose
• Advantage: it is the simplest and most convenient solution
• Drawback: you can’t fine tune the toolchain to your needs

▶ Make sure the toolchain you find meets your requirements: CPU, endianness, C
library, component versions, ABI, soft float or hard float, etc.

▶ Possible choices
• Toolchains packaged by your distribution

For example, Ubuntu toolchains (glibc only):
sudo apt install gcc-arm-linux-gnueabihf

• Bootlin’s GNU toolchains (for most architectures):
https://toolchains.bootlin.com

• ARM GNU toolchains released by ARM (previously shipped by Linaro):
https://developer.arm.com/tools-and-software/open-source-
software/developer-tools/gnu-toolchain/gnu-a/downloads

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/375

https://toolchains.bootlin.com
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads

Toolchain building utilities

Another solution is to use utilities that automate the process of building the
toolchain
▶ Same advantage as the pre-compiled toolchains: you don’t need to mess up with

all the details of the build process
▶ But also offers more flexibility in terms of toolchain configuration, component

version selection, etc.
▶ They also usually contain several patches that fix known issues with the different

components on some architectures
▶ Multiple tools with identical principle: shell scripts or Makefile that automatically

fetch, extract, configure, compile and install the different components

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/375

Toolchain building utilities (2)

Crosstool-ng
▶ Rewrite of the older Crosstool, with a

menuconfig-like configuration system
▶ Feature-full: supports uClibc, glibc and musl,

hard and soft float, many architectures
▶ Actively maintained
▶ https://crosstool-ng.github.io/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/375

https://crosstool-ng.github.io/

Toolchain building utilities (3)

Many root filesystem build systems also allow the construction of a cross-compiling
toolchain
▶ Buildroot

• Makefile-based. Can build glibc, uClibc and musl based toolchains, for a wide range
of architectures. Use make sdk to only generate a toolchain.

• https://buildroot.org

▶ PTXdist
• Makefile-based, maintained mainly by Pengutronix. It only supports uClibc and glibc

(version 2021.03 status)
• https://www.ptxdist.org/

▶ OpenEmbedded / Yocto Project
• A featureful, but more complicated build system
• https://www.openembedded.org/
• https://www.yoctoproject.org/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/375

https://buildroot.org
https://www.ptxdist.org/
https://www.openembedded.org/
https://www.yoctoproject.org/

Crosstool-NG: installation and usage

▶ Installation of Crosstool-NG can be done system-wide, or just locally in the source
directory. For local installation:
./configure --enable-local
make

▶ Some sample configurations for various architectures are available in samples, they
can be listed using
./ct-ng list-samples

▶ To load a sample configuration
./ct-ng <sample-name>

▶ To adjust the configuration
./ct-ng menuconfig or ./ct-ng nconfig (according to your preference)

▶ To build the toolchain
./ct-ng build

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/375

Toolchain contents

▶ The cross compilation tool binaries, in bin/
• This directory should be added to your PATH to ease usage of the toolchain

▶ One or several sysroot, each containing
• The C library and related libraries, compiled for the target
• The C library headers and kernel headers

▶ There is one sysroot for each variant: toolchains can be multilib if they have
several copies of the C library for different configurations (for example: ARMv4T,
ARMv5T, etc.)

• Old CodeSourcery ARM toolchains were multilib, the sysroots in:
arm-none-linux-gnueabi/libc/armv4t/
arm-none-linux-gnueabi/libc/thumb2/

• Crosstool-NG toolchains can be multilib too (CT_MULTILIB configuration parameter)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/375

Practical lab - Using Crosstool-NG

Time to build your toolchain
▶ Configure Crosstool-NG
▶ Run it to build your own cross-compiling

toolchain

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/375

Bootloaders

Bootloaders

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/375

Bootloaders

Boot Sequence

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/375

Bootloaders

▶ The bootloader is a piece of code responsible for
• Basic hardware initialization
• Loading of an application binary, usually an operating system kernel, from flash

storage, from the network, or from another type of non-volatile storage.
• Possibly decompression of the application binary
• Execution of the application

▶ Besides these basic functions, most bootloaders provide a shell with various
commands implementing different operations.

• Loading of data from storage or network, memory inspection, hardware diagnostics
and testing, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/375

Bootloaders on BIOS-based x86 (1)

▶ The x86 processors are typically bundled on a board with a
non-volatile memory containing a program, the BIOS.

▶ On old BIOS-based x86 platforms: the BIOS is responsible for
basic hardware initialization and loading of a very small piece of
code from non-volatile storage.

▶ This piece of code is typically a 1st stage bootloader, which will
load the full bootloader itself.

▶ It typically understands filesystem formats so that the kernel file
can be loaded directly from a normal filesystem.

▶ This sequence is different for modern EFI-based systems.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/375

Bootloaders on x86 (2)

▶ GRUB, Grand Unified Bootloader, the most powerful one.
https://www.gnu.org/software/grub/

• Can read many filesystem formats to load the kernel image and the configuration,
provides a powerful shell with various commands, can load kernel images over the
network, etc.

▶ Syslinux, for network and removable media booting (USB key, CD-ROM)
https://kernel.org/pub/linux/utils/boot/syslinux/

▶ Systemd-boot, a very simple UEFI boot manager (formerly Gummiboot)
• Of course, not based on Systemd, but hosted by this project.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/375

https://www.gnu.org/software/grub/
https://kernel.org/pub/linux/utils/boot/syslinux/

Booting on embedded CPUs: case 1

▶ When powered, the CPU starts executing code at a fixed address
▶ There is no other booting mechanism provided by the CPU
▶ The hardware design must ensure that a NOR flash chip is wired

so that it is accessible at the address at which the CPU starts
executing instructions

▶ The first stage bootloader must be programmed at this address
in the NOR

▶ NOR is mandatory, because it allows direct access from the CPU
(just like RAM), which NAND doesn’t allow (external storage
that needs to be copied to RAM before executing).

▶ Not very common anymore (unpractical, and requires NOR
flash)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/375

Booting on embedded CPUs: case 2

▶ The CPU has an integrated boot code in ROM
• BootROM on AT91 CPUs, “ROM code” on OMAP, etc.
• Exact details are CPU-dependent

▶ This boot code is able to load a first stage bootloader from a storage device into
an internal SRAM (DRAM not initialized yet)

• Storage device can typically be: MMC, NAND, SPI flash, UART (transmitting data
over the serial line), etc.

▶ The first stage bootloader is
• Limited in size due to hardware constraints (SRAM size)
• Provided either by U-Boot (called Secondary Program Loader - SPL), or by the CPU

vendor (usually open-source).
▶ This first stage bootloader must initialize DRAM and other hardware devices and

load a second stage bootloader into DRAM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/375

Booting on Microchip ARM SAMA5D3

▶ RomBoot: tries to find a valid bootstrap image from various
storage sources, and load it into SRAM (DRAM not initialized
yet). Size limited to 64 KB. No user interaction possible in
standard boot mode.

▶ U-Boot SPL: runs from SRAM. Initializes the DRAM, the NAND
or SPI controller, and loads the secondary bootloader into DRAM
and starts it. No user interaction possible.

▶ U-Boot: runs from DRAM. Initializes some other hardware
devices (network, USB, etc.). Loads the kernel image from storage
or network to DRAM and starts it. Shell with commands provided.

▶ Linux Kernel: runs from DRAM. Takes over the system
completely (the bootloader no longer exists).

Note: same process on other Microchip AT91 SoCs, but the SRAM size
is smaller on the older ones.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/375

Booting on Marvell SoCs

▶ ROM Code: tries to find a valid bootstrap image from various
storage sources, and load it into DRAM. The DRAM
configuration is described in a CPU-specific header, prepended to
the bootloader image.

▶ U-Boot: runs from DRAM. Initializes some other hardware
devices (network, USB, etc.). Loads the kernel image from storage
or network to DRAM and starts it. Shell with commands
provided. File called u-boot.kwb.

▶ Linux Kernel: runs from DRAM. Takes over the system
completely (bootloaders no longer exists).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/375

Generic bootloaders for embedded CPUs
There are several open-source generic bootloaders.
Here are the most popular ones:
▶ U-Boot, the universal bootloader by Denx

• The most used on ARM, also used on PPC,
MIPS, x86, m68k, RISC-V, etc.

• The de-facto standard nowadays. We will
study it in detail.

• https://www.denx.de/wiki/U-Boot

▶ Barebox, an architecture-neutral bootloader
created by Pengutronix.

• It doesn’t have as much hardware support as
U-Boot yet.

• U-Boot has improved quite a lot thanks to
this competitor.

• https://www.barebox.org

See the nice introduction to Barebox
from Ahmad Fatoum at ELCE 2020:
Video: https://youtu.be/Oj7lKbFtyM0
Slides: https://elinux.org/images/9/9d/Barebox-bells-
n-whistles.pdf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/375

https://www.denx.de/wiki/U-Boot
https://www.barebox.org
https://youtu.be/Oj7lKbFtyM0
https://elinux.org/images/9/9d/Barebox-bells-n-whistles.pdf
https://elinux.org/images/9/9d/Barebox-bells-n-whistles.pdf

Bootloaders

The U-boot bootloader

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/375

U-Boot

U-Boot is a typical free software project
▶ License: GPLv2 (same as Linux)
▶ Freely available at https://www.denx.de/wiki/U-Boot
▶ Documentation available at

https://u-boot.readthedocs.io/en/latest/

▶ The latest development source code is available in a Git
repository: https://gitlab.denx.de/u-boot/u-boot

▶ Development and discussions happen around an open
mailing-list
https://lists.denx.de/pipermail/u-boot/

▶ Follows a regular release schedule. Every 2 or 3 months,
a new version is released. Versions are named YYYY.MM.

Image credits:
https://frama.link/rwCUFc-T

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/375

https://www.denx.de/wiki/U-Boot
https://u-boot.readthedocs.io/en/latest/
https://gitlab.denx.de/u-boot/u-boot
https://lists.denx.de/pipermail/u-boot/
https://frama.link/rwCUFc-T

U-Boot configuration

▶ Get the source code from the website or from git
▶ The configs/ directory contains one or several configuration file(s) for each

supported board
• It defines the CPU type, the peripherals and their configuration, the memory

mapping, the U-Boot features that should be compiled in, etc.
• Examples:

configs/stm32mp15_basic_defconfig
configs/stm32mp15_trusted_defconfig

▶ Note: U-Boot is migrating from board configuration defined in C header files
(include/configs/) to defconfig like in the Linux kernel (configs/)

• Not all boards have been converted to the new configuration system.
• Many boards still have both hardcoded configuration settings in .h files, and

configuration settings in defconfig files that can be overriden with configuration
interfaces.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/375

https://elixir.bootlin.com/u-boot/latest/source/configs/
https://elixir.bootlin.com/u-boot/latest/source/configs/stm32mp15_basic_defconfig
https://elixir.bootlin.com/u-boot/latest/source/configs/stm32mp15_trusted_defconfig
https://elixir.bootlin.com/u-boot/latest/source/include/configs/
https://elixir.bootlin.com/u-boot/latest/source/configs/

U-Boot configuration file

CHIP_defconfig
CONFIG_ARM=y
CONFIG_ARCH_SUNXI=y
CONFIG_MACH_SUN5I=y
CONFIG_DRAM_TIMINGS_DDR3_800E_1066G_1333J=y
CONFIG_MMC is not set
CONFIG_USB0_VBUS_PIN="PB10"
CONFIG_VIDEO_COMPOSITE=y
CONFIG_DEFAULT_DEVICE_TREE="sun5i-r8-chip"
CONFIG_SPL=y
CONFIG_SYS_EXTRA_OPTIONS="CONS_INDEX=2"
CONFIG_CMD_IMLS is not set
CONFIG_CMD_DFU=y
CONFIG_CMD_USB_MASS_STORAGE=y
CONFIG_AXP_ALDO3_VOLT=3300
CONFIG_AXP_ALDO4_VOLT=3300
CONFIG_USB_MUSB_GADGET=y
CONFIG_USB_GADGET=y
CONFIG_USB_GADGET_DOWNLOAD=y
CONFIG_G_DNL_MANUFACTURER="Allwinner Technology"
CONFIG_G_DNL_VENDOR_NUM=0x1f3a
CONFIG_G_DNL_PRODUCT_NUM=0x1010
CONFIG_USB_EHCI_HCD=y

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/375

Configuring and compiling U-Boot
▶ U-Boot must be configured before being compiled

• Configuration stored in a .config file
• make BOARDNAME_defconfig
• Where BOARDNAME is the name of a configuration, as visible in the configs/

directory.
• You can then run make menuconfig to further customize U-Boot’s configuration!

▶ Make sure that the cross-compiler is available in PATH

▶ Compile U-Boot, by specifying the cross-compiler prefix.
Example, if your cross-compiler executable is arm-linux-gcc:
make CROSS_COMPILE=arm-linux-

▶ The main result is a u-boot.bin file, which is the U-Boot image. Depending on
your specific platform, or what storage device you’re booting from (NAND or
MMC), there may be other specialized images: u-boot.img, u-boot.kwb...

▶ This also generates the U-Boot SPL image to be flashed together with U-Boot.
The exact file name can vary too, depending on what the romcode expects.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/375

Installing U-Boot

U-Boot must usually be installed in flash memory to be executed by the hardware.
Depending on the hardware, the installation of U-Boot is done in a different way:
▶ The CPU provides some kind of specific boot monitor with which you can

communicate through the serial port or USB using a specific protocol
▶ The CPU boots first on removable media (MMC) before booting from fixed media

(NAND). In this case, boot from MMC to reflash a new version
▶ U-Boot is already installed, and can be used to flash a new version of U-Boot.

However, be careful: if the new version of U-Boot doesn’t work, the board is
unusable

▶ The board provides a JTAG interface, which allows to write to the flash memory
remotely, without any system running on the board. It also allows to rescue a
board if the bootloader doesn’t work.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/375

U-boot prompt

▶ Connect the target to the host
through a serial console.

▶ Power-up the board. On the serial
console, you should see U-Boot
starting up.

▶ The U-Boot shell offers a set of
commands. We will study the most
important ones, see the
documentation for a complete
reference or the help command.

U-Boot SPL 2022.01 (Mar 31 2022 - 14:58:17 +0200)
Trying to boot from MMC1

U-Boot 2022.01 (Mar 31 2022 - 14:58:17 +0200)

CPU : AM335X-GP rev 2.1
Model: TI AM335x BeagleBone Black
DRAM: 512 MiB
WDT: Started wdt@44e35000 with servicing (60s timeout)
NAND: 0 MiB
MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1
Loading Environment from FAT... OK
Net: Could not get PHY for ethernet@4a100000: addr 0
eth2: ethernet@4a100000, eth3: usb_ether [PRIME]
Hit any key to stop autoboot: 0
=>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/375

Information commands

Version details
=> version
U-Boot 2020.04 (May 26 2020 - 16:05:43 +0200)

arm-linux-gcc (crosstool-NG 1.24.0.105_5659366) 9.2.0
GNU ld (crosstool-NG 1.24.0.105_5659366) 2.34

NAND flash information
=> nand info

Device 0: nand0, sector size 128 KiB
Page size 2048 b
OOB size 64 b
Erase size 131072 b
subpagesize 2048 b
options 0x40004200
bbt options 0x00008000

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/375

Important commands (1)

▶ The exact set of commands depends on the U-Boot configuration
▶ help and help command
▶ fatload, loads a file from a FAT filesystem to RAM

• Example: fatload usb 0:1 0x21000000 zImage
• And also fatinfo, fatls, fatsize, fatwrite...

▶ Similar commands for other filesystems: ext2load, ext2ls, ext4load, ext4ls,
sqfsload, sqfsls... (SquashFS support contributed by Bootlin)

▶ Note that filesystem independent commands such as load, ls, and size exist.
Examples:

• load usb 0:1 0x21000000 zImage
• ls mmc 0:2 boot/
• size mmc 0:1 dtb (result stored in filesize environment variable)

▶ loadb, loads, loady, load a file from the serial line to RAM
▶ tftp, loads a file from the network to RAM (example given later)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/375

https://bootlin.com/blog/bootlin-contributes-squashfs-support-to-u-boot/

Important commands (2)

▶ ping, to test the network
▶ bootd (can be abbreviated as boot), runs the default boot command, stored in

the bootcmd environment variable (explained later)
▶ bootz <address>, starts a compressed kernel image loaded at the given address

in RAM
▶ usb, to initialize and control the USB subsystem, mainly used for USB storage

devices such as USB keys
▶ mmc, to initialize and control the MMC subsystem, used for SD and microSD cards
▶ nand, to erase, read and write contents to NAND flash
▶ md, displays memory contents. Can be useful to check the contents loaded in

memory, or to look at hardware registers.
▶ mm, modifies memory contents. Can be useful to modify directly hardware

registers, for testing purposes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/375

U-Boot bdinfo command

=> bdinfo
arch_number = 0x00000000
boot_params = 0x20000100
DRAM bank = 0x00000000
-> start = 0x20000000
-> size = 0x10000000
baudrate = 115200 bps
TLB addr = 0x2FFF0000
relocaddr = 0x2FF27000
reloc off = 0x09027000
irq_sp = 0x2FB1DC40
sp start = 0x2FB1DC30
Early malloc usage: 135c / 2000

fdt_blob = 2fb1dc50

Allow to find valid RAM
addresses without needing
the SoC datasheet or
board manual

Source: U-Boot 2018.01
on Microchip SAMA5D3 Xplained

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/375

Environment variables: principle

▶ U-Boot can be configured through environment variables
• Some specific environment variables impact the behavior of the different commands
• Custom environment variables can be added, and used in scripts

▶ Environment variables are loaded from persistent storage to RAM at U-Boot
startup. They can be defined or modified and saved back to storage for
persistence.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/375

Environment variables: implementation

Depending on the configuration, the
U-Boot environment is typically stored in:
▶ At a fixed offset in NAND flash
▶ At a fixed offset on MMC or USB

storage, before the beginning of the
first partition.

▶ In a file (uboot.env) on a FAT or ext4
partition

▶ In a UBI volume U-Boot environment configuration menu

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/375

Environment variables commands

Commands to manipulate environment variables:
▶ printenv

Shows all variables
▶ printenv <variable-name>

Shows the value of a variable
▶ setenv <variable-name> <variable-value>

Changes the value of a variable or defines a new one, only in RAM
▶ editenv <variable-name>

Edits the value of a variable in-place, only in RAM
▶ saveenv

Saves the current state of the environment to storage for persistence.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/375

Environment variables commands - Example

=> printenv
baudrate=19200
ethaddr=00:40:95:36:35:33
netmask=255.255.255.0
ipaddr=10.0.0.11
serverip=10.0.0.1
stdin=serial
stdout=serial
stderr=serial
=> setenv serverip 10.0.0.100
=> printenv serverip
serverip=10.0.0.100
=> saveenv

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/375

Important U-Boot env variables

▶ bootcmd, specifies the commands that U-Boot will automatically execute at boot
time after a configurable delay (bootdelay), if the process is not interrupted. See
next page for an example.

▶ bootargs, contains the arguments passed to the Linux kernel, covered later
▶ serverip, the IP address of the server that U-Boot will contact for network

related commands
▶ ipaddr, the IP address that U-Boot will use
▶ netmask, the network mask to contact the server
▶ ethaddr, the MAC address, can only be set once
▶ filesize, the size of the latest copy to memory (from tftp, fatload,

nand read...)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/375

Scripts in environment variables

▶ Environment variables can contain small scripts, to execute several commands and
test the results of commands.

• Useful to automate booting or upgrade processes
• Several commands can be chained using the ; operator
• Tests can be done using if command ; then ... ; else ... ; fi
• Scripts are executed using run <variable-name>
• You can reference other variables using ${variable-name}

▶ Examples
• setenv bootcmd 'tftp 0x21000000 zImage; tftp 0x22000000 dtb; bootz

0x21000000 - 0x22000000'
• setenv mmc-boot 'if fatload mmc 0 80000000 boot.ini; then source; else

if fatload mmc 0 80000000 zImage; then run mmc-do-boot; fi; fi'

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/375

Transferring files to the target

▶ U-Boot is mostly used to load and boot a kernel image, but it also allows to
change the kernel image and the root filesystem stored in flash.

▶ Files must be exchanged between the target and the development workstation.
This is possible:

• Through the network (Ethernet if a network port is available, Ethernet over USB
device...), if U-Boot has drivers for such networking. This is the fastest and most
efficient solution.

• Through a USB key, if U-Boot supports the USB controller of your platform
• Through a SD or microSD card, if U-Boot supports the MMC controller of your

platform
• Through the serial port (loadb, loadx or loady command)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/375

TFTP

▶ Network transfer from the development workstation to U-Boot on the target takes
place through TFTP

• Trivial File Transfer Protocol
• Somewhat similar to FTP, but without authentication and over UDP

▶ A TFTP server is needed on the development workstation
• sudo apt install tftpd-hpa
• All files in /var/lib/tftpboot or in /srv/tftp (if /srv exists) are then visible

through TFTP
• A TFTP client is available in the tftp-hpa package, for testing

▶ A TFTP client is integrated into U-Boot
• Configure the ipaddr, serverip, and ethaddr environment variables
• Use tftp <address> <filename> to load file contents to the specified RAM

address
• Example: tftp 0x21000000 zImage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/375

Practical lab - U-Boot

Time to start the practical lab!
▶ Communicate with the board using a serial

console
▶ Configure, build and install U-Boot SPL and

U-Boot
▶ Learn U-Boot commands
▶ Set up TFTP communication with the board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/375

Linux kernel introduction

Linux kernel
introduction

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/375

Linux kernel introduction

Linux kernel features

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/375

History

▶ The Linux kernel is one component of a system, which also
requires libraries and applications to provide features to end
users.

▶ The Linux kernel was created as a hobby in 1991 by a Finnish
student, Linus Torvalds.

• Linux quickly started to be used as the kernel for free software
operating systems

▶ Linus Torvalds has been able to create a large and dynamic
developer and user community around Linux.

▶ As of 2022, about 2,000 people contribute to each kernel
release, individuals or companies big and small.

Linus Torvalds in 2014
Image credits (Wikipedia):
https://bit.ly/2UIa1TD

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/375

https://bit.ly/2UIa1TD

Linux kernel key features

▶ Portability and hardware support.
Runs on most architectures
(see arch/ in the source code).

▶ Scalability. Can run on super
computers as well as on tiny devices
(4 MB of RAM is enough).

▶ Compliance to standards and
interoperability.

▶ Exhaustive networking support.

▶ Security. It can’t hide its flaws. Its
code is reviewed by many experts.

▶ Stability and reliability.
▶ Modularity. Can include only what a

system needs even at run time.
▶ Easy to program. You can learn from

existing code. Many useful resources
on the net.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/375

https://elixir.bootlin.com/linux/latest/source/arch/

Linux kernel in the system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/375

Linux kernel main roles

▶ Manage all the hardware resources: CPU, memory, I/O.
▶ Provide a set of portable, architecture and hardware independent APIs to

allow user space applications and libraries to use the hardware resources.
▶ Handle concurrent accesses and usage of hardware resources from different

applications.
• Example: a single network interface is used by multiple user space applications

through various network connections. The kernel is responsible for “multiplexing”
the hardware resource.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/375

System calls

▶ The main interface between the kernel and user space is
the set of system calls

▶ About 400 system calls that provide the main kernel
services

• File and device operations, networking operations,
inter-process communication, process management,
memory mapping, timers, threads, synchronization
primitives, etc.

▶ This interface is stable over time: only new system calls
can be added by the kernel developers

▶ This system call interface is wrapped by the C library,
and user space applications usually never make a system
call directly but rather use the corresponding C library
function

Image credits (Wikipedia):
https://bit.ly/2U2rdGB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/375

https://bit.ly/2U2rdGB

Pseudo filesystems

▶ Linux makes system and kernel information available in user space through
pseudo filesystems, sometimes also called virtual filesystems

▶ Pseudo filesystems allow applications to see directories and files that do not exist
on any real storage: they are created and updated on the fly by the kernel

▶ The two most important pseudo filesystems are
• proc, usually mounted on /proc:

Operating system related information (processes, memory management
parameters...)

• sysfs, usually mounted on /sys:
Representation of the system as a tree of devices connected by buses. Information
gathered by the kernel frameworks managing these devices.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/375

Inside the Linux kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/375

Linux license

▶ The whole Linux sources are Free Software released under the GNU General
Public License version 2 (GPL v2).

▶ For the Linux kernel, this basically implies that:
• When you receive or buy a device with Linux on it, you have the right to obtain the

Linux sources, with the right to study, modify and redistribute them.
• When you produce Linux based devices, be prepared to release the sources to the

recipient, with the same rights, with no restriction.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/375

Supported hardware architectures

See the arch/ directory in the kernel sources
▶ Minimum: 32 bit processors, with or without MMU, supported by gcc or clang
▶ 32 bit architectures (arch/ subdirectories)

Examples: arm, arc, m68k, microblaze (soft core on FPGA)...
▶ 64 bit architectures:

Examples: alpha, arm64, ia64...
▶ 32/64 bit architectures

Examples: mips, powerpc, riscv, sh, sparc, x86...
▶ Note that unmaintained architectures can also be removed when they have

compiling issues and nobody fixes them.
▶ Find details in kernel sources: arch/<arch>/Kconfig, arch/<arch>/README, or

Documentation/<arch>/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/375

https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/arch/arm/
https://elixir.bootlin.com/linux/latest/source/arch/arc/
https://elixir.bootlin.com/linux/latest/source/arch/m68k/
https://elixir.bootlin.com/linux/latest/source/arch/microblaze/
https://elixir.bootlin.com/linux/latest/source/arch/alpha/
https://elixir.bootlin.com/linux/latest/source/arch/arm64/
https://elixir.bootlin.com/linux/latest/source/arch/ia64/
https://elixir.bootlin.com/linux/latest/source/arch/mips/
https://elixir.bootlin.com/linux/latest/source/arch/powerpc/
https://elixir.bootlin.com/linux/latest/source/arch/riscv/
https://elixir.bootlin.com/linux/latest/source/arch/sh/
https://elixir.bootlin.com/linux/latest/source/arch/sparc/
https://elixir.bootlin.com/linux/latest/source/arch/x86/

Linux kernel introduction

Linux versioning scheme and development
process

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/375

Linux versioning scheme

▶ Until 2003, there was a new “stabilized” release branch of Linux every 2 or 3 years
(2.0, 2.2, 2.4). Development branches took 2-3 years to be merged (too slow!).

▶ Since 2003, there is a new official release of Linux about every 10 weeks:
• Versions 2.6 (Dec. 2003) to 2.6.39 (May 2011)
• Versions 3.0 (Jul. 2011) to 3.19 (Feb. 2015)
• Versions 4.0 (Apr. 2015) to 4.20 (Dec. 2018)
• Version 5.0 was released in Mar. 2019.

▶ Features are added to the kernel in a progressive way. Since 2003, kernel
developers have managed to do so without having to introduce a massively
incompatible development branch.

▶ For each release, there are bugfix and security updates called stable releases:
5.0.1, 5.0.2, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/375

Linux development model

Using merge and bug fixing windows

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/375

Need for long term support (1)

▶ Issue: bug and security fixes only released for most recent kernel versions.
▶ Solution: the last release of each year is made an LTS (Long Term Support)

release, and is supposed to be supported (and receive bug and security fixes) for
up to 6 years.

Captured on https://kernel.org in Nov.
2021, following the Releases link.

▶ Example at Google: starting from Android O (2017), all new Android devices will
have to run such an LTS kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/375

https://kernel.org
https://www.kernel.org/category/releases.html

Need for long term support (2)

▶ You could also get long term support from a commercial embedded Linux
provider.

• Wind River Linux can be supported for up to 15 years.
• Ubuntu Core can be supported for up to 10 years.

▶ ”If you are not using a supported distribution kernel, or a stable / longterm kernel,
you have an insecure kernel” - Greg KH, 2019
Some vulnerabilities are fixed in stable without ever getting a CVE.

▶ The Civil Infrastructure Platform project is an industry / Linux Foundation effort
to support much longer (at least 10 years) selected LTS versions (currently 4.4,
4.19, 5.10) on selected architectures. See https://wiki.linuxfoundation.org/
civilinfrastructureplatform/cipkernelmaintenance.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/375

https://wiki.linuxfoundation.org/civilinfrastructureplatform/cipkernelmaintenance
https://wiki.linuxfoundation.org/civilinfrastructureplatform/cipkernelmaintenance

What’s new in each Linux release? (1)

The official list of changes for each Linux release is just a huge list of individual
patches!
commit aa6e52a35d388e730f4df0ec2ec48294590cc459
Author: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
Date: Wed Jul 13 11:29:17 2011 +0200

at91: at91-ohci: support overcurrent notification

Several USB power switches (AIC1526 or MIC2026) have a digital output
that is used to notify that an overcurrent situation is taking
place. This digital outputs are typically connected to GPIO inputs of
the processor and can be used to be notified of these overcurrent
situations.

Therefore, we add a new overcurrent_pin[] array in the at91_usbh_data
structure so that boards can tell the AT91 OHCI driver which pins are
used for the overcurrent notification, and an overcurrent_supported
boolean to tell the driver whether overcurrent is supported or not.

The code has been largely borrowed from ohci-da8xx.c and
ohci-s3c2410.c.

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>

Very difficult to find out the key changes and to get the global picture out of individual
changes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/375

What’s new in each Linux release? (2)

Fortunately, there are some useful resources available
▶ https://kernelnewbies.org/LinuxChanges

In depth coverage of the new features in each kernel release
▶ https://lwn.net/Kernel

Coverage of the features accepted in each merge window

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/375

https://kernelnewbies.org/LinuxChanges
https://lwn.net/Kernel

Linux kernel introduction

Linux kernel sources

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/375

Location of official kernel sources

▶ The mainline versions of the Linux kernel, as released by Torvalds
• These versions follow the development model of the kernel
• They may not contain the latest developments from a specific area yet
• A good pick for products development phase
• https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

▶ The stable versions of the Linux kernel, as maintained by a maintainers group
• These versions do not bring new features compared to Linus’ tree
• Only bug fixes and security fixes are pulled there
• Each version is stabilized during the development period of the next mainline kernel
• Certain versions can be maintained for much longer, 2+ years
• A good pick for products commercialization phase
• https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/375

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Location of non-official kernel sources

▶ Many chip vendors supply their own kernel sources
• Focusing on hardware support first
• Can have a very important delta with mainline Linux
• Sometimes they break support for other platforms/devices without caring
• Useful in early phases only when mainline hasn’t caught up yet (many vendors invest

in the mainline kernel at the same time)
• Suitable for PoC, not suitable for products on the long term as usually no updates

are provided to these kernels
• Getting stuck with a deprecated system with broken software that cannot be

udpated has a real cost in the end
▶ Many kernel sub-communities maintain their own kernel, with usually newer but

fewer stable features, only for cutting-edge development
• Architecture communities (ARM, MIPS, PowerPC, etc)
• Device drivers communities (I2C, SPI, USB, PCI, network, etc)
• Other communities (real-time, etc)
• Not suitable to be used in products

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/375

Getting Linux sources

▶ The kernel sources are available from https://kernel.org/pub/linux/kernel
as full tarballs (complete kernel sources) and patches (differences between two
kernel versions).

▶ But today the entire open source community as settled in favor of Git
• Fast, efficient with huge code bases, reliable, open source
• Incidentally written by Torvalds

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/375

https://kernel.org/pub/linux/kernel

Going through Linux sources

▶ Development tools:
• Any text editor will work
• Vim and Emacs support

ctags and cscope and
therefore can help with
symbol lookup and
auto-completion.

• It’s also possible to use
more elaborate IDEs to
develop kernel code, like
Visual Studio Code.

▶ Powerful web browsing: Elixir
• Generic source indexing tool and code browser

for C and C++.
• Very easy to find symbols

declaration/implementation/usage
• Try out https://elixir.bootlin.com!

Project
selection
(U-Boot,
Linux,
BusyBox...)

Identifier
search

Current
directory

Source
browsing

All versions
available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/375

https://elixir.bootlin.com

Linux kernel size

▶ Linux v5.18 sources:
• 75,878 files (git ls-files | wc -l)
• 33,242,942 lines (git ls-files | xargs cat | wc -l)
• 1,154,591,060 bytes (git ls-files | xargs cat | wc -c)

▶ But a compressed Linux kernel just sizes a few megabytes.
▶ So, why are these sources so big?

Because they include thousands of device drivers, many network protocols,
support many architectures and filesystems...

▶ The Linux core (scheduler, memory management...) is pretty small!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/375

Linux kernel sources structure

As of kernel version v5.18 (in percentage of total number of lines).
Source code:
▶ drivers/: 61.1%
▶ arch/: 11.6%
▶ fs/: 4.4%
▶ sound/: 4.1%
▶ tools/: 3.9%
▶ net/: 3.7%
▶ include/: 3.5%
▶ kernel/: 1.3%
▶ lib/: 0.7%
▶ usr/: 0.6%

▶ mm/: 0.5%
▶ scripts/: 0.4%
▶ security/: 0.3%
▶ crypto/: 0.3%
▶ block/: 0.2%
▶ samples/: 0.1%
▶ ipc/: 0.0%
▶ virt/: 0.0%
▶ init/: 0.0%
▶ certs/: 0.0%

Doc and bindings:
▶ Documentation/: 3.4%

Build system files:
▶ Kbuild

▶ Kconfig

▶ Makefile

Other files:
▶ COPYING

▶ CREDITS

▶ MAINTAINTERS

▶ README

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/375

https://elixir.bootlin.com/linux/latest/source/drivers/
https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/fs/
https://elixir.bootlin.com/linux/latest/source/sound/
https://elixir.bootlin.com/linux/latest/source/tools/
https://elixir.bootlin.com/linux/latest/source/net/
https://elixir.bootlin.com/linux/latest/source/include/
https://elixir.bootlin.com/linux/latest/source/kernel/
https://elixir.bootlin.com/linux/latest/source/lib/
https://elixir.bootlin.com/linux/latest/source/usr/
https://elixir.bootlin.com/linux/latest/source/mm/
https://elixir.bootlin.com/linux/latest/source/scripts/
https://elixir.bootlin.com/linux/latest/source/security/
https://elixir.bootlin.com/linux/latest/source/crypto/
https://elixir.bootlin.com/linux/latest/source/block/
https://elixir.bootlin.com/linux/latest/source/samples/
https://elixir.bootlin.com/linux/latest/source/ipc/
https://elixir.bootlin.com/linux/latest/source/virt/
https://elixir.bootlin.com/linux/latest/source/init/
https://elixir.bootlin.com/linux/latest/source/certs/
https://elixir.bootlin.com/linux/latest/source/Documentation/
https://elixir.bootlin.com/linux/latest/source/Kbuild
https://elixir.bootlin.com/linux/latest/source/Kconfig
https://elixir.bootlin.com/linux/latest/source/Makefile
https://elixir.bootlin.com/linux/latest/source/COPYING
https://elixir.bootlin.com/linux/latest/source/CREDITS
https://elixir.bootlin.com/linux/latest/source/MAINTAINTERS
https://elixir.bootlin.com/linux/latest/source/README

Getting Linux sources
▶ Full tarballs

• Contain the complete kernel sources: long to download and uncompress, but must
be done at least once

• Example:
https://kernel.org/pub/linux/kernel/v4.x/linux-4.20.13.tar.xz

• Extract command:
tar xf linux-4.20.13.tar.xz

▶ Incremental patches between versions
• It assumes you already have a base version and you apply the correct patches in the

right order to upgrade to the next one. Quick to download and apply
• Examples:

https://kernel.org/pub/linux/kernel/v4.x/patch-4.20.xz
(from 4.19 to 4.20)
https://kernel.org/pub/linux/kernel/v4.x/patch-4.20.13.xz
(from 4.20 to 4.20.13)

▶ All previous kernel versions are available in
https://kernel.org/pub/linux/kernel/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/375

https://kernel.org/pub/linux/kernel/v4.x/linux-4.20.13.tar.xz
https://kernel.org/pub/linux/kernel/v4.x/patch-4.20.xz
https://kernel.org/pub/linux/kernel/v4.x/patch-4.20.13.xz
https://kernel.org/pub/linux/kernel/

Patch
▶ A patch is the difference between two source trees

• Computed with the diff tool, or with more elaborate version control systems
▶ They are very common in the open-source community.

See https://en.wikipedia.org/wiki/Diff
▶ Excerpt from a patch:

diff -Nru a/Makefile b/Makefile
--- a/Makefile 2005-03-04 09:27:15 -08:00
+++ b/Makefile 2005-03-04 09:27:15 -08:00
@@ -1,7 +1,7 @@
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 11

-EXTRAVERSION =
+EXTRAVERSION = .1
NAME=Woozy Numbat

DOCUMENTATION

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/375

https://en.wikipedia.org/wiki/Diff

Contents of a patch
▶ One section per modified file, starting with a header

diff -Nru a/Makefile b/Makefile
--- a/Makefile 2005-03-04 09:27:15 -08:00
+++ b/Makefile 2005-03-04 09:27:15 -08:00

▶ One sub-section (hunk) per modified part of the file, starting with a header with the
starting line number and the number of lines the change hunk applies to
@@ -1,7 +1,7 @@

▶ Three lines of context before the change
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 11

▶ The change itself
-EXTRAVERSION =
+EXTRAVERSION = .1

▶ Three lines of context after the change
NAME=Woozy Numbat

DOCUMENTATION

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/375

Using the patch command

The patch command:
▶ Takes the patch contents on its standard input
▶ Applies the modifications described by the patch into the current directory

patch usage examples:
▶ patch -p<n> < diff_file

▶ cat diff_file | patch -p<n>

▶ xzcat diff_file.xz | patch -p<n>

▶ zcat diff_file.gz | patch -p<n>
▶ Notes:

• n: number of directory levels to skip (-p: prune) in the file paths
• You can reverse apply a patch with the -R option
• You can test a patch with --dry-run option

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/375

Applying a Linux patch

▶ Two types of Linux patches:
• Either to be applied to the previous

stable version
(from x.<y-1> to x.y)

• Or implementing fixes to the current
stable version
(from x.y to x.y.z)

▶ Can be downloaded in gzip or xz
(much smaller) compressed files.

▶ Always produced for patch -p1

▶ Need to run the patch command
inside the toplevel kernel source
directory

cd linux-5.7
From 5.7 to 5.8.6
xzcat ../patch-5.8.xz | patch -p1
xzcat ../patch-5.8.6.xz | patch -p1
Back to 5.8 from 5.8.6
xzcat ../patch-5.8.6.xz | patch -R -p1
From 5.8 to 5.8.7
xzcat ../patch-5.8.7.xz | patch -p1
Renaming directory
cd ..; mv linux-5.7 linux-5.8.7

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/375

Practical lab - Kernel sources

Time to start the practical lab!
▶ Get the Linux kernel sources
▶ Apply patches

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/375

Linux kernel introduction

Kernel configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/375

Kernel configuration

▶ The kernel contains thousands of device drivers, filesystem drivers, network
protocols and other configurable items

▶ Thousands of options are available, that are used to selectively compile parts of
the kernel source code

▶ The kernel configuration is the process of defining the set of options with which
you want your kernel to be compiled

▶ The set of options depends
• On the target architecture and on your hardware (for device drivers, etc.)
• On the capabilities you would like to give to your kernel (network capabilities,

filesystems, real-time, etc.). Such generic options are available in all architectures.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/375

Kernel configuration and build system

▶ The kernel configuration and build system is based on multiple Makefiles
▶ One only interacts with the main Makefile, present at the top directory of the

kernel source tree
▶ Interaction takes place

• using the make tool, which parses the Makefile
• through various targets, defining which action should be done (configuration,

compilation, installation, etc.).
• Run make help to see all available targets.

▶ Example
• cd linux/
• make <target>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/375

https://elixir.bootlin.com/linux/latest/source/Makefile

Specifying the target architecture

First, specify the architecture for the kernel to build
▶ Set ARCH to the name of a directory under arch/:

export ARCH=arm

▶ By default, the kernel build system assumes that the kernel is configured and built
for the host architecture (x86 in our case, native kernel compiling)

▶ The kernel build system will use this setting to:
• Use the configuration options for the target architecture.
• Compile the kernel with source code and headers for the target architecture.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/375

https://elixir.bootlin.com/linux/latest/source/arch/

Choosing a compiler
The compiler invoked by the kernel Makefile is $(CROSS_COMPILE)gcc

▶ Specifying the compiler is already needed at configuration time, as some kernel
configuration options depend on the capabilities of the compiler.

▶ When compiling natively
• Leave CROSS_COMPILE undefined and the kernel will be natively compiled for the host

architecture using gcc.
▶ When using a cross-compiler

• To make the difference with a native compiler, cross-compiler executables are
prefixed by the name of the target system, architecture and sometimes library.
Examples:
mips-linux-gcc: the prefix is mips-linux-
arm-linux-gnueabi-gcc: the prefix is arm-linux-gnueabi-

• So, you can specify your cross-compiler as follows:
export CROSS_COMPILE=arm-linux-gnueabi-

CROSS_COMPILE is actually the prefix of the cross compiling tools
(gcc, as, ld, objcopy, strip...).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/375

Specifying ARCH and CROSS_COMPILE

There are actually two ways of defining ARCH and CROSS_COMPILE:
▶ Pass ARCH and CROSS_COMPILE on the make command line:

make ARCH=arm CROSS_COMPILE=arm-linux- ...
Drawback: it is easy to forget to pass these variables when you run any make
command, causing your build and configuration to be screwed up.

▶ Define ARCH and CROSS_COMPILE as environment variables:
export ARCH=arm
export CROSS_COMPILE=arm-linux-
Drawback: it only works inside the current shell or terminal. You could put these
settings in a file that you source every time you start working on the project. If
you only work on a single architecture with always the same toolchain, you could
even put these settings in your ~/.bashrc file to make them permanent and
visible from any terminal.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/375

Initial configuration

Difficult to find which kernel configuration will work with your hardware and root
filesystem. Start with one that works!
▶ Desktop or server case:

• Advisable to start with the configuration of your running kernel:
cp /boot/config-`uname -r` .config

▶ Embedded platform case:
• Default configurations stored in-tree as minimal configuration files (only listing

settings that are different with the defaults) in arch/<arch>/configs/
• make help will list the available configurations for your platform
• To load a default configuration file, just run make foo_defconfig (will erase your

current .config!)
On ARM 32-bit, there is usually one default configuration per CPU family
On ARM 64-bit, there is only one big default configuration to customize

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/375

Create your own default configuration

▶ Use a tool such as make menuconfig to make changes to the configuration
▶ Saving your changes will overwrite your .config (not tracked by Git)
▶ When happy with it, create your own default configuration file:

• Create a minimal configuration (non-default settings) file:
make savedefconfig

• Save this default configuration in the right directory:
mv defconfig arch/<arch>/configs/myown_defconfig

▶ This way, you can share a reference configuration inside the kernel sources and
other developers can now get the same .config as you by running
make myown_defconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/375

Built-in or module?

▶ The kernel image is a single file, resulting from the linking of all object files that
correspond to features enabled in the configuration

• This is the file that gets loaded in memory by the bootloader
• All built-in features are therefore available as soon as the kernel starts, at a time

where no filesystem exists
▶ Some features (device drivers, filesystems, etc.) can however be compiled as

modules
• These are plugins that can be loaded/unloaded dynamically to add/remove features

to the kernel
• Each module is stored as a separate file in the filesystem, and therefore access

to a filesystem is mandatory to use modules
• This is not possible in the early boot procedure of the kernel, because no filesystem

is available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/375

Kernel option types

There are different types of options, defined in Kconfig files:
▶ bool options, they are either

• true (to include the feature in the kernel) or
• false (to exclude the feature from the kernel)

▶ tristate options, they are either
• true (to include the feature in the kernel image) or
• module (to include the feature as a kernel module) or
• false (to exclude the feature)

▶ int options, to specify integer values
▶ hex options, to specify hexadecimal values

Example: CONFIG_PAGE_OFFSET=0xC0000000

▶ string options, to specify string values
Example: CONFIG_LOCALVERSION=-no-network
Useful to distinguish between two kernels built from different options

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PAGE_OFFSET
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LOCALVERSION

Kernel option dependencies
Enabling a network driver requires the network stack to be enabled, therefore
configuration symbols have two ways to express dependencies:

▶ depends on dependency:
config B

depends on A

• B is not visible until A is
enabled

• Works well for dependency
chains

▶ select dependency:
config A

select B

• When A is enabled, B is enabled too (and
cannot be disabled manually)

• Should preferably not select symbols with
depends on dependencies

• Used to declare hardware features or select
libraries

config SPI_ATH79
tristate "Atheros AR71XX/AR724X/AR913X SPI controller driver"
depends on ATH79 || COMPILE_TEST
select SPI_BITBANG
help
This enables support for the SPI controller present on the
Atheros AR71XX/AR724X/AR913X SoCs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/375

Kernel configuration details

▶ The configuration is stored in the .config file at
the root of kernel sources

• Simple text file, CONFIG_PARAM=value
• Options are grouped by sections and are prefixed

with CONFIG_
• Included by the top-level kernel Makefile
• Typically not edited by hand because of the

dependencies

#
CD-ROM/DVD Filesystems
#
CONFIG_ISO9660_FS=m
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_UDF_FS=y
end of CD-ROM/DVD Filesystems

#
DOS/FAT/EXFAT/NT Filesystems
#
CONFIG_FAT_FS=y
CONFIG_MSDOS_FS=y
CONFIG_VFAT_FS is not set
CONFIG_FAT_DEFAULT_CODEPAGE=437
CONFIG_EXFAT_FS is not set

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/375

xconfig

make xconfig

▶ The most common graphical interface
to configure the kernel.

▶ File browser: easy to load
configuration files

▶ Search interface to look for
parameters ([Ctrl] + [f])

▶ Required Debian/Ubuntu packages:
qt5-default (qtbase5-dev on
Ubuntu 22.04)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/375

menuconfig

make menuconfig

▶ Useful when no graphics are available.
Very efficient interface.

▶ Same interface found in other tools:
BusyBox, Buildroot...

▶ Convenient number shortcuts to jump
directly to search results.

▶ Required Debian/Ubuntu packages:
libncurses-dev

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/375

Kernel configuration options

You can switch from one tool to another, they all load/save the same .config file,
and show the same set of options
Compiled as a module:

Additional driver options:

Statically built:

CONFIG_ISO9660_FS=m

CONFIG_JOLIET=y

CONFIG_ZISOFS=y

CONFIG_UDF_FS=y

Values in resulting .config file Parameter values as displayed by xconfig Parameter values as displayed by menuconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/375

make oldconfig

make oldconfig

▶ Useful to upgrade a .config file from an earlier kernel release
▶ Asks for values for new parameters.
▶ ... unlike make menuconfig and make xconfig which silently set default values

for new parameters.
If you edit a .config file by hand, it’s useful to run make oldconfig afterwards, to set
values to new parameters that could have appeared because of dependency changes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/375

Undoing configuration changes

A frequent problem:
▶ After changing several kernel configuration settings, your kernel no longer works.
▶ If you don’t remember all the changes you made, you can get back to your

previous configuration:
$ cp .config.old .config

▶ All the configuration tools keep this .config.old backup copy.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/375

Linux kernel introduction

Compiling and installing the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/375

Kernel compilation

make

▶ Only works from the top kernel source directory
▶ Should not be performed as a priviledged user
▶ Run several jobs in parallel. Our advice: ncpus * 2 to

fully load the CPU and I/Os at all times.
Example: make -j 8

▶ To recompile faster (7x according to some benchmarks),
use the ccache compiler cache:
export CROSS_COMPILE="ccache arm-linux-"

Benefits of parallel compile jobs (make -j<n>)

make

Command: make

Total time: 129 s

Tests on Linux 5.11 on arm

make allnoconfig configuration

gnome-system-monitor showing the load on 4 threads / 2 CPUs

make -j8

Command: make -j8

Total time: 67 s

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/375

Kernel compilation results

▶ arch/<arch>/boot/Image, uncompressed kernel image that can be booted
▶ arch/<arch>/boot/*Image*, compressed kernel images that can also be booted

• bzImage for x86, zImage for ARM, Image.gz for RISC-V, vmlinux.bin.gz for ARC,
etc.

▶ arch/<arch>/boot/dts/*.dtb, compiled Device Tree Blobs
▶ All kernel modules, spread over the kernel source tree, as .ko (Kernel Object) files.
▶ vmlinux, a raw uncompressed kernel image in the ELF format, useful for

debugging purposes but generally not used for booting purposes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/375

Kernel installation: native case

▶ sudo make install
• Does the installation for the host system by default

▶ Installs
• /boot/vmlinuz-<version>

Compressed kernel image. Same as the one in arch/<arch>/boot
• /boot/System.map-<version>

Stores kernel symbol addresses for debugging purposes (obsolete: such information is
usually stored in the kernel itself)

• /boot/config-<version>
Kernel configuration for this version

▶ In GNU/Linux distributions, typically re-runs the bootloader configuration utility
to make the new kernel available at the next boot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/375

Kernel installation: embedded case

▶ make install is rarely used in embedded development, as the kernel image is a
single file, easy to handle.

▶ Another reason is that there is no standard way to deploy and use the kernel
image.

▶ Therefore making the kernel image available to the target is usually manual or
done through scripts in build systems.

▶ It is however possible to customize the make install behavior in
arch/<arch>/boot/install.sh

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/375

Module installation: native case

▶ sudo make modules_install
• Does the installation for the host system by default, so needs to be run as root

▶ Installs all modules in /lib/modules/<version>/
• kernel/

Module .ko (Kernel Object) files, in the same directory structure as in the sources.
• modules.alias, modules.alias.bin

Aliases for module loading utilities. Further explanations on the next slide.
• modules.dep, modules.dep.bin

Module dependencies
• modules.symbols, modules.symbols.bin

Tells which module a given symbol belongs to (related to module dependencies).
• modules.builtin

List of modules that are builtin the kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/375

Automatic module loading with module aliases

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/375

Module installation: embedded case

▶ In embedded development, you can’t directly use make modules_install as it
would install target modules in /lib/modules on the host!

▶ The INSTALL_MOD_PATH variable is needed to generate the module related files
and install the modules in the target root filesystem instead of your host root
filesystem (no need to be root):
make INSTALL_MOD_PATH=<dir>/ modules_install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/375

Kernel cleanup targets

▶ From make help:

Cleaning targets:
clean - Remove most generated files but keep the config and

enough build support to build external modules
mrproper - Remove all generated files + config + various backup files
distclean - mrproper + remove editor backup and patch files

▶ If you are in a git tree, remove all files not tracked (and ignored) by git:
git clean -fdx

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/375

Kernel building overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/375

Linux kernel introduction

Booting the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/375

Device Tree 1/2

▶ Many embedded architectures have a lot of non-discoverable hardware (serial,
Ethernet, I2C, Nand flash, USB controllers...)

▶ Depending on the architecture, such hardware is either described in ACPI tables
(x86), using C code directly within the kernel, or using a special hardware
description language in a Device Tree.

▶ The Device Tree (DT) was created for PowerPC, and later was adopted by other
architectures (ARM, ARC...). Now Linux has DT support in most architectures.

▶ Its main purpose is to describe the hardware and its integration: non-discoverable
devices, clocks, interrupts, DMA channels, pin muxing, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/375

Device Tree 2/2

▶ A Device Tree Source (DTS), written by kernel developers, is compiled into a
binary Device Tree Blob (DTB), and needs to be passed to the kernel at boot
time.

• There is one different Device Tree for each board/platform supported by the kernel,
available in arch/arm/boot/dts/<board>.dtb.

• See arch/arm/boot/dts/at91-sama5d3_xplained.dts for example.
▶ The bootloader must load both the kernel image and the DTB in memory before

starting the kernel.
▶ This way, a kernel supporting different SoCs knows which SoC and device

initialization hooks to run on the current board.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 171/375

https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/at91-sama5d3_xplained.dts

Customize your board device tree!

Often needed for embedded board users:
▶ To describe external devices attached to

non-discoverable busses (such as I2C) and configure
them.

▶ To configure pin muxing: choosing what SoC signals are
made available on the board external connectors. See
http://linux.tanzilli.com/ for a web service doing
this interactively.

▶ To configure some system parameters: flash partitions,
kernel command line (other ways exist)

▶ Device Tree 101 webinar, Thomas Petazzoni (2021):
Slides: https://bootlin.com/blog/device-tree-
101-webinar-slides-and-videos/
Video: https://youtu.be/a9CZ1Uk3OYQ

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 172/375

http://linux.tanzilli.com/
https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/
https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/
https://youtu.be/a9CZ1Uk3OYQ

Booting with U-Boot

▶ U-Boot can directly boot the zImage binary.
▶ In addition to the kernel image, U-Boot should also pass a DTB to the kernel.
▶ The typical boot process is therefore:

1. Load zImage at address X in memory
2. Load <board>.dtb at address Y in memory
3. Start the kernel with bootz X - Y

The - in the middle indicates no initramfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/375

Kernel command line

▶ In addition to the compile time configuration, the kernel behavior can be adjusted
with no recompilation using the kernel command line

▶ The kernel command line is a string that defines various arguments to the kernel
• It is very important for system configuration
• root= for the root filesystem (covered later)
• console= for the destination of kernel messages
• Example: console=ttyS0 root=/dev/mmcblk0p2 rootwait
• Many more exist. The most important ones are documented in

admin-guide/kernel-parameters in kernel documentation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/375

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

Passing the kernel command line

▶ U-Boot carries the Linux kernel command line string in
its bootargs environment variable

▶ Right before starting the kernel, it will store the content
of bootargs in the chosen section of the Device Tree

▶ The kernel will behave differently depending on its
configuration:

• If CONFIG_CMDLINE_FROM_BOOTLOADER is set:
The kernel will use only the string from the bootloader

• If CONFIG_CMDLINE_FORCE is set:
The kernel will only use the string received at
configuration time in CONFIG_CMDLINE

• If CONFIG_CMDLINE_EXTEND is set:
The kernel will concatenate both strings

See the ”Understanding U-Boot Falcon
Mode” presentation from Michael
Opdenacker, for details about how U-Boot
boots Linux.

Slides: https:
//bootlin.com/pub/conferences/2021/lee/
Video: https:
//www.youtube.com/watch?v=LFe3x2QMhSo

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_FROM_BOOTLOADER
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_FORCE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_EXTEND
https://bootlin.com/pub/conferences/2021/lee/
https://bootlin.com/pub/conferences/2021/lee/
https://www.youtube.com/watch?v=LFe3x2QMhSo
https://www.youtube.com/watch?v=LFe3x2QMhSo

Practical lab - Kernel cross-compiling

▶ Set up the cross-compiling environment
▶ Configure and cross-compile the kernel for an

arm platform
▶ On this platform, interact with the bootloader

and boot your kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 176/375

Linux kernel introduction

Using kernel modules

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/375

Advantages of modules

▶ Modules make it easy to develop drivers without
rebooting: load, test, unload, rebuild, load...

▶ Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

▶ Also useful to reduce boot time: you don’t spend time
initializing devices and kernel features that you only
need later.

▶ Caution: once loaded, have full control and privileges in
the system. No particular protection. That’s why only
the root user can load and unload modules.

▶ To increase security, possibility to allow only signed
modules, or to disable module support entirely.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 178/375

Module dependencies

▶ Some kernel modules can depend on other modules, which need to be loaded first.
▶ Example: the ubifs module depends on the ubi and mtd modules.
▶ Dependencies are described both in

/lib/modules/<kernel-version>/modules.dep and in
/lib/modules/<kernel-version>/modules.dep.bin (binary hashed format)
These files are generated when you run make modules_install.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/375

Kernel log

When a new module is loaded, related information is available in the kernel log.
▶ The kernel keeps its messages in a circular buffer (so that it doesn’t consume

more memory with many messages)
▶ Kernel log messages are available through the dmesg command (diagnostic

message)
▶ Kernel log messages are also displayed in the system console (console messages

can be filtered by level using the loglevel kernel command line parameter, or
completely disabled with the quiet parameter). Example:
console=ttyS0 root=/dev/mmcblk0p2 loglevel=5

▶ Note that you can write to the kernel log from user space too. That’s useful when
your device’s serial console is being monitored for critical messages:
echo "<n>Debug info" > /dev/kmsg

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/375

Module utilities (1)

<module_name>: name of the module file without the trailing .ko

▶ modinfo <module_name> (for modules in /lib/modules)
modinfo <module_path>.ko
Gets information about a module without loading it: parameters, license,
description and dependencies.

▶ sudo insmod <module_path>.ko
Tries to load the given module. The full path to the module object file must be
given.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 181/375

Understanding module loading issues

▶ When loading a module fails, insmod often doesn’t give you enough details!
▶ Details are often available in the kernel log.
▶ Example:

$ sudo insmod ./intr_monitor.ko
insmod: error inserting './intr_monitor.ko': -1 Device or resource busy
$ dmesg
[17549774.552000] Failed to register handler for irq channel 2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/375

Module utilities (2)

▶ sudo modprobe <top_module_name>
Most common usage of modprobe: tries to load all the dependencies of the given
top module, and then this module. Lots of other options are available. modprobe
automatically looks in /lib/modules/<version>/ for the object file
corresponding to the given module name.

▶ lsmod
Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/375

Module utilities (3)

▶ sudo rmmod <module_name>
Tries to remove the given module.
Will only be allowed if the module is no longer in use (for example, no more
processes opening a device file)

▶ sudo modprobe -r <top_module_name>
Tries to remove the given top module and all its no longer needed dependencies

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/375

Passing parameters to modules

▶ Find available parameters:
modinfo usb-storage

▶ Through insmod:
sudo insmod ./usb-storage.ko delay_use=0

▶ Through modprobe:
Set parameters in /etc/modprobe.conf or in any file in /etc/modprobe.d/:
options usb-storage delay_use=0

▶ Through the kernel command line, when the driver is built statically into the
kernel:
usb-storage.delay_use=0

• usb-storage is the driver name
• delay_use is the driver parameter name. It specifies a delay before accessing a USB

storage device (useful for rotating devices).
• 0 is the driver parameter value

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/375

Check module parameter values

How to find/edit the current values for the parameters of a loaded module?
▶ Check /sys/module/<name>/parameters.
▶ There is one file per parameter, containing the parameter value.
▶ Also possible to change parameter values if these files have write permissions

(depends on the module code).
▶ Example:

echo 0 > /sys/module/usb_storage/parameters/delay_use

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/375

Linux Root Filesystem

Linux Root Filesystem

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/375

Linux Root Filesystem

Principle and solutions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/375

Filesystems

▶ Filesystems are used to organize data in directories and files on storage devices or
on the network. The directories and files are organized as a hierarchy

▶ In UNIX systems, applications and users see a single global hierarchy of files and
directories, which can be composed of several filesystems.

▶ Filesystems are mounted in a specific location in this hierarchy of directories
• When a filesystem is mounted in a directory (called mount point), the contents of

this directory reflect the contents of this filesystem.
• When the filesystem is unmounted, the mount point is empty again.

▶ This allows applications to access files and directories easily, regardless of their
exact storage location

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/375

Filesystems (2)

▶ Create a mount point, which is just a directory
$ sudo mkdir /mnt/usbkey

▶ It is empty
$ ls /mnt/usbkey
$

▶ Mount a storage device in this mount point
$ sudo mount -t vfat /dev/sda1 /mnt/usbkey
$

▶ You can access the contents of the USB key
$ ls /mnt/usbkey
docs prog.c picture.png movie.avi
$

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/375

mount / umount

▶ mount allows to mount filesystems
• mount -t type device mountpoint
• type is the type of filesystem (optional for non-virtual filesystems)
• device is the storage device, or network location to mount
• mountpoint is the directory where files of the storage device or network location will

be accessible
• mount with no arguments shows the currently mounted filesystems

▶ umount allows to unmount filesystems
• This is needed before rebooting, or before unplugging a USB key, because the Linux

kernel caches writes in memory to increase performance. umount makes sure that
these writes are committed to the storage.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 191/375

Root filesystem

▶ A particular filesystem is mounted at the root of the hierarchy, identified by /

▶ This filesystem is called the root filesystem
▶ As mount and umount are programs, they are files inside a filesystem.

• They are not accessible before mounting at least one filesystem.
▶ As the root filesystem is the first mounted filesystem, it cannot be mounted with

the normal mount command
▶ It is mounted directly by the kernel, according to the root= kernel option
▶ When no root filesystem is available, the kernel panics:

Please append a correct "root=" boot option
Kernel panic - not syncing: VFS: Unable to mount root fs on unknown block(0,0)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/375

Location of the root filesystem

▶ It can be mounted from different locations
• From the partition of a hard disk
• From the partition of a USB key
• From the partition of an SD card
• From the partition of a NAND flash chip or similar type of storage device
• From the network, using the NFS protocol
• From memory, using a pre-loaded filesystem (by the bootloader)
• etc.

▶ It is up to the system designer to choose the configuration for the system, and
configure the kernel behavior with root=

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 193/375

Mounting rootfs from storage devices

▶ Partitions of a hard disk or USB key
• root=/dev/sdXY, where X is a letter indicating the device, and Y a number

indicating the partition
• /dev/sdb2 is the second partition of the second disk drive (either USB key or ATA

hard drive)
▶ Partitions of an SD card

• root=/dev/mmcblkXpY, where X is a number indicating the device and Y a number
indicating the partition

• /dev/mmcblk0p2 is the second partition of the first device
▶ Partitions of flash storage

• root=/dev/mtdblockX, where X is the partition number
• /dev/mtdblock3 is the fourth enumerated flash partition in the system (there could

be multiple flash chips)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 194/375

Mounting rootfs over the network (1)
Once networking works, your root filesystem could be a directory on your GNU/Linux
development host, exported by NFS (Network File System). This is very convenient for
system development:
▶ Makes it very easy to update files on the root filesystem, without rebooting.
▶ Can have a big root filesystem even if you don’t have support for internal or

external storage yet.
▶ The root filesystem can be huge. You can even build native compiler tools and

build all the tools you need on the target itself (better to cross-compile though).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/375

Mounting rootfs over the network (2)

On the development workstation side, a NFS server is needed
▶ Install an NFS server (example: Debian, Ubuntu)

sudo apt install nfs-kernel-server

▶ Add the exported directory to your /etc/exports file:
/home/tux/rootfs 192.168.1.111(rw,no_root_squash,no_subtree_check)

• 192.168.1.111 is the client IP address
• rw,no_root_squash,no_subtree_check are the NFS server options for this

directory export.
▶ Ask your NFS server to reload this file:

sudo exportfs -r

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 196/375

Mounting rootfs over the network (3)

▶ On the target system
▶ The kernel must be compiled with

• CONFIG_NFS_FS=y (NFS client support)
• CONFIG_IP_PNP=y (configure IP at boot time)
• CONFIG_ROOT_NFS=y (support for NFS as rootfs)

▶ The kernel must be booted with the following parameters:
• root=/dev/nfs (we want rootfs over NFS)
• ip=192.168.1.111 (target IP address)
• nfsroot=192.168.1.110:/home/tux/rootfs/ (NFS server details)
• You may need to add ”,nfsvers=3,tcp” to the nfsroot setting, as an NFS version

2 client and UDP may be rejected by the NFS server in recent GNU/Linux
distributions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_IP_PNP
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_ROOT_NFS

Mounting rootfs over the network (4)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/375

Root filesystem in memory: initramfs

It is also possible to boot the system with a filesystem in memory: initramfs
▶ Either from a compressed CPIO archive integrated into the kernel image
▶ Or from such an archive loaded by the bootloader into memory
▶ At boot time, this archive is extracted into the Linux file cache
▶ It is useful for two cases:

• Fast booting of very small root filesystems. As the filesystem is completely loaded at
boot time, application startup is very fast.

• As an intermediate step before switching to a real root filesystem, located on devices
for which drivers not part of the kernel image are needed (storage drivers, filesystem
drivers, network drivers). This is always used on the kernel of desktop/server
distributions to keep the kernel image size reasonable.

▶ Details (in kernel documentation):
filesystems/ramfs-rootfs-initramfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/375

https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html

External initramfs

▶ To create one, first create a compressed CPIO archive:
cd rootfs/
find . | cpio -H newc -o > ../initramfs.cpio
cd ..
gzip initramfs.cpio

▶ If you’re using U-Boot, you’ll need to include your archive in a U-Boot container:
mkimage -n 'Ramdisk Image' -A arm -O linux -T ramdisk -C gzip \

-d initramfs.cpio.gz uInitramfs

▶ Then, in the bootloader, load the kernel binary, DTB and uInitramfs in RAM
and boot the kernel as follows:
bootz kernel-addr initramfs-addr dtb-addr

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/375

Built-in initramfs

To have the kernel Makefile include an initramfs archive in the
kernel image: use the CONFIG_INITRAMFS_SOURCE option.
▶ It can be the path to a directory containing the root

filesystem contents
▶ It can be the path to a ready made cpio archive
▶ It can be a text file describing the contents of the initramfs

See the kernel documentation for details:
driver-api/early-userspace/early_userspace_support

WARNING: only binaries from GPLv2 compatible code are
allowed to be included in the kernel binary using this technique.
Otherwise, use an external initramfs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_INITRAMFS_SOURCE
https://www.kernel.org/doc/html/latest/driver-api/early-userspace/early_userspace_support.html

Linux Root Filesystem

Contents

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/375

Root filesystem organization

▶ The organization of a Linux root filesystem in terms of directories is well-defined
by the Filesystem Hierarchy Standard

▶ https://refspecs.linuxfoundation.org/fhs.shtml
▶ Most Linux systems conform to this specification

• Applications expect this organization
• It makes it easier for developers and users as the filesystem organization is similar in

all systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/375

https://refspecs.linuxfoundation.org/fhs.shtml

Important directories (1)

/bin Basic programs
/boot Kernel images, configurations and initramfs (only when the kernel is

loaded from a filesystem, not common on non-x86 architectures)
/dev Device files (covered later)
/etc System-wide configuration

/home Directory for the users home directories
/lib Basic libraries

/media Mount points for removable media
/mnt Mount point for a temporarily mounted filesystem
/proc Mount point for the proc virtual filesystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/375

Important directories (2)

/root Home directory of the root user
/sbin Basic system programs
/sys Mount point of the sysfs virtual filesystem

/tmp Temporary files
/usr /usr/bin Non-basic programs

/usr/lib Non-basic libraries
/usr/sbin Non-basic system programs

/var Variable data files, for system services. This includes spool directories and
files, administrative and logging data, and transient and temporary files

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/375

Separation of programs and libraries

▶ Basic programs are installed in /bin and /sbin and basic libraries in /lib

▶ All other programs are installed in /usr/bin and /usr/sbin and all other libraries in
/usr/lib

▶ In the past, on UNIX systems, /usr was very often mounted over the network, through
NFS

▶ In order to allow the system to boot when the network was down, some binaries and
libraries are stored in /bin, /sbin and /lib

▶ /bin and /sbin contain programs like ls, ip, cp, bash, etc.
▶ /lib contains the C library and sometimes a few other basic libraries
▶ All other programs and libraries are in /usr

▶ Update: distributions are now making /bin link to /usr/bin, /lib to /usr/lib and
/sbin to /usr/sbin. Details on
https://www.freedesktop.org/wiki/Software/systemd/TheCaseForTheUsrMerge/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/375

https://www.freedesktop.org/wiki/Software/systemd/TheCaseForTheUsrMerge/

Linux Root Filesystem

Device Files

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 207/375

Devices

▶ One of the kernel important roles is to allow applications to access hardware
devices

▶ In the Linux kernel, most devices are presented to user space applications through
two different abstractions

• Character device
• Block device

▶ Internally, the kernel identifies each device by a triplet of information
• Type (character or block)
• Major (typically the category of device)
• Minor (typically the identifier of the device)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/375

Types of devices

▶ Block devices
• A device composed of fixed-sized blocks, that can be read and written to store data
• Used for hard disks, USB keys, SD cards, etc.

▶ Character devices
• Originally, an infinite stream of bytes, with no beginning, no end, no size. The pure

example: a serial port.
• Used for serial ports, terminals, but also sound cards, video acquisition devices,

frame buffers
• Most of the devices that are not block devices are represented as character devices

by the Linux kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/375

Devices: everything is a file

▶ A very important UNIX design decision was to represent most system objects as
files

▶ It allows applications to manipulate all system objects with the normal file API
(open, read, write, close, etc.)

▶ So, devices had to be represented as files to the applications
▶ This is done through a special artifact called a device file
▶ It is a special type of file, that associates a file name visible to user space

applications to the triplet (type, major, minor) that the kernel understands
▶ All device files are by convention stored in the /dev directory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/375

Device files examples
Example of device files in a Linux system

$ ls -l /dev/ttyS0 /dev/tty1 /dev/sda /dev/sda1 /dev/sda2 /dev/sdc1 /dev/zero
brw-rw---- 1 root disk 8, 0 2011-05-27 08:56 /dev/sda
brw-rw---- 1 root disk 8, 1 2011-05-27 08:56 /dev/sda1
brw-rw---- 1 root disk 8, 2 2011-05-27 08:56 /dev/sda2
brw-rw---- 1 root disk 8, 32 2011-05-27 08:56 /dev/sdc
crw------- 1 root root 4, 1 2011-05-27 08:57 /dev/tty1
crw-rw---- 1 root dialout 4, 64 2011-05-27 08:56 /dev/ttyS0
crw-rw-rw- 1 root root 1, 5 2011-05-27 08:56 /dev/zero

Example C code that uses the usual file API to write data to a serial port

int fd;
fd = open("/dev/ttyS0", O_RDWR);
write(fd, "Hello", 5);
close(fd);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/375

Creating device files

▶ Before Linux 2.6.32, on basic Linux systems, the device files had to be created
manually using the mknod command

• mknod /dev/<device> [c|b] major minor
• Needed root privileges
• Coherency between device files and devices handled by the kernel was left to the

system developer
▶ The devtmpfs virtual filesystem can be mounted on /dev and contains all the

devices registered to kernel frameworks. The CONFIG_DEVTMPFS_MOUNT kernel
configuration option makes the kernel mount it automatically at boot time, except
when booting on an initramfs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT

Linux Root Filesystem

Pseudo Filesystems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 213/375

proc virtual filesystem

▶ The proc virtual filesystem exists since the beginning of Linux
▶ It allows

• The kernel to expose statistics about running processes in the system
• The user to adjust at runtime various system parameters about process

management, memory management, etc.
▶ The proc filesystem is used by many standard user space applications, and they

expect it to be mounted in /proc

▶ Applications such as ps or top would not work without the proc filesystem
▶ Command to mount proc:

mount -t proc nodev /proc

▶ See filesystems/proc in kernel documentation or man proc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 214/375

https://www.kernel.org/doc/html/latest/filesystems/proc.html

proc contents

▶ One directory for each running process in the system
• /proc/<pid>
• cat /proc/3840/cmdline
• It contains details about the files opened by the process, the CPU and memory

usage, etc.
▶ /proc/interrupts, /proc/devices, /proc/iomem, contain general device-related

information
▶ /proc/cmdline contains the kernel command line
▶ /proc/sys contains many files that can be written to adjust kernel parameters

• They are called sysctl. See admin-guide/sysctl/ in kernel documentation.
• Example (free the page cache and slab objects):

echo 3 > /proc/sys/vm/drop_caches

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/375

https://www.kernel.org/doc/html/latest/admin-guide/sysctl/

sysfs filesystem

▶ It allows to represent in user space the vision that the kernel has of the buses,
devices and drivers in the system

▶ It is useful for various user space applications that need to list and query the
available hardware, for example udev or mdev.

▶ All applications using sysfs expect it to be mounted in the /sys directory
▶ Command to mount /sys:

mount -t sysfs nodev /sys

▶ $ ls /sys/
block bus class dev devices firmware
fs kernel module power

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/375

Linux Root Filesystem

Minimal filesystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/375

Basic applications
▶ In order to work, a Linux system needs at least a few applications
▶ An init application, which is the first user space application started by the kernel after

mounting the root filesystem (see https://en.wikipedia.org/wiki/Init):
• The kernel tries to run the command specified by the init= command line

parameter if available.
• Otherwise, it tries to run /sbin/init, /bin/init, /etc/init and /bin/sh.
• In the case of an initramfs, it will only look for /init. Another path can be supplied

by the rdinit= kernel argument.
• If none of this works, the kernel panics and the boot process is stopped.
• The init application is responsible for starting all other user space applications and

services, and for acting as a universal parent for processes which parent terminated
before they do.

▶ A shell, to implement scripts, automate tasks, and allow a user to interact with the system
▶ Basic UNIX executables, for use in system scripts or in interactive shells: mv, cp, mkdir,

cat, modprobe, mount, ip, etc.
▶ These basic components have to be integrated into the root filesystem to make it usable

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/375

https://en.wikipedia.org/wiki/Init

Overall booting process

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/375

Overall booting process with initramfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 220/375

BusyBox

BusyBox

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 221/375

Why BusyBox?

▶ A Linux system needs a basic set of programs to work
• An init program
• A shell
• Various basic utilities for file manipulation and system configuration

▶ In normal GNU/Linux systems, these programs are provided by different projects
• coreutils, bash, grep, sed, tar, wget, modutils, etc. are all different projects
• A lot of different components to integrate
• Components not designed with embedded systems constraints in mind: they are not

very configurable and have a wide range of features
▶ BusyBox is an alternative solution, extremely common on embedded systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/375

General purpose toolbox: BusyBox

https://www.busybox.net/
▶ Rewrite of many useful UNIX command line utilities

• Created in 1995 to implement a rescue and installer system
for Debian, fitting in a single floppy disk (1.44 MB)

• Integrated into a single project, which makes it easy to work
with

• Designed with embedded systems in mind: highly
configurable, no unnecessary features

• Called the Swiss Army Knife of Embedded Linux
▶ License: GNU GPLv2
▶ Alternative: Toybox, BSD licensed

(https://en.wikipedia.org/wiki/Toybox)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 223/375

https://www.busybox.net/
https://en.wikipedia.org/wiki/Toybox

BusyBox in the root filesystem

▶ All the utilities are compiled into a single
executable, /bin/busybox

• Symbolic links to /bin/busybox are created for
each application integrated into BusyBox

▶ For a fairly featureful configuration, less than 500
KB (statically compiled with uClibc) or less than 1
MB (statically compiled with glibc).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 224/375

BusyBox - Most commands in one binary
[, [[, acpid, add-shell, addgroup, adduser, adjtimex, arch, arp, arping, ash, awk, base64, basename, bc, beep, blkdiscard, blkid,
blockdev, bootchartd, brctl, bunzip2, bzcat, bzip2, cal, cat, chat, chattr, chgrp, chmod, chown, chpasswd, chpst, chroot, chrt,
chvt, cksum, clear, cmp, comm, conspy, cp, cpio, crond, crontab, cryptpw, cttyhack, cut, date, dc, dd, deallocvt, delgroup,
deluser, depmod, devmem, df, dhcprelay, diff, dirname, dmesg, dnsd, dnsdomainname, dos2unix, dpkg, dpkg-deb, du, dumpkmap,
dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid, ether-wake, expand, expr, factor, fakeidentd, fallocate, false,
fatattr, fbset, fbsplash, fdflush, fdformat, fdisk, fgconsole, fgrep, find, findfs, flock, fold, free, freeramdisk, fsck,
fsck.minix, fsfreeze, fstrim, fsync, ftpd, ftpget, ftpput, fuser, getopt, getty, grep, groups, gunzip, gzip, halt, hd, hdparm,
head, hexdump, hexedit, hostid, hostname, httpd, hush, hwclock, i2cdetect, i2cdump, i2cget, i2cset, i2ctransfer, id, ifconfig,
ifdown, ifenslave, ifplugd, ifup, inetd, init, insmod, install, ionice, iostat, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, ipneigh,
iproute, iprule, iptunnel, kbd_mode, kill, killall, killall5, klogd, last, less, link, linux32, linux64, linuxrc, ln, loadfont,
loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr, ls, lsattr, lsmod, lsof, lspci, lsscsi, lsusb, lzcat, lzma,
lzop, makedevs, makemime, man, md5sum, mdev, mesg, microcom, mim, mkdir, mkdosfs, mke2fs, mkfifo, mkfs.ext2, mkfs.minix, mkfs.vfat,
mknod, mkpasswd, mkswap, mktemp, modinfo, modprobe, more, mount, mountpoint, mpstat, mt, mv, nameif, nanddump, nandwrite,
nbd-client, nc, netstat, nice, nl, nmeter, nohup, nologin, nproc, nsenter, nslookup, ntpd, nuke, od, openvt, partprobe, passwd,
paste, patch, pgrep, pidof, ping, ping6, pipe_progress, pivot_root, pkill, pmap, popmaildir, poweroff, powertop, printenv, printf,
ps, pscan, pstree, pwd, pwdx, raidautorun, rdate, rdev, readahead, readlink, readprofile, realpath, reboot, reformime,
remove-shell, renice, reset, resize, resume, rev, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-init, run-parts, runlevel,
runsv, runsvdir, rx, script, scriptreplay, sed, sendmail, seq, setarch, setconsole, setfattr, setfont, setkeycodes, setlogcons,
setpriv, setserial, setsid, setuidgid, sh, sha1sum, sha256sum, sha3sum, sha512sum, showkey, shred, shuf, slattach, sleep, smemcap,
softlimit, sort, split, ssl_client, start-stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svc, svlogd, svok, swapoff,
swapon, switch_root, sync, sysctl, syslogd, tac, tail, tar, taskset, tc, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time,
timeout, top, touch, tr, traceroute, traceroute6, true, truncate, ts, tty, ttysize, tunctl, ubiattach, ubidetach, ubimkvol,
ubirename, ubirmvol, ubirsvol, ubiupdatevol, udhcpc, udhcpc6, udhcpd, udpsvd, uevent, umount, uname, unexpand, uniq, unix2dos,
unlink, unlzma, unshare, unxz, unzip, uptime, users, usleep, uudecode, uuencode, vconfig, vi, vlock, volname, w, wall, watch,
watchdog, wc, wget, which, who, whoami, whois, xargs, xxd, xz, xzcat, yes, zcat, zcip

Source: run /bin/busybox - July 2021 status
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 225/375

Configuring BusyBox

▶ Get the latest stable sources from https://busybox.net
▶ Configure BusyBox (creates a .config file):

• make defconfig
Good to begin with BusyBox.
Configures BusyBox with all options for regular users.

• make allnoconfig
Unselects all options. Good to configure only what you need.

▶ make menuconfig (text)
Same configuration interfaces as the ones used by the Linux kernel (though older
versions are used, causing make xconfig to be broken in recent distros).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/375

https://busybox.net

BusyBox make menuconfig

You can choose:
▶ the commands to compile,
▶ and even the command options and

features that you need!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/375

Compiling BusyBox

▶ Set the cross-compiler prefix in the configuration interface:
Settings -> Build Options -> Cross Compiler prefix
Example: arm-linux-

▶ Set the installation directory in the configuration interface:
Settings -> Installation Options -> BusyBox installation prefix

▶ Add the cross-compiler path to the PATH environment variable:
export PATH=$HOME/x-tools/arm-unknown-linux-uclibcgnueabi/bin:$PATH

▶ Compile BusyBox:
make

▶ Install it (this creates a UNIX directory structure with symbolic links to the
busybox executable):
make install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 228/375

Applet highlight: BusyBox init

▶ BusyBox provides an implementation of an init program
▶ Simpler than the init implementation found on desktop/server systems (SysV init

or systemd)
▶ A single configuration file: /etc/inittab

• Each line has the form <id>::<action>:<process>

▶ Allows to start system services at startup, to control system shutdown, and to
make sure that certain services are always running on the system.

▶ See examples/inittab in BusyBox for details on the configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 229/375

https://elixir.bootlin.com/busybox/latest/source/examples/inittab

Applet highlight - BusyBox vi

▶ If you are using BusyBox, adding vi support
only adds about 20K

▶ You can select which exact features to compile
in.

▶ Users hardly realize that they are using a
lightweight vi version!

▶ Tip: you can learn vi on the desktop, by
running the vimtutor command.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 230/375

Practical lab - A tiny embedded system

▶ Make Linux boot on a directory on your
workstation, shared by NFS

▶ Create and configure a minimalistic Linux
embedded system

▶ Install and use BusyBox
▶ System startup with /sbin/init

▶ Set up a simple web interface
▶ Use shared libraries

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 231/375

Block filesystems

Block filesystems

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/375

Block filesystems

Block devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/375

Block vs. raw flash

▶ Storage devices are classified in two main types: block devices and raw flash
devices

• They are handled by different subsystems and different filesystems
▶ Block devices can be read and written to on a per-block basis, in random order,

without erasing.
• Hard disks, RAM disks
• USB keys, SSD, SD cards, eMMC: these are based on flash storage, but have an

integrated controller that emulates a block device, managing the flash in a
transparent way.

▶ Raw flash devices are driven by a controller on the SoC. They can be read, but
writing requires prior erasing, and often occurs on a larger size than the “block”
size.

• NOR flash, NAND flash

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 234/375

Block device list

▶ The list of all block devices available in the system can be found in
/proc/partitions

$ cat /proc/partitions
major minor #blocks name

179 0 3866624 mmcblk0
179 1 73712 mmcblk0p1
179 2 3792896 mmcblk0p2
8 0 976762584 sda
8 1 1060258 sda1
8 2 975699742 sda2

▶ /sys/block/ also stores information about each block device, for example
whether it is removable storage or not.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 235/375

Partitioning

▶ Block devices can be partitioned to store different parts of a system
▶ The partition table is stored inside the device itself, and is read and analyzed

automatically by the Linux kernel
• mmcblk0 is the entire device
• mmcblk0p2 is the second partition of mmcblk0

▶ Two partition table formats:
• MBR, the legacy format
• GPT, the new format, now used by all modern operating systems, supporting disks

bigger than 2 TB.
▶ Numerous tools to create and modify the partitions on a block device: fdisk,

cfdisk, sfdisk, parted, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 236/375

Transfering data to a block device
▶ It is often necessary to transfer data to or from a block device in a raw way

• Especially to write a filesystem image to a block device
▶ This directly writes to the block device itself, bypassing any filesystem layer.
▶ The block devices in /dev/ allow such raw access
▶ dd (disk duplicate) is the tool of choice for such transfers:

• dd if=/dev/mmcblk0p1 of=testfile bs=1M count=16
Transfers 16 blocks of 1 MB from /dev/mmcblk0p1 to testfile

• dd if=testfile of=/dev/sda2 bs=1M seek=4
Transfers the complete contents of testfile to /dev/sda2, by blocks of 1 MB, but
starting at offset 4 MB in /dev/sda2

• Typical mistake: copying a file (which is not a filesystem image) to a filesystem
without mounting it first:
dd if=zImage of=/dev/sde1
Instead, you should use:
sudo mount /dev/sde1 /boot
cp zImage /boot/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 237/375

Block filesystems

Available block filesystems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/375

Standard Linux filesystem format: ext2, ext3, ext4

▶ The standard filesystem used on Linux systems is the series of ext{2,3,4}
filesystems

• ext2 (CONFIG_EXT2_FS)
• ext3, brought journaling (explained next slide) compared to ext2, now obsoleted by

ext4.
• ext4 (CONFIG_EXT4_FS), mainly brought performance improvements and support for

very big partitions.
▶ It supports all features Linux needs in a root filesystem: permissions, ownership,

device files, symbolic links, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 239/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EXT2_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EXT4_FS

Journaled filesystems

▶ Unlike simpler filesystems (ext2, vfat...),
designed to stay in a coherent state even after
system crashes or a sudden poweroff.

▶ Writes are first described in the journal before
being committed to files (can be all writes, or
only metadata writes depending on the
configuration)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 240/375

Filesystem recovery after crashes

▶ Thanks to the journal, the recovery at boot
time is quick, since the operations in progress
at the moment of the unclean shutdown are
clearly identified. There’s no need for a full
filesystem check.

▶ Does not mean that the latest writes made it
to the storage: this depends on syncing the
changes to the filesystem.

See https://en.wikipedia.org/wiki/
Journaling_file_system for further details.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 241/375

https://en.wikipedia.org/wiki/Journaling_file_system
https://en.wikipedia.org/wiki/Journaling_file_system

Other journaled Linux/UNIX filesystems

▶ btrfs (CONFIG_BTRFS_FS), the most actively developed filesystem for Linux. It
integrates numerous features: data checksuming, integrated volume management,
snapshots, etc.

▶ XFS (CONFIG_XFS_FS), high-performance filesystem inherited from SGI IRIX, still
actively developed.

▶ JFS (CONFIG_JFS_FS), inherited from IBM AIX. No longer actively developed,
provided mainly for compatibility.

▶ reiserFS (CONFIG_REISERFS_FS), used to be a popular filesystem, but its latest
version Reiser4 was never merged upstream.

▶ ZFS, provides standard and advanced filesystem and volume management (CoW,
snapshot, etc.). Due to license it cannot be mainlined into Linux but present into
few distributions (see OpenZFS).

All those filesystems provide the necessary functionalities for Linux systems: symbolic
links, permissions, ownership, device files, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 242/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_BTRFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_XFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_JFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_REISERFS_FS

F2FS: Flash-Friendly Filesystem

CONFIG_F2FS_FS, https://en.wikipedia.org/wiki/F2FS
▶ Filesystem that takes into account the characteristics of flash-based storage:

eMMC, SD cards, SSD, etc.
▶ Developed and contributed by Samsung
▶ Now supporting transparent compression (LZO, LZ4, zstd) and encryption.
▶ For optimal results, need a number of details about the storage internal behavior

which may not easy to get
▶ Benchmarks: best performer on flash devices most of the time:

See https://lwn.net/Articles/520003/

▶ Not as widely used as ext4 and btrfs, even on flash-based storage.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 243/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_F2FS_FS
https://en.wikipedia.org/wiki/F2FS
https://lwn.net/Articles/520003/

Read-only filesystems

SquashFS: CONFIG_SQUASHFS
▶ Read-only, compressed filesystem for block devices. Fine for parts of a filesystem

which can be read-only (kernel, binaries...)
▶ Used in most live CDs and live USB distributions
▶ Supports several compression algorithms (LZO, XZ, etc.)
▶ Gives priority to compression ratio vs read performance

EROFS: CONFIG_EROFS_FS
▶ https://en.wikipedia.org/wiki/EROFS

▶ Gives priority to read performance vs compression
See a comparison at https://blog.sigma-star.at/post/2022/07/squashfs-erofs/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_SQUASHFS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EROFS_FS
https://en.wikipedia.org/wiki/EROFS
https://blog.sigma-star.at/post/2022/07/squashfs-erofs/

Our advice for choosing the best filesystem

▶ Some filesystems will work better than others depending on how you use them.
▶ For example, reiserFS had the reputation to be best at handling many small files.
▶ ext2 is great in small partitions and on systems with little RAM.
▶ Fortunately, filesystems are easy to benchmark, being transparent to applications:

• Format your storage with each filesystem
• Copy your data to it
• Run your system on it and benchmark its performance.
• Keep the one working best in your case.

▶ For read/write partitions, a good default choice would be ext4, and then try
btrfs and f2fs if you need extra performance.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/375

Compatibility filesystems

Linux also supports several other filesystem formats, mainly to be interoperable with
other operating systems:
▶ vfat (CONFIG_VFAT_FS) for compatibility with the FAT filesystem used in the

Windows world and on numerous removable devices
• Also convenient to store bootloader binaries (FAT easy to understand for ROM code)
• This filesystem does not support features like permissions, ownership, symbolic links,

etc. Cannot be used for a Linux root filesystem.
• Linux now supports the exFAT filesystem too (CONFIG_EXFAT_FS).

▶ ntfs (CONFIG_NTFS_FS) for compatibility with Windows NTFS filesystem.
▶ hfs (CONFIG_HFS_FS) for compatibility with the MacOS HFS filesystem.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 246/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_VFAT_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EXFAT_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NTFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_HFS_FS

tmpfs: filesystem in RAM

CONFIG_TMPFS

▶ Not a block filesystem of course!
▶ Perfect to store temporary data in RAM: system log files, connection data,

temporary files...
▶ More space-efficient than ramdisks: files are directly in the file cache, grows and

shrinks to accommodate stored files
▶ How to use: choose a name to distinguish the various tmpfs instances you have

(unlike in most other filesystems, each tmpfs instance is different). Examples:
mount -t tmpfs run /var/run
mount -t tmpfs shm /dev/shm

▶ See filesystems/tmpfs in kernel documentation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 247/375

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_TMPFS
https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html

Block filesystems

Using block filesystems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 248/375

Creating ext2/ext4 filesystems

▶ To create an empty ext2/ext4 filesystem on a block device or inside an
already-existing image file

• mkfs.ext2 /dev/sdb1
• mkfs.ext4 /dev/sda3
• mkfs.ext2 disk.img

▶ To create a filesystem image from a directory containing all your files and
directories

• Use the genext2fs tool, from the package of the same name
• This tool only supports ext2. Alternative for other filesystems: create a disk image,

format it, mount it (see next slides), copy contents and umount.
• genext2fs -d rootfs/ rootfs.img
• Your image is then ready to be transferred to your block device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 249/375

Mounting filesystem images

▶ Once a filesystem image has been created, one can access and modifies its
contents from the development workstation, using the loop mechanism

▶ Example:
genext2fs -d rootfs/ rootfs.img
mkdir /tmp/tst
mount -t ext2 -o loop rootfs.img /tmp/tst

▶ In the /tmp/tst directory, one can access and modify the contents of the
rootfs.img file.

▶ This is possible thanks to loop, which is a kernel driver that emulates a block
device with the contents of a file.

▶ Note: -o loop no longer necessary with recent versions of mount from GNU
Coreutils. Not true with BusyBox mount.

▶ Do not forget to run umount before using the filesystem image!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 250/375

Creating squashfs filesystems

▶ Need to install the squashfs-tools package
▶ Can only create an image: creating an empty squashfs filesystem would be

useless, since it’s read-only.
▶ To create a squashfs image:

• mksquashfs data/ data.sqfs -noappend
• -noappend: re-create the image from scratch rather than appending to it

▶ Examples mounting a squashfs filesystem:
• Same way as for other block filesystems
• mount -o loop data.sqfs /mnt (filesystem image on the host)
• mount /dev/<device> /mnt (on the target)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 251/375

Mixing read-only and read-write filesystems

Good idea to split your block storage into:
▶ A compressed read-only partition (SquashFS)

Typically used for the root filesystem (binaries,
kernel...).
Compression saves space. Read-only access protects
your system from mistakes and data corruption.

▶ A read-write partition with a journaled filesystem (like
ext4)
Used to store user or configuration data.
Journaling guarantees filesystem integrity after power
off or crashes.

▶ Ram storage for temporary files (tmpfs)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 252/375

Issues with flash-based block storage

▶ Flash storage made available only through a block interface.
▶ Hence, no way to access a low level flash interface and use the Linux filesystems

doing wear leveling.
▶ No details about the layer (Flash Translation Layer) they use. Details are kept as

trade secrets, and may hide poor implementations.
▶ Not knowing about the wear leveling algorithm, it is highly recommended to limit

the number of writes to these devices.
▶ Using industrial grade storage devices (MMC/SD, USB) is also recommended.

See the Optimizing Linux with cheap flash drives article from Arnd Bergmann and try
his flashbench tool (http://git.linaro.org/people/arnd/flashbench.git/about/)
for finding out the erase block and page size for your storage, and optimizing your
partitions and filesystems for best performance. Note that some SD cards report their
erase block size, available in /sys/bus/mmc/devices/<dev>/preferred_erase_size.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 253/375

https://lwn.net/Articles/428584/
http://git.linaro.org/people/arnd/flashbench.git/about/

Practical lab - Block filesystems

▶ Creating partitions on your block storage
▶ Booting your system with a mix of filesystems:

SquashFS for the root filesystem (including
applications), ext4 for configuration and user
data, and tmpfs for temporary system files.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 254/375

Embedded Linux system development

Embedded Linux system
development

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/375

Contents

▶ Using open-source components
▶ Tools for the target device

• Networking
• System utilities
• Language interpreters
• Audio, video and multimedia
• Graphical toolkits
• Databases
• Web browsers

▶ System building

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 256/375

Embedded Linux system development

Leveraging open-source components in an
Embedded Linux system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 257/375

Third party libraries and applications

▶ One of the advantages of embedded Linux is the wide range of third-party libraries
and applications that one can leverage in its product

• They are freely available, freely distributable, and thanks to their open-source
nature, they can be analyzed and modified according to the needs of the project

▶ However, efficiently re-using these components is not always easy. One must:
• Find these components
• Choose the most appropriate ones
• Cross-compile them
• Integrate them in the embedded system and with the other applications

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/375

Find existing components

▶ Look at the list of software packaged by embedded Linux build systems
• These are typically chosen for their suitability to embedded systems

▶ Look at other embedded Linux products, and see what their components are (if
possible).

▶ This presentation will also feature a list of components for common needs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 259/375

Choosing components

Not all free software components are necessarily good to re-use. One must pay
attention to:
▶ Vitality of the developer and user communities. This vitality ensures long-term

maintenance of the component, and relatively good support. It can be measured
by looking at the mailing-list traffic and the version control system activity.

▶ Quality of the component. Typically, if a component is already available through
embedded build systems, and has a dynamic user community, it probably means
that the quality is relatively good.

▶ License. The license of the component must match your licensing constraints.
For example, GPL libraries cannot be used in proprietary applications.

▶ Technical requirements. Of course, the component must match your technical
requirements. But don’t forget that you can improve the existing components if a
feature is missing!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/375

Licenses (1)

▶ All software that are under a free software license give four freedoms to all users
• Freedom to use
• Freedom to study
• Freedom to copy
• Freedom to modify and distribute modified copies

▶ See https://www.gnu.org/philosophy/free-sw.html for a definition of Free
Software

▶ Open Source software, as per the definition of the Open Source Initiative, are
technically similar to Free Software in terms of freedoms

▶ See https://www.opensource.org/docs/osd for the definition of Open Source
Software

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 261/375

https://www.gnu.org/philosophy/free-sw.html
https://www.opensource.org/docs/osd

Licenses (2)

▶ Free Software licenses fall in two main categories
• The copyleft licenses
• The non-copyleft licenses

▶ The concept of copyleft is to ask for reciprocity in the freedoms
given to a user.

▶ The result is that when you receive a software under a copyleft
free software license and distribute modified versions of it, you
must do so under the same license

• Same freedoms to the new users
• It’s an incentive to contribute back your changes instead of

keeping them secret
▶ Non-copyleft licenses have no such requirements, and modified

versions can be made proprietary, but they still require
attribution

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 262/375

GPL

▶ GNU General Public License
▶ Covers around 55% of the free software projects

• Including the Linux kernel, BusyBox and many applications
▶ Is a copyleft license

• Requires derivative works to be released under the same license
• Programs linked with a library released under the GPL must also be released under

the GPL
▶ Some programs covered by version 2 (Linux kernel, BusyBox, U-Boot...)
▶ A number of programs are covered by version 3, released in 2007: gcc, bash, grub,

samba, Qt...
• Major change for the embedded market: the requirement that the user must be able

to run the modified versions on the device, if the device is a consumer device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 263/375

GPL: redistribution

▶ No obligation when the software is not distributed
• You can keep your modifications secret until the product delivery

▶ It is then authorized to distribute binary versions, if one of the following
conditions is met:

• Convey the binary with a copy of the source on a physical medium
• Convey the binary with a written offer valid for 3 years that indicates how to fetch

the source code
• Convey the binary with the network address of a location where the source code can

be found
• See section 6. of the GPL license

▶ In all cases, the attribution and the license must be preserved
• See sections 4. and 5.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 264/375

LGPL

▶ GNU Lesser General Public License
▶ Covers around 10% of the free software projects
▶ A copyleft license

• Modified versions must be released under the same license
• But, programs linked against a library under the LGPL do not need to be released

under the LGPL and can be kept proprietary.
• However, the user must keep the ability to update the library independently from the

program. Dynamic linking is the easiest solution. Statically linked executables are
only possible if the developer provides a way to relink with an update (with source
code or linkable object files).

• If this constraint is too strong for you, use a library with a more permissive license if
you can (such as the musl C library, with MIT license).

▶ Used instead of the GPL for most of the libraries, including the C libraries
▶ Also available in two versions, v2 and v3

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/375

Non-copyleft licenses

▶ A large family of non-copyleft licenses that are relatively similar in their
requirements

▶ A few examples
• Apache license (around 4%)
• BSD license (around 6%)
• MIT license (around 4%)
• X11 license
• Artistic license (around 9 %)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 266/375

BSD license

Copyright (c) <year>, <copyright holder>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the <organization> nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 267/375

Is this free software?

▶ Most of the free software projects are covered by about 10 well-known licenses, so
it is fairly easy for the majority of projects to get a good understanding of the
license

▶ Check Free Software Foundation’s opinion
https://www.fsf.org/licensing/licenses/

▶ Check Open Source Initiative’s opinion
https://www.opensource.org/licenses

▶ Otherwise, read the license text

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 268/375

https://www.fsf.org/licensing/licenses/
https://www.opensource.org/licenses

Licensing: examples

▶ You distribute a system including GPL or LGPL software
• You must be ready to distribute the corresponding source code to your customers.

▶ You make modifications to the Linux kernel (to add drivers or adapt to your
board), to BusyBox, U-Boot or other GPL software

• You must release the modified versions under the same license.
▶ You make modifications to the C library or any other LGPL library

• You must release the modified versions under the same license
▶ You create an application that relies on LGPL libraries

• You can keep your application proprietary, but you must link dynamically with the
LGPL libraries

▶ You make modifications to non-copyleft licensed software
• You can keep your modifications proprietary, but you must still credit the authors

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 269/375

Respect free software licenses (1)

▶ Free Software is not public domain software, the distributors have obligations due
to the licenses

• Before using a free software component, make sure the license matches your project
constraints

• Make sure to keep a complete list of the free software packages you use, the original
version numbers you used, and to keep your modifications and adaptations
well-separated from the original version.

• Buildroot and Yocto Project can generate this list for you!
• Conform to the license requirements before shipping the product to the customers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/375

Respect free software licenses (2)

▶ Free Software licenses have been enforced successfully in courts
▶ Risks:

• Users complaining to copyright owners, who could sue you.
• A competitor could look for copyright violations in your firmware (binary scanning

tools exist) to try to have your product withdrawn from the market until this is fixed.
▶ Organizations which can help solving issues:

• Software Freedom Law Center, https://www.softwarefreedom.org/
• Software Freedom Conservancy, https://sfconservancy.org/

▶ Ask your legal department!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 271/375

https://www.softwarefreedom.org/
https://sfconservancy.org/

Keeping changes separate (1)

▶ When integrating existing open-source components in your project, it is
sometimes needed to make modifications to them

• Better integration, reduced footprint, bug fixes, new features, etc.
▶ Instead of mixing these changes, it is much better to keep them separate from the

original component version
• If the component needs to be upgraded, easier to know what modifications were

made to the component
• If support from the community is requested, important to know how different the

component we’re using is from the upstream version
• Makes contributing the changes back to the community possible

▶ It is even better to keep the various changes made on a given component separate
• Easier to review and to update to newer versions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 272/375

Keeping changes separate (2)

▶ The simplest solution is to use Quilt
• Quilt is a tool that allows to maintain a stack of patches over source code
• Makes it easy to add, remove modifications from a patch, to add and remove

patches from stack and to update them
• The stack of patches can be integrated into your version control system
• https://savannah.nongnu.org/projects/quilt/

▶ Another solution is to use a version control system
• Import the original component version into your version control system
• Maintain your changes in a separate branch

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 273/375

https://savannah.nongnu.org/projects/quilt/

Embedded Linux system development

Tools for the target device: Networking

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 274/375

ssh server and client: Dropbear

https://matt.ucc.asn.au/dropbear/dropbear.html

▶ Very small memory footprint ssh server for embedded systems
▶ Satisfies most needs. Both client and server!
▶ Size: 204 KB, dynamically compiled with musl on ARM

(Buildroot 2020.11 with Bootlin musl toolchain)
▶ Useful to:

• Get a remote console on the target device
• Copy files to and from the target device (scp or rsync).

▶ An alternative to OpenSSH, used on desktop and server systems.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 275/375

https://matt.ucc.asn.au/dropbear/dropbear.html

Web servers

▶ BusyBox http server: https://busybox.net
• Tiny: only adds 20 K to BusyBox (dynamically linked on arm,

with all features enabled.)
• Sufficient features for many devices with a web interface,

including CGI, http authentication, script support (like PHP, with
a separate interpreter), reverse proxy...

• License: GPL
▶ Other possibilities: lightweight servers like Boa, thttpd, lighttpd,

nginx, etc
▶ Some products are using Node.js, which is lightweight enough to

be used. low.js (https://github.com/neonious/lowjs) is even
lighter, and is available on Linux and microcontrollers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 276/375

https://busybox.net
https://github.com/neonious/lowjs

Network utilities (1)

▶ avahi is an implementation of Multicast DNS Service Discovery, that allows
programs to publish and discover services on a local network

▶ bind, a DNS server
▶ iptables, the user space tools associated to the Linux firewall, Netfilter
▶ iw and wireless tools, the user space tools associated to Wireless devices
▶ netsnmp, implementation of the SNMP protocol (device monitoring)
▶ chrony, implementation of the Network Time Protocol, for clock synchronization
▶ openssl, a toolkit for SSL and TLS connections

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 277/375

Network utilities (2)

▶ pppd, implementation of the Point to Point Protocol, used for dial-up connections
▶ samba, implements the SMB and CIFS protocols, used by Windows to share files

and printers
▶ coherence, a UPnP/DLNA implementation
▶ vsftpd, proftpd, FTP servers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 278/375

Embedded Linux system development

Tools for the target device: System utilities

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 279/375

System utilities

▶ dbus, an inter-application object-oriented communication bus
▶ gpsd, a daemon to interpret and share GPS data
▶ libusb, a user space library for accessing USB devices without writing an in-kernel

driver
▶ Utilities for kernel subsystems: i2c-tools for I2C, input-tools for input, mtd-utils

for MTD devices, usbutils for USB devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 280/375

Embedded Linux system development

Tools for the target device: Language
interpreters

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 281/375

Language interpreters

▶ Interpreters for the most common scripting languages are available. Useful for
• Application development
• Web services development
• Scripting

▶ Supported languages
• Shell (bash, sh...)
• Lua, easy to embed in C applications
• Python
• Perl
• Ruby
• TCL
• PHP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 282/375

Embedded Linux system development

Tools for the target device: Audio, video and
multimedia

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 283/375

Audio, video and multimedia

▶ GStreamer, a multimedia framework
• Allows to decode/encode a wide variety of codecs.
• Supports hardware encoders and decoders through plugins, proprietary/specific

plugins are often provided by SoC vendors.
▶ alsa-lib, the user space library associated to the ALSA kernel sound subsystem
▶ Directly using encoding and decoding libraries, if you decide not to use

GStreamer:
• libavcodec: from the ffmpeg project, used in players such vlc and mplayer, and

supporting most audio and video codecs (mpeg4, h264, vp8, vp9...)
• libvpx: vp8 and vp9 video encoding
• libflac: FLAC: Free Lossless Audio Codec
• libopus: latest greatest lossy audio codec
• libvorbis: lossy audio codec, obsoleted by Opus
• libspeex: audio codec optimized for human speech, obsoleted by Opus
• libmad: to decode mp3 audio

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 284/375

Embedded Linux system development

Tools for the target device: Graphical toolkits

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 285/375

Embedded Linux system development

Graphical toolkits: “Low-level” solutions and
layers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 286/375

X.org - KDrive

▶ Stand-alone simplified version of the X server, for embedded
systems

• Formerly know as Tiny-X
• Kdrive is integrated in the official X.org server

▶ Works on top of the Linux frame buffer, thanks to the Xfbdev
variant of the server

▶ Real X server
• Fully supports the X11 protocol: drawing, input event handling,

etc.
• Allows to use any existing X11 application or library

▶ Still maintained, but now legacy.
▶ X11 license
▶ https://www.x.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 287/375

https://www.x.org

Kdrive: architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 288/375

Kdrive: usage

▶ Can be directly programmed using Xlib / XCB
• Low-level graphic library, rarely used

▶ Or, usually used with a toolkit on top of it
• Gtk
• Qt
• Enlightenment Foundation Libraries
• Others: Fltk, WxEmbedded, etc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 289/375

Wayland

▶ A simpler replacement for X
▶ Wayland is a protocol for a compositor to talk to its clients as

well as a C library implementation of that protocol.
▶ Weston: a minimal and fast reference implementation of a

Wayland compositor, and is suitable for many embedded and
mobile use cases.

▶ Most graphical toolkits (Gtk, Qt, EFL...) support Wayland now.
▶ Most desktop distributions support it: Fedora, Debian, Ubuntu

(from 21.04 on)
▶ https://en.wikipedia.org/wiki/Wayland_(display_server_

protocol)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 290/375

https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)
https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)

Wayland: architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 291/375

Embedded Linux system development

Graphical toolkits: “High-level” solutions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 292/375

Gtk

▶ The famous toolkit, providing widget-based high-level APIs to
develop graphical applications

▶ Standard API in C, but bindings exist for various languages:
C++, Python, etc.

▶ Works on top of X.org and Wayland.
▶ No windowing system, a lightweight window manager needed to

run several applications. Possible solution: Matchbox.
▶ License: LGPL
▶ Multiplatform: Linux, MacOS, Windows.
▶ https://www.gtk.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 293/375

https://www.gtk.org

Gtk stack components

▶ Glib, core infrastructure
• Object-oriented infrastructure GObject
• Event loop, threads, asynchronous queues, plug-ins, memory allocation, I/O

channels, string utilities, timers, date and time, internationalization, simple XML
parser, regular expressions

• Data types: memory slices and chunks, linked lists, arrays, trees, hash tables, etc.
▶ Pango, internationalization of text handling
▶ ATK, accessibility toolkit
▶ Cairo, vector graphics library
▶ Gtk+, the widget library itself
▶ The Gtk stack is a complete framework to develop applications

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 294/375

Gtk example (Inkscape)

Unfortunately GTK is losing traction in embedded.
Mer, the descendent of Maemo, a GTK based framework for tablets and phones, has
now been implemented in EFL (see next slides).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 295/375

Qt (1)

▶ The other famous toolkit, providing widget-based
high-level APIs to develop graphical applications

▶ Implemented in C++
• the C++ library is required on the target system
• standard API in C++, but with bindings for other

languages
▶ Works either on top of

• EGLFS
• Linux framebuffer
• X11
• Wayland

▶ Multiplatform: Linux, MacOS, Windows.
▶ https://www.qt.io/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 296/375

https://www.qt.io/

Qt (2)

▶ Qt is more than just a graphical toolkit, it also offers a complete development
framework: data structures, threads, network, databases, XML, etc.

▶ See our presentation Qt for non graphical applications presentation at ELCE 2011
(Thomas Petazzoni): https://j.mp/W4PK85

▶ Qt Embedded has an integrated windowing system, allowing several applications
to share the same screen

▶ Very well documented
▶ License: mix of LGPLv3 and GPLv3 (and LGPLv2 and GPLv2 for some parts),

making it difficult to implement non GPL applications. According to customers,
the commercial license is very expensive (about 5 USD per unit for volumes in
thousands of devices).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 297/375

https://j.mp/W4PK85

Qt’s usage

Source: https://www.qt.io/qt-for-device-creation/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 298/375

https://www.qt.io/qt-for-device-creation/

Other graphical toolkits

▶ Enlightenment Foundation Libraries (EFL) / Elementary
• Very powerful. Supported by Samsung, Intel and Free.fr.
• Work on top of X or Wayland.
• License: BSD
• https://www.enlightenment.org/about-efl

▶ Fast Light Toolkit (FLTK)
• Very lightweight, multi-platform, widget library written in C++
• The ”hello” program fits in 100 KiB, statically linked
• Work on top of X or Wayland (port in progress).
• License: LGPL
• https://www.fltk.org/

See https://en.wikipedia.org/wiki/List_of_widget_toolkits

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 299/375

https://www.enlightenment.org/about-efl
https://www.fltk.org/
https://en.wikipedia.org/wiki/List_of_widget_toolkits

Further details on Linux graphics

Check out the freely available materials from our
training course on Linux graphics:
▶ Image processing theory, hardware, kernel and

userspace aspects...
▶ More than 200 pages

https://bootlin.com/training/graphics

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 300/375

https://bootlin.com/training/graphics

Embedded Linux system development

Tools for the target device: Databases

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/375

Lightweight database - SQLite

https://www.sqlite.org

▶ SQLite is a small C library that implements a self-contained, embeddable,
lightweight, zero-configuration SQL database engine

▶ The database engine of choice for embedded Linux systems
• Can be used as a normal library
• Can be directly embedded into a application, even a proprietary one since SQLite is

released in the public domain

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 302/375

https://www.sqlite.org

Embedded Linux system development

Tools for the target device: Web browsers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 303/375

WebKit

https://webkit.org/

▶ Web browser engine. Application framework that can be used to
develop web browsers or add HTML rendering capability to your
applications. You could also replace your application by a
full-screen browser (easier to implement).

▶ License: portions in LGPL and others in BSD. Proprietary
applications allowed.

▶ Used by many web browsers: Safari, iPhone and Android default
browsers ... Google Chrome now uses a fork of its WebCore
component). Used by e-mail clients too to render HTML.

▶ Multiple graphical back-ends: Qt, GTK, EFL...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 304/375

https://webkit.org/

Embedded Linux system development

System building

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 305/375

System building: goal and solutions

▶ Goal
• Integrate all the software components, both

third-party and in-house, into a working root
filesystem

• It involves the download, extraction,
configuration, compilation and installation of
all components, and possibly fixing issues and
adapting configuration files

▶ Several solutions
• Manually
• System building tools
• Distributions or ready-made filesystems

Penguin picture: https://bit.ly/1PwDklz

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 306/375

https://bit.ly/1PwDklz

System building: manually

▶ Manually building a target system involves downloading, configuring, compiling
and installing all the components of the system.

▶ All the libraries and dependencies must be configured, compiled and installed in
the right order.

▶ Sometimes, the build system used by libraries or applications is not very
cross-compile friendly, so some adaptations are necessary.

▶ There is no infrastructure to reproduce the build from scratch, which might cause
problems if one component needs to be changed, if somebody else takes over the
project, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 307/375

System building: manually (2)

▶ Manual system building is not recommended for production projects
▶ However, using automated tools often requires the developer to dig into specific

issues
▶ Having a basic understanding of how a system can be built manually is therefore

very useful to fix issues encountered with automated tools
• We will first study manual system building, and during a practical lab, create a

system using this method
• Then, we will study the automated tools available, and use one of them during a lab

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 308/375

System foundations

▶ A basic root file system needs at least
• A traditional directory hierarchy, with /bin, /etc, /lib, /root, /usr/bin,

/usr/lib, /usr/share, /usr/sbin, /var, /sbin
• A set of basic utilities, providing at least the init program, a shell and other

traditional UNIX command line tools. This is usually provided by BusyBox
• The C library and the related libraries (thread, math, etc.) installed in /lib
• A few configuration files, such as /etc/inittab, and initialization scripts in

/etc/init.d

▶ On top of this foundation common to most embedded Linux systems, we can add
third-party or in-house components

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 309/375

Target and build spaces

▶ The system foundation, BusyBox and C library, are the core of the target root
filesystem

▶ However, when building other components, one must distinguish two directories
• The target space, which contains the target root filesystem, everything that is

needed for execution of the application
• The build space, which will contain a lot more files than the target space, since it is

used to keep everything needed to compile libraries and applications. So we must
keep at least the headers, binaries and configuration files.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 310/375

Build systems

Each open-source component comes with a mechanism to configure, compile and
install it
▶ A basic Makefile

• Need to read the Makefile to understand how it works and how to tweak it for
cross-compilation

▶ A build system based on the Autotools
• As this is the most common build system, we will study it in details

▶ CMake, https://cmake.org/
• More recent and simpler than the autotools. Used by (sometimes large) projects

such as KDE, KiCad, LLVM / Clang, Scribus, OpenCV, Qt (since version 6).
▶ Meson, https://mesonbuild.com/

• Even more recent. Faster and simple to use. Now used by projects such as GNOME
(partially), GTK+, Gstreamer, Mesa, Systemd, Wayland (Weston).

▶ Many more exist

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 311/375

https://cmake.org/
https://mesonbuild.com/

Autotools and friends

▶ A family of tools, which associated together form a complete and extensible build
system

• autoconf is used to handle the configuration of the software package
• automake is used to generate the Makefiles needed to build the software package
• pkgconfig is used to ease compilation against already installed shared libraries
• libtool is used to handle the generation of shared libraries in a system-independent

way
▶ Most of these tools are old and relatively complicated to use, but they are used by

a majority of free software packages today. One must have a basic understanding
of what they do and how they work.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 312/375

automake / autoconf / autoheader

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 313/375

automake / autoconf

▶ Files written by the developer
• configure.in describes the configuration options and the checks done at configure

time
• Makefile.am describes how the software should be built

▶ The configure script and the Makefile.in files are generated by autoconf and
automake respectively.

• They should never be modified directly
• They are usually shipped pre-generated in the software package, because there are

several versions of autoconf and automake, and they are not completely compatible
▶ The Makefile files are generated at configure time, before compiling

• They are never shipped in the software package.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 314/375

Configuring and compiling: native case

▶ The traditional steps to configure and compile an autotools based package are
• Configuration of the package

./configure
• Compilation of the package

make
• Installation of the package

make install

▶ Additional arguments can be passed to the ./configure script to adjust the
component configuration (run ./configure --help)

▶ Only the make install target needs to be done as root if the installation should
take place system-wide

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 315/375

Configuring and compiling: cross case (1)

▶ For cross-compilation, things are a little bit more complicated.
▶ At least some of the environment variables AR, AS, LD, NM, CC, GCC, CPP, CXX,

STRIP, OBJCOPY must be defined to point to the proper cross-compilation tools.
The host tuple is also by default used as prefix.

▶ configure script arguments:
• --host: mandatory but a bit confusing. Corresponds to the target platform the

code will run on. Example: --host=arm-linux
• --build: build system. Automatically detected.
• --target is only for tools generating code.

▶ It is also recommended to pass the --prefix argument. It defines from which
location the software will run in the target environment. We recommend /usr
instead of the default setting (/usr/local).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/375

Configuring and compiling: cross case (2)

▶ If one simply runs make install, the software will be installed in the directory
passed as --prefix. For cross-compiling, one must pass the DESTDIR argument
to specify where the software must be installed.

▶ Making the distinction between the prefix (as passed with --prefix at configure
time) and the destination directory (as passed with DESTDIR at installation time)
is very important.

export PATH=/usr/local/arm-linux/bin:$PATH
export CC=arm-linux-gcc
export STRIP=arm-linux-strip
./configure --host=arm-linux --prefix=/usr
make
make DESTDIR=$HOME/rootfs install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 317/375

Installation (1)

▶ The autotools based software packages provide both install and install-strip
make targets, used to install the software, either stripped or unstripped.

▶ For applications, the software is usually installed in <prefix>/bin, with
configuration files in <prefix>/etc and data in
<prefix>/share/<application>/

▶ The case of libraries is a little more complicated:
• In <prefix>/lib, the library itself (a .so.<version>), a few symbolic links, and the

libtool description file (a .la file)
• The pkgconfig description file in <prefix>/lib/pkgconfig
• Include files in <prefix>/include/
• Sometimes a <libname>-config program in <prefix>/bin (older alternative to

pkgconfig)
• Documentation in <prefix>/share/man or <prefix>/share/doc/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 318/375

Installation (2)
Contents of usr/lib after installation of libpng and zlib

▶ libpng libtool description files
./lib/libpng12.la
./lib/libpng.la -> libpng12.la

▶ libpng static version
./lib/libpng12.a
./lib/libpng.a -> libpng12.a

▶ libpng dynamic version
./lib/libpng.so.3.32.0
./lib/libpng12.so.0.32.0
./lib/libpng12.so.0 -> libpng12.so.0.32.0
./lib/libpng12.so -> libpng12.so.0.32.0
./lib/libpng.so -> libpng12.so
./lib/libpng.so.3 -> libpng.so.3.32.0

▶ libpng pkg-config description files
./lib/pkgconfig/libpng12.pc
./lib/pkgconfig/libpng.pc -> libpng12.pc

▶ zlib dynamic version
./lib/libz.so.1.2.3
./lib/libz.so -> libz.so.1.2.3
./lib/libz.so.1 -> libz.so.1.2.3

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 319/375

Installation in the build and target spaces

▶ From all these files, everything except documentation is necessary to build an
application that relies on libpng.

• These files will go into the build space
▶ However, only the library .so binaries in <prefix>/lib and some symbolic links

are needed to execute the application on the target.
• Only these files will go in the target space

▶ The build space must be kept in order to build other applications, to recompile
existing ones, and to debug your applications.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 320/375

pkg-config

▶ pkg-config is a tool that allows to query a small database to get information on
how to compile programs that depend on libraries

▶ The database is made of .pc files, installed by default in
<prefix>/lib/pkgconfig/.

▶ pkg-config is used by the configure script to get the library configurations
▶ It can also be used manually to compile an application:

arm-linux-gcc -o test test.c $(pkg-config --libs --cflags thelib)

▶ By default, pkg-config looks in /usr/lib/pkgconfig for the *.pc files, and
assumes that the paths in these files are correct.

▶ PKG_CONFIG_LIBDIR allows to set another location for the *.pc files.
▶ PKG_CONFIG_SYSROOT_DIR allows to prepend a directory to the paths mentioned

in the .pc files and appearing in the pkg-config output.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 321/375

Let’s find the libraries

▶ When compiling an application or a library that relies on other libraries, the build
process by default looks in /usr/lib for libraries and /usr/include for headers.

▶ The first thing to do is to set the CFLAGS and LDFLAGS environment variables:
export CFLAGS=-I/my/build/space/usr/include/
export LDFLAGS=-L/my/build/space/usr/lib

▶ The libtool files (.la files) must be modified because they include the absolute
paths of the libraries:
- libdir='/usr/lib'
+ libdir='/my/build/space/usr/lib’

▶ The PKG_CONFIG_LIBDIR environment variable must be set to the location of the
.pc files, typically /my/build/space/usr/lib/pkgconfig

▶ The PKG_CONFIG_SYSROOT_DIR variable must be set to the build space directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 322/375

Further details about autotools

See our Demystification tutorial
presentation about the GNU Autotools
by Thomas Petazzoni, 2016:
slides (101 pages!) 1, video 2

1
https://bootlin.com/pub/conferences/2016/elc/petazzoni-

autotools-tutorial/petazzoni-autotools-tutorial.pdf
2
https://youtu.be/a1NRxIA9ahA

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 323/375

https://bootlin.com/pub/conferences/2016/elc/petazzoni-autotools-tutorial/petazzoni-autotools-tutorial.pdf
https://bootlin.com/pub/conferences/2016/elc/petazzoni-autotools-tutorial/petazzoni-autotools-tutorial.pdf
https://youtu.be/a1NRxIA9ahA

Practical lab - Third party libraries and applications

▶ Manually cross-compiling applications and
libraries

▶ Learning about common techniques and issues.
▶ Compile and run an audio player application!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 324/375

System building tools: principle

▶ Different tools are available to automate the process of building a target system,
including the kernel, and sometimes the toolchain.

▶ They automatically download, configure, compile and install all the components in
the right order, sometimes after applying patches to fix cross-compiling issues.

▶ They already support a large number of packages, that should fit your main
requirements, and are easily extensible.

▶ The build becomes reproducible, which allows to easily change the configuration
of some components, upgrade them, fix bugs, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 325/375

Available system building tools

Large choice of tools
▶ Buildroot, developed by the community

https://buildroot.org
See our dedicated course and training materials:
https://bootlin.com/training/buildroot/

▶ OpenWRT, originally a fork of Buildroot for wireless routers, now a more generic project
https://openwrt.org

▶ PTXdist, developed by Pengutronix
https://www.ptxdist.org
Similar configuration interface (menuconfig), but a bit difficult to grasp at first.

▶ OpenEmbedded, more flexible but also far more complicated
https://www.openembedded.org and its industrialized version Yocto Project. See our
dedicated course and training materials: https://bootlin.com/training/yocto/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 326/375

https://buildroot.org
https://bootlin.com/training/buildroot/
https://openwrt.org
https://www.ptxdist.org
https://www.openembedded.org
https://bootlin.com/training/yocto/

Buildroot (1)

▶ Allows to build a toolchain, a root filesystem image with many
applications and libraries, a bootloader and a kernel image

• Or any combination of the previous items
▶ Supports building uClibc, glibc and musl toolchains, either built

by Buildroot, or external
▶ Over 2800 applications or libraries integrated, from basic utilities

to more elaborate software stacks: Wayland, GStreamer, Qt,
Gtk, WebKit, Python, PHP, etc.

▶ Good for small to medium size embedded systems, with a fixed
set of features

• No support for generating packages (.deb or .ipk)
• Needs complete rebuild for most configuration changes.

▶ Active community, releases published every 3 months. One LTS
release made every year (YYYY.02 so far).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 327/375

Buildroot (2)

▶ Configuration takes place through a *config
interface similar to the kernel
make menuconfig

▶ Allows to define
• Architecture and specific CPU
• Toolchain configuration
• Set of applications and libraries to integrate
• Filesystem images to generate
• Kernel and bootloader configuration

▶ Build by just running
make

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 328/375

Buildroot: adding a new package (1)

▶ A package allows to integrate a user application or library to Buildroot
▶ Each package has its own directory (such as package/gqview). This directory

contains:
• A Config.in file (mandatory), describing the configuration options for the package.

At least one is needed to enable the package. This file must be sourced from
package/Config.in

• A gqview.mk file (mandatory), describing how the package is built.
• A gqview.hash file (optional, but recommended), containing hashes for the files to

download, and for the license file.
• Patches (optional). Each file of the form *.patch will be applied as a patch.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 329/375

Buildroot: adding a new package (2)

▶ For a simple package with a single configuration option to enable/disable it, the
Config.in file looks like:

config BR2_PACKAGE_GQVIEW
bool "gqview"
depends on BR2_PACKAGE_LIBGTK2
help
GQview is an image viewer for UNIX operating systems

http://prdownloads.sourceforge.net/gqview

▶ It must be sourced from package/Config.in:

source "package/gqview/Config.in"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 330/375

Buildroot: adding new package (3)

▶ Create the gqview.mk file to describe the build steps

GQVIEW_VERSION = 2.1.5
GQVIEW_SOURCE = gqview-$(GQVIEW_VERSION).tar.gz
GQVIEW_SITE = http://prdownloads.sourceforge.net/gqview
GQVIEW_DEPENDENCIES = host-pkgconf libgtk2
GQVIEW_CONF_ENV = LIBS="-lm"
GQVIEW_LICENSE = GPL-2.0
GQVIEW_LICENSE_FILES = COPYING

$(eval $(autotools-package))

▶ The package directory and the prefix of all variables must be identical to the suffix
of the main configuration option BR2_PACKAGE_GQVIEW

▶ The autotools-package infrastructure knows how to build autotools packages.
A more generic generic-package infrastructure is available for packages not
using the autotools as their build system.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 331/375

OpenEmbedded / Yocto Project
▶ The most versatile and powerful embedded Linux build system

• A collection of recipes (.bb files)
• A tool that processes the recipes: bitbake

▶ Integrates 2000+ application and libraries, is highly configurable, can generate
binary packages to make the system customizable, supports multiple
versions/variants of the same package, no need for full rebuild when the
configuration is changed.

▶ Configuration takes place by editing various configuration files
▶ Allows to generate and maintain custom distributions
▶ Good for larger embedded Linux systems, or people looking for more

configurability and extensibility
▶ Drawbacks: very steep learning curve, very long first build.
▶ Active community, releases published every 6 months. LTS releases available

(supported at least 2 years, 4 years for ”Dunfell”).
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 332/375

Distributions - Debian

Debian GNU/Linux, https://www.debian.org
▶ Provides the easiest environment for quickly building prototypes and

developing applications. Countless runtime and development packages
available.

▶ But probably too costly to maintain and unnecessarily big for production
systems.

▶ Available on multiple architectures: ARM (armel, armhf, arm64), MIPS,
PowerPC, RISC-V (in progress)...

▶ Software is compiled natively by default.
▶ Use the debootstrap command to build a root filesystem for your

architecture, with a custom selection of packages.
▶ ELBE (https://elbe-rfs.org) is a more advanced environment for

generating custom root filesystems based on Debian. See our blog post 1.
1
https://bootlin.com/blog/elbe-automated-building-of-ubuntu-images-for-a-raspberry-pi-3b/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 333/375

https://www.debian.org
https://elbe-rfs.org
https://bootlin.com/blog/elbe-automated-building-of-ubuntu-images-for-a-raspberry-pi-3b/

Distributions - Others

Fedora
▶ https://fedoraproject.org/wiki/Architectures/ARM

▶ Supported on various recent ARM boards (such as
Beaglebone Black and Raspberry Pi)

▶ Supports QEMU emulated ARM boards too (Versatile
Express board)

▶ Shipping the same version as for desktops!
Ubuntu
▶ https://ubuntu.com/download/iot

▶ Ubuntu Desktop supported on Raspberry Pi
▶ Ubuntu Core targeting more real embedded projects,

packaging and securing applications through Snaps, and
offering up to 10 years of security updates.

Image credits: https://bit.ly/2EzmJLF

Image credits:
https://tinyurl.com/f4zxj5kw

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 334/375

https://fedoraproject.org/wiki/Architectures/ARM
https://ubuntu.com/download/iot
https://bit.ly/2EzmJLF
https://tinyurl.com/f4zxj5kw

Embedded distributions

Even if you don’t use them for final products, they can be useful to make demos quickly
▶ Alpine Linux: https://www.alpinelinux.org/

• Security oriented distribution based on Musl and BusyBox
• Supports x86 and arm, both 32 and 64 bit, plus ppc64 and s390
• Multiple types of downloads supported

Standard version: about 130 MB
Mini root filesystem: about 4 MB (without kernel)
Other images: Raspberry Pi, Virtual, Xen, Generic ARM...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 335/375

https://www.alpinelinux.org/

Application frameworks

Not real distributions you can download. Instead, they implement
middleware running on top of the Linux kernel and allowing to develop
applications.
▶ Tizen: https://www.tizen.org/

Targeting smartphones, wearables (watches), smart TVs and In
Vehicle Infotainment devices.
Supported by big phone manufacturers (mostly Samsung) and
operators
HTML5 base application framework.
Wikipedia: 21% of the smart TVs market share in 2018
See https://en.wikipedia.org/wiki/Tizen

▶ Android: https://www.android.com/
Google’s distribution for phones, tablets, TVs, cars...
Except the Linux kernel, very different user space than other Linux
distributions. Mostly successful in its target markets though.

Image credits:
https://frama.link/yhPuj_oS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 336/375

https://www.tizen.org/
https://en.wikipedia.org/wiki/Tizen
https://www.android.com/
https://frama.link/yhPuj_oS

Practical lab - Buildroot

▶ Rebuild the same system, this time with
Buildroot.

▶ See how easier it gets!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 337/375

Embedded Linux application development

Embedded Linux
application development

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 338/375

Contents

▶ Application development
• Developing applications on embedded Linux
• Building your applications

▶ Debugging and analysis tools
• Debuggers
• Remote debugging
• Tracing and profiling

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 339/375

Embedded Linux application development

Developing applications on embedded Linux

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 340/375

Application development

▶ An embedded Linux system is just a normal Linux system, with usually a smaller
selection of components

▶ In terms of application development, developing on embedded Linux is exactly the
same as developing on a desktop Linux system

▶ All existing skills can be re-used, without any particular adaptation
▶ All existing libraries, either third-party or in-house, can be integrated into the

embedded Linux system
• Taking into account, of course, the limitation of the embedded systems in terms of

performance, storage and memory
▶ Application development could start on x86, even before the hardware is available.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 341/375

Programming language (1)

▶ The programming language for system-level applications in Linux is usually C
• The C library is already present on your system, nothing to add

▶ C++ can be used for larger applications
• The C++ library must be added to the system
• Some libraries, including Qt, are developed in C++ so they need the C++ library on

the system anyway
▶ The Rust language is increasingly popular in embedded and system applications,

as an alternative to C and C++.
See https://www.rust-lang.org/what/embedded for attractive features.

▶ Suggestion to start with Rust if you neither know C and C++.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 342/375

https://www.rust-lang.org/what/embedded

Programming language (2)

▶ Scripting languages can also be useful for quick application development, web
applications or scripts

• But they require an interpreter on the embedded system and have usually higher
memory consumption and slightly lower performance

• Most popular: Python, shell
▶ All programming languages can be used: Lua, Ada, Java, Go...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 343/375

C library or higher-level libraries?

▶ For many applications, the C library already provides a relatively large set of
features

• file and device I/O, networking, threads and synchronization, inter-process
communication

• Thoroughly described in the glibc manual, or in any Linux system programming book
• However, the API carries a lot of history and is not necessarily easy to grasp for new

comers
▶ Therefore, using a higher level framework, such as Qt or the Gtk/Glib stack,

might be a good idea
• These frameworks are not only graphical libraries, their core is separate from the

graphical part
• But of course, these libraries have some memory and storage footprint, in the order

of a few megabytes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 344/375

Building your applications

▶ For simple applications that do not need to be really portable or provide
compile-time configuration options, a simple Makefile will be sufficient

▶ For more complicated applications, or if you want to be able to run your
application on a desktop Linux PC and on the target device, using a build system
is recommended

• autotools is ancient, complicated but very widely used.
• We recommend to invest in simpler and more modern tools instead, such as CMake

and Meson.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 345/375

Simple Makefile (1)

Case of an application that only uses the C library, contains two source files and
generates a single binary

CROSS_COMPILE?=arm-linux-
CC=$(CROSS_COMPILE)gcc
OBJS=foo.o bar.o

all: foobar

foobar: $(OBJS)
 $(CC) -o $@ $^

clean:
 $(RM) -f foobar $(OBJS)

Tab

Tab

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 346/375

Simple Makefile (2)

Case of an application that uses the Glib and the GPS libraries
CROSS_COMPILE?=arm-linux-
LIBS=libgps glib-2.0
OBJS=foo.o bar.o

CC=$(CROSS_COMPILE)gcc
CFLAGS=$(shell pkg-config --cflags $(LIBS))
LDFLAGS=$(shell pkg-config --libs $(LIBS))

all: foobar

foobar: $(OBJS)
 $(CC) -o $@ $^ $(LDFLAGS)

clean:
 $(RM) -f foobar $(OBJS)

Tab

Tab

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 347/375

Embedded Linux application development

Debuggers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 348/375

GDB

The GNU Project Debugger
https://www.gnu.org/software/gdb/
▶ The debugger on GNU/Linux, available for most embedded

architectures.
▶ Supported languages: C, C++, Pascal, Objective-C, Fortran,

Ada...
▶ Console interface (useful for remote debugging).
▶ Can also be used through graphical IDEs
▶ Can be used to control the execution of a program, set

breakpoints or change internal variables. You can also use it to
see what a program was doing when it crashed (by loading its
memory image, dumped into a core file).

▶ New alternative: lldb (https://lldb.llvm.org/)
from the LLVM project.

See also https://en.wikipedia.org/wiki/Gdb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 349/375

https://www.gnu.org/software/gdb/
https://lldb.llvm.org/
https://en.wikipedia.org/wiki/Gdb

GDB crash course (1)

A few useful GDB commands
▶ break foobar (b)

Put a breakpoint at the entry of function foobar()

▶ break foobar.c:42
Put a breakpoint in foobar.c, line 42

▶ print var or print task->files[0].fd (p)
Print the variable var, or a more complicated reference. GDB can also nicely display
structures with all their members

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 350/375

GDB crash course (2)

▶ continue (c)
Continue the execution after a breakpoint

▶ next (n)
Continue to the next line, stepping over function calls

▶ step (s)
Continue to the next line, entering into subfunctions

▶ backtrace (bt)
Display the program stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 351/375

Embedded Linux application development

Remote debugging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 352/375

Remote debugging

▶ In a non-embedded environment, debugging takes place using gdb or one of its
front-ends.

▶ gdb has direct access to the binary and libraries compiled with debugging symbols.
▶ However, in an embedded context, the target platform environment is often too

limited to allow direct debugging with gdb (2.4 MB on x86).
▶ Remote debugging is preferred

• ARCH-linux-gdb is used on the development workstation, offering all its features.
• gdbserver is used on the target system (only 100 KB on arm).

ARCH-linux-gdb
gdbserver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 353/375

Remote debugging: architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 354/375

Remote debugging: usage

▶ On the target, run a program through gdbserver.
Program execution will not start immediately.
gdbserver localhost:<port> <executable> <args>
gdbserver /dev/ttyS0 <executable> <args>

▶ Otherwise, attach gdbserver to an already running program:
gdbserver --attach localhost:<port> <pid>

▶ Then, on the host, start ARCH-linux-gdb <executable>,
and use the following gdb commands:

• To connect to the target:
gdb> target remote <ip-addr>:<port> (networking)
gdb> target remote /dev/ttyUSB0 (serial link)

• To tell gdb where shared libraries are:
gdb> set sysroot <library-path> (without lib/)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 355/375

Post mortem analysis

▶ When an application crashes due to a segmentation fault and the application was
not under control of a debugger, we get no information about the crash

▶ Fortunately, Linux can generate a core file that contains the image of the
application memory at the moment of the crash, and gdb can use this core file to
let us analyze the state of the crashed application

▶ On the target
• Use ulimit -c unlimited in the shell starting the application, to enable the

generation of a core file when a crash occurs
▶ On the host

• After the crash, transfer the core file from the target to the host, and run
ARCH-linux-gdb -c core-file application-binary

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 356/375

Embedded Linux application development

Profiling

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 357/375

strace

System call tracer - https://strace.io
▶ Available on all GNU/Linux systems

Can be built by your cross-compiling toolchain generator or by
your build system.

▶ Allows to see what any of your processes is doing: accessing files,
allocating memory... Often sufficient to find simple bugs.

▶ Usage:
strace <command> (starting a new process)
strace -p <pid> (tracing an existing process)
strace -c <command> (statistics of system calls taking most
time)

See the strace manual for details.
Image credits: https://strace.io/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 358/375

https://strace.io
https://man7.org/linux/man-pages/man1/strace.1.html
https://strace.io/

strace example output
> strace cat Makefile
execve("/bin/cat", ["cat", "Makefile"], [/* 38 vars */]) = 0
brk(0) = 0x98b4000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7f85000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=111585, ...}) = 0
mmap2(NULL, 111585, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb7f69000
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
open("/lib/tls/i686/cmov/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\320h\1\0004\0\0\0\344"..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1442180, ...}) = 0
mmap2(NULL, 1451632, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb7e06000
mprotect(0xb7f62000, 4096, PROT_NONE) = 0
mmap2(0xb7f63000, 12288, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x15c) = 0xb7f63000
mmap2(0xb7f66000, 9840, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xb7f66000
close(3) = 0

Hint: follow the open file descriptors returned by open(). This tells you what files are
handled by further system calls.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 359/375

strace -c example output

> strace -c cheese
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 36.24 0.523807 19 27017 poll
 28.63 0.413833 5 75287 115 ioctl
 25.83 0.373267 6 63092 57321 recvmsg
 3.03 0.043807 8 5527 writev
 2.69 0.038865 10 3712 read
 2.14 0.030927 3 10807 getpid
 0.28 0.003977 1 3341 34 futex
 0.21 0.002991 3 1030 269 openat
 0.20 0.002889 2 1619 975 stat
 0.18 0.002534 4 568 mmap
 0.13 0.001851 5 356 mprotect
 0.10 0.001512 2 784 close
 0.08 0.001171 3 461 315 access
 0.07 0.001036 2 538 fstat
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 360/375

ltrace

A tool to trace shared library calls used by a program and all the signals it receives
▶ Very useful complement to strace, which shows only system calls. Library calls

include system calls too!
▶ Of course, works even if you don’t have the sources
▶ Allows to filter library calls with regular expressions, or just by a list of function

names.
▶ Also offers a summary with its -c option.
▶ Manual page: https://linux.die.net/man/1/ltrace

▶ Works better with glibc. ltrace was broken with uClibc and may still be, and was
not supported with Musl (Buildroot 2021.08 status).

See https://en.wikipedia.org/wiki/Ltrace for details

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 361/375

https://linux.die.net/man/1/ltrace
https://en.wikipedia.org/wiki/Ltrace

ltrace example output

ltrace ffmpeg -f video4linux2 -video_size 544x288 -input_format mjpeg -i /dev
/video0 -pix_fmt rgb565le -f fbdev /dev/fb0
__libc_start_main(["ffmpeg", "-f", "video4linux2", "-video_size"...] <unfinished ...>
setvbuf(0xb6a0ec80, nil, 2, 0) = 0
av_log_set_flags(1, 0, 1, 0) = 1
strchr("f", ':') = nil
strlen("f") = 1
strncmp("f", "L", 1) = 26
strncmp("f", "h", 1) = -2
strncmp("f", "?", 1) = 39
strncmp("f", "help", 1) = -2
strncmp("f", "-help", 1) = 57
strncmp("f", "version", 1) = -16
strncmp("f", "buildconf", 1) = 4
strncmp("f", "formats", 1) = 0
strlen("formats") = 7
strncmp("f", "muxers", 1) = -7
strncmp("f", "demuxers", 1) = 2
strncmp("f", "devices", 1) = 2
strncmp("f", "codecs", 1) = 3
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 362/375

ltrace summary
Example summary at the end of the ltrace output (-c option)

% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
52.64 5.958660 5958660 1 __libc_start_main
20.64 2.336331 2336331 1 avformat_find_stream_info
14.87 1.682895 421 3995 strncmp
7.17 0.811210 811210 1 avformat_open_input
0.75 0.085290 584 146 av_freep
0.49 0.055150 434 127 strlen
0.29 0.033008 660 50 av_log
0.22 0.025090 464 54 strcmp
0.20 0.022836 22836 1 avformat_close_input
0.16 0.017788 635 28 av_dict_free
0.15 0.016819 646 26 av_dict_get
0.15 0.016753 440 38 strchr
0.13 0.014536 581 25 memset
0.09 0.009762 9762 1 avcodec_send_packet

...
------ ----------- ----------- --------- --------------------
100.00 11.318773 4762 total

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 363/375

Valgrind (1)

https://valgrind.org/

▶ GNU GPL Software suite for debugging and profiling programs.
▶ Supported platforms: Linux on x86, x86_64, arm (armv7 only),

arm64, mips32, s390, ppc32 and ppc64. Also supported on other
operating systems (Android, Darwin, Illumos, Solaris...)

▶ Can detect many memory management and threading bugs.
▶ Profiler: provides information helpful to speed up your program

and reduce its memory usage.
▶ The most popular tool for this usage. Even used by projects with

hundreds of programmers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 364/375

https://valgrind.org/

Valgrind (2)

▶ Can be used to run any program, without the need to recompile
it.

▶ Examples
valgrind --leak-check=yes <program> (leak check mode)
valgrind --tool=callgrind --dump-instr=yes --simulate-

cache=yes --collect-jumps=yes <program> (profiling mode)
▶ Works by adding its own instrumentation to your code and then

running in on its own virtual cpu core. Significantly slows down
execution, but still fine for debugging and profiling!

▶ More details on https://valgrind.org/info/ and
https://valgrind.org/docs/manual/manual.html

▶ The Valgrind tool suite is easy to add to your root filesystem
with Buildroot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 365/375

https://valgrind.org/info/
https://valgrind.org/docs/manual/manual.html

Kcachegrind - Visualizing Valgrind profiling data

Directly run it on Callgrind’s output file.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 366/375

Practical lab - App. development and debugging

Application development
▶ Compile your own application with the ncurses

library
Remote debugging
▶ Set up remote debugging tools on the target:

strace, ltrace and gdbserver.
▶ Debug a simple application running on the

target using remote debugging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 367/375

References

References

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 368/375

Books

▶ Mastering Embedded Linux, 3rd Edition 1

By Chris Simmonds, Packt Publishing, May 2021
An up-to-date resource covering most aspects of embedded Linux
development.

▶ The Linux Programming Interface 2

Michael Kerrisk (maintainer of Linux manual pages), 2010, No Starch Press
A gold mine about Linux system programming

▶ Embedded Linux System Design and Development 3

P. Raghavan, A. Lad, S. Neelakandan, Auerbach, Dec. 2005.
Very good coverage of the POSIX programming API (still up to date).

1
https://www.packtpub.com/product/mastering-embedded-linux-programming-third-edition/9781789530384

2
https://man7.org/tlpi/

3
https://www.amazon.com/Embedded-Linux-System-Design-Development/dp/0849340586

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 369/375

https://www.packtpub.com/product/mastering-embedded-linux-programming-third-edition/9781789530384
https://man7.org/tlpi/
https://www.amazon.com/Embedded-Linux-System-Design-Development/dp/0849340586

Web sites

▶ ELinux.org, https://elinux.org, a Wiki entirely dedicated to embedded Linux.
Lots of topics covered: real-time, filesystems, multimedia, tools, hardware
platforms, etc. Interesting to explore to discover new things.

▶ LWN, https://lwn.net, very interesting news site about Linux in general, and
specifically about the kernel. Weekly edition, available for free after one week for
non-paying visitors.

▶ Linux Gizmos, https://linuxgizmos.com, a news site about embedded Linux,
mainly oriented on hardware platforms related news.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 370/375

https://elinux.org
https://lwn.net
https://linuxgizmos.com

International conferences (1)

▶ Embedded Linux Conference:
• https://embeddedlinuxconference.com/
• Organized by the Linux Foundation every year in North

America and in Europe
• Very interesting kernel and user space topics for

embedded systems developers. Many kernel and
embedded project maintainers are present.

• Presentation slides and videos freely available on
https://elinux.org/ELC_Presentations

▶ Linux Plumbers: https://linuxplumbersconf.org
• About the low-level plumbing of Linux: kernel, audio,

power management, device management, multimedia,
etc. Not really a conventional conference with formal
presentations, but rather a place where contributors on
each topic meet, share their progress and make plans for
work ahead.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 371/375

https://embeddedlinuxconference.com/
https://elinux.org/ELC_Presentations
https://linuxplumbersconf.org

International conferences (2)

▶ FOSDEM: https://fosdem.org (Brussels, February)
For developers. Presentations about system development.

▶ Live Embedded Event: https://live-embedded-event.com/
A new free live event about embedded topics. Co-organized by Bootlin!

▶ Currently, most conferences are available on-line. They are much more affordable
and often free.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 372/375

https://fosdem.org
https://live-embedded-event.com/

Last slides

Last slides

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 373/375

Last slide

Thank you!
And may the Source be with you

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 374/375

Rights to copy

© Copyright 2004-2022, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of this work.
▶ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 375/375

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

	About Bootlin
	Generic course information
	Introduction to Embedded Linux
	A few examples of embedded systems running Linux
	Embedded hardware for Linux systems
	Embedded Linux system architecture

	Embedded Linux development environment
	Cross-compiling toolchains
	Definition and Components
	C Libraries
	Toolchain Options
	Obtaining a Toolchain

	Bootloaders
	Boot Sequence
	The U-boot bootloader

	Linux kernel introduction
	Linux kernel features
	Linux versioning scheme and development process
	Linux kernel sources
	Kernel configuration
	Compiling and installing the kernel
	Booting the kernel
	Using kernel modules

	Linux Root Filesystem
	Principle and solutions
	Contents
	Device Files
	Pseudo Filesystems
	Minimal filesystem

	BusyBox
	Block filesystems
	Block devices
	Available block filesystems
	Using block filesystems

	Embedded Linux system development
	Leveraging open-source components in an Embedded Linux system
	Tools for the target device: Networking
	Tools for the target device: System utilities
	Tools for the target device: Language interpreters
	Tools for the target device: Audio, video and multimedia
	Tools for the target device: Graphical toolkits
	Graphical toolkits: ``Low-level'' solutions and layers
	Graphical toolkits: ``High-level'' solutions
	Tools for the target device: Databases
	Tools for the target device: Web browsers
	System building

	Embedded Linux application development
	Developing applications on embedded Linux
	Debuggers
	Remote debugging
	Profiling

	References
	Last slides

