
Embedded Linux system development training
On-line seminar, 6 sessions of 4 hours

Latest update: September 06, 2022

Title Embedded Linux system development training

Training objectives
• Be able to understand the overall architecture of Embedded Linux systems.
• Be able to choose, build, setup and use a cross-compilation toolchain.
• Be able to understand the booting sequence of an embedded Linux system, and
to set up and use the U-Boot bootloader.

• Be able to select a Linux kernel version, to configure, build and install the
Linux kernel on an embedded system.

• Be able to create from scratch a Linux root filesystem, including all its ele-
ments: directories, applications, configuration files, libraries.

• Be able to choose and setup the main Linux filesystems for block storage de-
vices, and understand their main characteristics.

• Be able to select, cross-compile and integrate open-source software compo-
nents (libraries, applications) in an Embedded Linux system, and to handle
license compliance.

• Be able to setup and use an embedded Linux build system, to build a complete
system for an embedded platform.

• Be able to develop and debug applications on an embedded Linux system.

Duration Six half days - 24 hours (4 hours per half day).

Pedagogics
• Lectures delivered by the trainer, over video-conference. Participants can ask
questions at any time.

• Practical demonstrations done by the trainer, based on practical labs, over
video-conference. Participants can ask questions at any time. Optionally, par-
ticipants who have access to the hardware accessories can reproduce the prac-
tical labs by themselves.

• Instant messaging for questions between sessions (replies under 24h, outside
of week-ends and bank holidays).

• Electronic copies of presentations, lab instructions and data files. They are
freely available at bootlin.com/doc/training/embedded-linux.

Trainer One of the engineers listed on:
https://bootlin.com/training/trainers/

Language Oral lectures: English
Materials: English.

https://bootlin.com/doc/training/embedded-linux
https://bootlin.com/training/trainers/


Audience People developing devices using the Linux kernel
People supporting embedded Linux system developers.

Prerequisites • Knowledge and practice of UNIX or GNU/Linux commands: participants
must be familiar with the Linux command line. Participants lacking experience
on this topic should get trained by themselves, for example with our freely
available on-line slides at bootlin.com/blog/command-line/.

• Minimal English language level: B1, according to the Common European
Framework of References for Languages, for our sessions in English. See
bootlin.com/pub/training/cefr-grid.pdf for self-evaluation.

Required equipment • Computer with the operating system of your choice, with the Google Chrome
or Chromium browser for videoconferencing

• Webcam and microphone (preferably from an audio headset)
• High speed access to the Internet
• For people interested in our optional practical labs, an installation of Virtual-
Box and about 30 GB of free disk space.

Certificate Only the participants who have attended all training sessions, and who have scored
over 50% of correct answers at the final evaluation will receive a training certificate
from Bootlin.

Disabilities Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

https://bootlin.com/blog/command-line/
https://bootlin.com/pub/training/cefr-grid.pdf


Real hardware in practical demos

The hardware platform used for the practical de-
mos of this training session is the STMicroelectron-
ics STM32MP157D-DK1 Discovery board board,
based on a dual Cortex-A7 processor from ST, which
features:

• STM32MP157D dual ARM Cortex-A7 proces-
sor

• USB-C powered
• 512 MB DDR3L RAM
• Gigabit Ethernet port
• 4 USB 2.0 host ports
• 1 USB-C OTG port
• 1 Micro SD slot
• On-board ST-LINK/V2-1 debugger
• Arduino Uno v3-compatible header
• Audio codec
• Misc: buttons, LEDs

Optional labs on emulated hardware

For the interested participants, we propose optional
labs, to be done between the training sessions, that use
the QEMU emulated ARM Vexpres Cortex-A9 board.
As they rely on an emulated platform, no specific hard-
ware is necessary.

EMU
Image credits (Wikipedia): https://frama.link/mW71eosa

https://frama.link/mW71eosa


Half day 1

Lecture - Introduction to embedded Linux Lecture - Embedded Linux development environ-
ment

• Introduction to Free Software
• Reasons for choosing Free Software in embed-
ded operating systems

• Example embedded systems running Linux
• CPU, RAM and storage requirements
• Choosing a hardware platform
• System architecture: main components
• Embedded system development tasks

• Operating system and tools to use on the devel-
opment workstation for embedded Linux devel-
opment.

Lecture - Cross-compiling toolchain and C library Demo - Cross compiling toolchain

• What’s inside a cross-compiling toolchain
• Choosing the target C library
• What’s inside the C library
• Ready to use cross-compiling toolchains
• Building a cross-compiling toolchain with auto-
mated tools.

• Configuring Crosstool-NG
• Executing it to build a custom uClibc toolchain.

Lecture - Bootloaders

• Available bootloaders
• Bootloader features
• Installing a bootloader
• Detailed study of U-Boot



Half day 2

Demo - Bootloader and U-boot

Using the STM32MP1 Discovery Kit 1 board
• Set up serial communication with the board.
• Configure, compile and install the first-stage bootloader and U-Boot on the board.
• Become familiar with U-Boot environment and commands.
• Set up TFTP communication with the board. Use TFTP U-Boot commands.

Lecture - Linux kernel Demo - Kernel sources

• Role and general architecture of the Linux ker-
nel

• Features available in the Linux kernel, with a fo-
cus on features useful for embedded systems

• Kernel user interface
• Getting the sources
• Linux kernel release process. Long Term Sup-
port versions.

• Using the patch command

• Downloading kernel sources
• Apply kernel patches

Lecture – Configuring and compiling a Linux ker-
nel

Demo - Kernel cross-compiling and booting

• Kernel configuration.
• Using ready-made configuration files for spe-
cific architectures and boards.

• Kernel compilation.
• Generated files.
• Using kernel modules

Using the STM32MP1 Discovery Kit 1 board
• Configuring the Linux kernel and cross-
compiling it for the ARM board.

• Downloading your kernel on the board through
U-boot’s tftp client.

• Booting your kernel from RAM.
• Copying the kernel to flash and booting it from
this location.

• Storing boot parameters in flash and automating
kernel booting from flash.



Half day 3

Lecture – Root filesystem in Linux Lecture - BusyBox

• Filesystems in Linux.
• Role and organization of the root filesystem.
• Location of the root filesystem: on storage, in
memory, from the network.

• Device files, virtual filesystems.
• Contents of a typical root filesystem.

• Detailed overview. Detailed features.
• Configuration, compiling and deploying.

Demo – Tiny root filesystem built from scratch with BusyBox

Using the STM32MP1 Discovery Kit 1 board
• Now build a basic root filesystem from scratch for your ARM system
• Setting up a kernel to boot your system on a host directory exported by NFS
• Passing kernel command line parameters to boot on NFS
• Creating the full root filesystem from scratch. Populating it with BusyBox based utilities.
• Creating device files and booting the virtual system.
• System startup using BusyBox /sbin/init
• Using the BusyBox http server.
• Controlling the target from a web browser on the PC host.
• Setting up shared libraries on the target and compiling a sample executable.

Half day 4

Lecture - Block filesystems Demo - Block filesystems

• Filesystems for block devices.
• Usefulness of journaled filesystems.
• Read-only block filesystems.
• RAM filesystems.
• How to create each of these filesystems.
• Suggestions for embedded systems.

Using the STM32MP1 Discovery Kit 1 board
• Booting your system with a mix of filesystems
on MMC/SD storage: SquashFS for applica-
tions, ext4 for configuration and user data, and
tmpfs for temporary system files.



Lecture – Leveraging existing open-source components in your system

• Reasons for leveraging existing components.
• Find existing free and open source software components.
• Choosing the components.
• The different free software licenses and their requirements.
• Overview of well-known typical components used in embedded systems: graphical libraries and systems
(framebuffer, Gtk, Qt, etc.), system utilities, network libraries and utilities, multimedia libraries, etc.

• System building: integration of the components.

Half day 5

Lecture – Cross-compiling applications and li-
braries

Demo – Cross-compiling applications and libraries

• Configuring, cross-compiling and installing ap-
plications and libraries.

• Details about the build system used in most
open-source components.

• Overview of the common issues found when us-
ing these components.

Using the STM32MP1 Discovery Kit 1 board
• Building a system with audio libraries and a
sound player application.

• Manual compilation and installation of several
free software packages.

• Learning about common techniques and issues.

Half day 6

Lecture - Embedded system building tools Demo - System build with Buildroot

• Review of existing system building tools.
• Buildroot example.

Using the STM32MP1 Discovery Kit 1 board
• Using Buildroot to rebuild the same system as
in the previous lab.

• Seeing how easier it gets.



Lecture - Application development and debugging Demo – Application development and debugging

• Programming languages and libraries available.
• Overview of the C library features for applica-
tion development.

• Build system for your application, how to use
existing libraries in your application.

• Debuggers. Debugging remote applications
with gdb and gdbserver. Post-mortem debug-
ging with core files.

• Tracing and profiling solutions.

Using the STM32MP1 Discovery Kit 1 board
• Develop and compile an application relying on
the ncurses library

• Using strace, ltrace and gdbserver to debug a
crappy application on the remote system.

• Post mortem analysis: exploit a core dump to
find out where an application crashed.


