

Embedded Linux system development training On-line seminar, 6 sessions of 4 hours Latest update: September 06, 2022

Title	Embedded Linux system development training
Training objectives	 Be able to understand the overall architecture of Embedded Linux systems. Be able to choose, build, setup and use a cross-compilation toolchain. Be able to understand the booting sequence of an embedded Linux system, and to set up and use the U-Boot bootloader. Be able to select a Linux kernel version, to configure, build and install the Linux kernel on an embedded system. Be able to create from scratch a Linux root filesystem, including all its elements: directories, applications, configuration files, libraries. Be able to choose and setup the main Linux filesystems for block storage devices, and understand their main characteristics. Be able to select, cross-compile and integrate open-source software components (libraries, applications) in an Embedded Linux system, and to handle license compliance. Be able to setup and use an embedded Linux build system, to build a complete system for an embedded platform.
Duration	Six half days - 24 hours (4 hours per half day).
Pedagogics	 Lectures delivered by the trainer, over video-conference. Participants can ask questions at any time. Practical demonstrations done by the trainer, based on practical labs, over video-conference. Participants can ask questions at any time. Optionally, participants who have access to the hardware accessories can reproduce the practical labs by themselves. Instant messaging for questions between sessions (replies under 24h, outside of week-ends and bank holidays). Electronic copies of presentations, lab instructions and data files. They are freely available at bootlin.com/doc/training/embedded-linux.
Trainer	One of the engineers listed on: https://bootlin.com/training/trainers/
Language	Oral lectures: English Materials: English.

Audience	People developing devices using the Linux kernel People supporting embedded Linux system developers.
Prerequisites	 Knowledge and practice of UNIX or GNU/Linux commands: participants must be familiar with the Linux command line. Participants lacking experience on this topic should get trained by themselves, for example with our freely available on-line slides at bootlin.com/blog/command-line/. Minimal English language level: B1, according to the <i>Common European Framework of References for Languages</i>, for our sessions in English. See bootlin.com/pub/training/cefr-grid.pdf for self-evaluation.
Required equipment	 Computer with the operating system of your choice, with the Google Chrome or Chromium browser for videoconferencing Webcam and microphone (preferably from an audio headset) High speed access to the Internet For people interested in our optional practical labs, an installation of Virtual-Box and about 30 GB of free disk space.
Certificate	Only the participants who have attended all training sessions, and who have scored over 50% of correct answers at the final evaluation will receive a training certificate from Bootlin.
Disabilities	Participants with disabilities who have special needs are invited to contact us at <i>train-ing@bootlin.com</i> to discuss adaptations to the training course.

Real hardware in practical demos

The hardware platform used for the practical demos of this training session is the **STMicroelectronics STM32MP157D-DK1 Discovery board** board, based on a dual Cortex-A7 processor from ST, which features:

- STM32MP157D dual ARM Cortex-A7 processor
- USB-C powered
- 512 MB DDR3L RAM
- Gigabit Ethernet port
- 4 USB 2.0 host ports
- 1 USB-C OTG port
- 1 Micro SD slot
- On-board ST-LINK/V2-1 debugger
- Arduino Uno v3-compatible header
- Audio codec
- Misc: buttons, LEDs

Optional labs on emulated hardware

For the interested participants, we propose optional labs, to be done between the training sessions, that use the QEMU emulated ARM Vexpres Cortex-A9 board. As they rely on an emulated platform, no specific hardware is necessary.

Half day 1

Lecture - Introduction to embedded Linux

- Introduction to Free Software
- Reasons for choosing Free Software in embedded operating systems
- Example embedded systems running Linux
- CPU, RAM and storage requirements
- Choosing a hardware platform
- System architecture: main components
- Embedded system development tasks

Lecture - Embedded Linux development environment

• Operating system and tools to use on the development workstation for embedded Linux development.

Lecture - Cross-compiling toolchain and C library Demo - Cross compiling toolchain

- What's inside a cross-compiling toolchain
- Choosing the target C library
- What's inside the C library
- Ready to use cross-compiling toolchains
- Building a cross-compiling toolchain with automated tools.
- Executing it to build a custom uClibc toolchain.

Configuring Crosstool-NG

Lecture - Bootloaders

- Available bootloaders
- Bootloader features
- Installing a bootloader
- Detailed study of U-Boot

Half day 2

Demo - Bootloader and U-boot

Using the STM32MP1 Discovery Kit 1 board

- Set up serial communication with the board.
- Configure, compile and install the first-stage bootloader and U-Boot on the board.
- Become familiar with U-Boot environment and commands.
- Set up TFTP communication with the board. Use TFTP U-Boot commands.

Lecture - Linux kernel

- Role and general architecture of the Linux kernel
- Features available in the Linux kernel, with a focus on features useful for embedded systems
- Kernel user interface
- Getting the sources
- Linux kernel release process. Long Term Support versions.
- Using the patch command

Demo - Kernel sources

- Downloading kernel sources
- Apply kernel patches

Lecture – Configuring and compiling a Linux ker- Demo - Kernel cross-compiling and booting nel

- Kernel configuration.
- Using ready-made configuration files for specific architectures and boards.
- Kernel compilation.
- Generated files.
- Using kernel modules

Using the STM32MP1 Discovery Kit 1 board

- Configuring the Linux kernel and crosscompiling it for the ARM board.
- Downloading your kernel on the board through U-boot's tftp client.
- Booting your kernel from RAM.
- Copying the kernel to flash and booting it from this location.
- Storing boot parameters in flash and automating kernel booting from flash.

Half day 3

Lecture – Root filesystem in Linux

- Filesystems in Linux.
- Role and organization of the root filesystem.
- Location of the root filesystem: on storage, in memory, from the network.
- Device files, virtual filesystems.
- Contents of a typical root filesystem.

Lecture - BusyBox

- Detailed overview. Detailed features.
- Configuration, compiling and deploying.

Demo – Tiny root filesystem built from scratch with BusyBox

Using the STM32MP1 Discovery Kit 1 board

- · Now build a basic root filesystem from scratch for your ARM system
- · Setting up a kernel to boot your system on a host directory exported by NFS
- · Passing kernel command line parameters to boot on NFS
- Creating the full root filesystem from scratch. Populating it with BusyBox based utilities.
- Creating device files and booting the virtual system.
- System startup using BusyBox /sbin/init
- Using the BusyBox http server.
- Controlling the target from a web browser on the PC host.
- Setting up shared libraries on the target and compiling a sample executable.

Half day 4

Lecture - Block filesystems

- Filesystems for block devices.
- Usefulness of journaled filesystems.
- Read-only block filesystems.
- RAM filesystems.
- How to create each of these filesystems.
- Suggestions for embedded systems.

Demo - Block filesystems

Using the STM32MP1 Discovery Kit 1 board

• Booting your system with a mix of filesystems on MMC/SD storage: SquashFS for applications, ext4 for configuration and user data, and tmpfs for temporary system files.

Lecture – Leveraging existing open-source components in your system

- Reasons for leveraging existing components.
- Find existing free and open source software components.
- Choosing the components.
- The different free software licenses and their requirements.
- Overview of well-known typical components used in embedded systems: graphical libraries and systems (framebuffer, Gtk, Qt, etc.), system utilities, network libraries and utilities, multimedia libraries, etc.
- System building: integration of the components.

Half day 5

Lecture – Cross-compiling applications and libraries	Demo – Cross-compiling applications and libraries
 Configuring, cross-compiling and installing applications and libraries. Details about the build system used in most open-source components. Overview of the common issues found when using these components. 	 Using the STM32MP1 Discovery Kit 1 board Building a system with audio libraries and a sound player application. Manual compilation and installation of several free software packages. Learning about common techniques and issues.

Half day 6

Lecture - Embedded system building tools	Demo - System build with Buildroot
 Review of existing system building tools. Buildroot example.	 Using the STM32MP1 Discovery Kit 1 board Using Buildroot to rebuild the same system as in the previous lab.

• Seeing how easier it gets.

Lecture - Application development and debugging

- Programming languages and libraries available.
- Overview of the C library features for application development.
- Build system for your application, how to use existing libraries in your application.
- Debuggers. Debugging remote applications with gdb and gdbserver. Post-mortem debug-ging with core files.
- Tracing and profiling solutions.

Demo – Application development and debugging

Using the STM32MP1 Discovery Kit 1 board

- Develop and compile an application relying on the neurses library
- Using strace, ltrace and gdbserver to debug a crappy application on the remote system.
- Post mortem analysis: exploit a *core dump* to find out where an application crashed.