
Embedded Linux System Development

STM32MP1 variant

Practical Labs

https://bootlin.com

September 06, 2022

https://bootlin.com


Embedded Linux System Development

About this document
Updates to this document can be found on https://bootlin.com/doc/training/embedded-
linux-4d.

This document was generated from LaTeX sources found on https://github.com/bootlin/
training-materials.

More details about our training sessions can be found on https://bootlin.com/training.

Copying this document
© 2004-2022, Bootlin, https://bootlin.com.

This document is released under the terms of the Creative Commons CC BY-SA
3.0 license . This means that you are free to download, distribute and even modify
it, under certain conditions.

Corrections, suggestions, contributions and translations are welcome!

2 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com/doc/training/embedded-linux-4d
https://bootlin.com/doc/training/embedded-linux-4d
https://github.com/bootlin/training-materials
https://github.com/bootlin/training-materials
https://bootlin.com/training
https://bootlin.com
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://bootlin.com


Embedded Linux System Development

Training setup
Download files and directories used in practical labs

Install lab data
For the different labs in this course, your instructor has prepared a set of data (kernel images,
kernel configurations, root filesystems and more). Download and extract its tarball from a
terminal:

$ cd
$ wget https://bootlin.com/doc/training/embedded-linux-4d/embedded-linux-4\

d-labs.tar.xz
$ tar xvf embedded-linux-4d-labs.tar.xz

Lab data are now available in an embedded-linux-4d-labs directory in your home directory.
This directory contains directories and files used in the various practical labs. It will also be
used as working space, in particular to keep generated files separate when needed.

Update your distribution
To avoid any issue installing packages during the practical labs, you should apply the latest
updates to the packages in your distro:

$ sudo apt update
$ sudo apt dist-upgrade

You are now ready to start the real practical labs!

Install extra packages
Feel free to install other packages you may need for your development environment. In particular,
we recommend to install your favorite text editor and configure it to your taste. The favorite text
editors of embedded Linux developers are of course Vim and Emacs, but there are also plenty
of other possibilities, such as Visual Studio Code1, GEdit, Qt Creator, CodeBlocks, Geany, etc.

It is worth mentioning that by default, Ubuntu comes with a very limited version of the vi
editor. So if you would like to use vi, we recommend to use the more featureful version by
installing the vim package.

More guidelines
Can be useful throughout any of the labs

• Read instructions and tips carefully. Lots of people make mistakes or waste time because
they missed an explanation or a guideline.

1This tool from Microsoft is Open Source! To try it on Ubuntu: sudo snap install code --classic

© 2004-2022 Bootlin, CC BY-SA license 3

https://bootlin.com


Embedded Linux System Development

• Always read error messages carefully, in particular the first one which is issued. Some
people stumble on very simple errors just because they specified a wrong file path and
didn’t pay enough attention to the corresponding error message.

• Never stay stuck with a strange problem more than 5 minutes. Show your problem to
your colleagues or to the instructor.

• You should only use the root user for operations that require super-user privileges, such
as: mounting a file system, loading a kernel module, changing file ownership, configuring
the network. Most regular tasks (such as downloading, extracting sources, compiling...)
can be done as a regular user.

• If you ran commands from a root shell by mistake, your regular user may no longer be
able to handle the corresponding generated files. In this case, use the chown -R command
to give the new files back to your regular user.
Example: $ sudo chown -R myuser.myuser linux/

4 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

Building a cross-compiling toolchain
Objective: Learn how to compile your own cross-compiling toolchain
for the uClibc C library

After this lab, you will be able to:

• Configure the crosstool-ng tool

• Execute crosstool-ng and build up your own cross-compiling toolchain

Setup
Go to the $HOME/embedded-linux-4d-labs/toolchain directory.

For this lab, you need a system or VM with a least 4 GB of RAM.

Install needed packages
Install the packages needed for this lab:

$ sudo apt install build-essential git autoconf bison flex texinfo help2man gawk \
libtool-bin libncurses5-dev unzip

Getting Crosstool-ng
Let’s download the sources of Crosstool-ng, through its git source repository, and switch to a
commit that we have tested:

$ git clone https://github.com/crosstool-ng/crosstool-ng
$ cd crosstool-ng/
$ git checkout 25f6dae8

Building and installing Crosstool-ng
As we are not building Crosstool-ng from a release archive but from a git commit, we first need
to generate a configure script and more generally all the generated files that are shipped in the
source archive for a release:

$ ./bootstrap

We can then either install Crosstool-ng globally on the system, or keep it locally in its download
directory. We’ll choose the latter solution. As documented at https://crosstool-ng.github.
io/docs/install/#hackers-way, do:

$ ./configure --enable-local
$ make

© 2004-2022 Bootlin, CC BY-SA license 5

https://crosstool-ng.github.io/docs/install/#hackers-way
https://crosstool-ng.github.io/docs/install/#hackers-way
https://bootlin.com


Embedded Linux System Development

Then you can get Crosstool-ng help by running

$ ./ct-ng help

Configure the toolchain to produce
A single installation of Crosstool-ng allows to produce as many toolchains as you want, for
different architectures, with different C libraries and different versions of the various components.

Crosstool-ng comes with a set of ready-made configuration files for various typical setups:
Crosstool-ng calls them samples. They can be listed by using ./ct-ng list-samples.

We will load the Cortex A5 sample, as Crosstool-ng doesn’t have any sample for Cortex A7 yet
Load it with the ./ct-ng command.

Then, to refine the configuration, let’s run the menuconfig interface:

$ ./ct-ng menuconfig

In Path and misc options:

• Change Maximum log level to see to DEBUG (look for LOG_DEBUG in the interface, using
the / key) so that we can have more details on what happened during the build in case
something went wrong.

In Target options:

• Set Emit assembly for CPU (ARCH_CPU) to cortex-a7.

• Set Use specific FPU (ARCH_FPU) to vfpv4.

In Toolchain options:

• Set Tuple's vendor string (TARGET_VENDOR) to training.

• Set Tuple's alias (TARGET_ALIAS) to arm-linux. This way, we will be able to use the
compiler as arm-linux-gcc instead of arm-training-linux-uclibcgnueabihf-gcc, which
is much longer to type.

In C-library:

• If not set yet, set C library to uClibc (LIBC_UCLIBC)

• Keep the default version that is proposed

• If needed, enable Add support for IPv6 (LIBC_UCLIBC_IPV6)2, Add support for WCHAR
(LIBC_UCLIBC_WCHAR) and Support stack smashing protection (SSP) (LIBC_UCLIBC_HAS_
SSP)

In C compiler:

• Make sure that C++ (CC_LANG_CXX) is enabled

In Debug facilities, disable every option, except strace (DEBUG_STRACE), with default settings.
Some of these options will be useful in a real toolchain, but in our labs, we will do debugging
work with another toolchain anyway. strace is an exception as we will use it earlier. Hence,
not compiling debugging features here will reduce toolchain building time.

2 That’s needed to use the toolchain in Buildroot, which only accepts toolchains with IPv6 support

6 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

Explore the different other available options by traveling through the menus and looking at the
help for some of the options. Don’t hesitate to ask your trainer for details on the available
options. However, remember that we tested the labs with the configuration described above.
You might waste time with unexpected issues if you customize the toolchain configuration.

Produce the toolchain
Nothing is simpler:

$ ./ct-ng build

The toolchain will be installed by default in $HOME/x-tools/. That’s something you could have
changed in Crosstool-ng’s configuration.

And wait!

Known issues

Source archives not found on the Internet

It is frequent that Crosstool-ng aborts because it can’t find a source archive on the Internet,
when such an archive has moved or has been replaced by more recent versions. New Crosstool-ng
versions ship with updated URLs, but in the meantime, you need work-arounds.

If this happens to you, what you can do is look for the source archive by yourself on the Internet,
and copy such an archive to the src directory in your home directory. Note that even source
archives compressed in a different way (for example, ending with .gz instead of .bz2) will be
fine too. Then, all you have to do is run ./ct-ng build again, and it will use the source archive
that you downloaded.

Testing the toolchain
You can now test your toolchain by adding $HOME/x-tools/arm-training-linux-uclibcgnueabihf/
bin/ to your PATH environment variable and compiling the simple hello.c program in your main
lab directory with arm-linux-gcc:

$ arm-linux-gcc -o hello hello.c

You can use the file command on your binary to make sure it has correctly been compiled for
the ARM architecture.

Did you know that you can still execute this binary from your x86 host? To do this, install the
QEMU user emulator, which just emulates target instruction sets, not an entire system with
devices:

$ sudo apt install qemu-user

Now, try to run QEMU ARM user emulator:

$ qemu-arm hello
/lib/ld-uClibc.so.0: No such file or directory

© 2004-2022 Bootlin, CC BY-SA license 7

https://bootlin.com


Embedded Linux System Development

What’s happening is that qemu-arm is missing the shared C library (compiled for ARM) that
this binary uses. Let’s find it in our newly compiled toolchain:

$ find ~/x-tools -name ld-uClibc.so.0

/home/tux/x-tools/arm-training-linux-uclibcgnueabihf/
arm-training-linux-uclibcgnueabihf/sysroot/lib/ld-uClibc.so.0

We can now use the -L option of qemu-arm to let it know where shared libraries are:

$ qemu-arm -L ~/x-tools/arm-training-linux-uclibcgnueabihf/\
arm-training-linux-uclibcgnueabihf/sysroot hello

Hello world!

Cleaning up
Do this only if you have limited storage space. In case you made a mistake in the toolchain
configuration, you may need to run Crosstool-ng again, keeping generated files would save a
significant amount of time.

To save about 11 GB of storage space, do a ./ct-ng clean in the Crosstool-NG source direc-
tory. This will remove the source code of the different toolchain components, as well as all the
generated files that are now useless since the toolchain has been installed in $HOME/x-tools.

8 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

Bootloader - U-Boot
Objectives: Set up serial communication, compile and install the
U-Boot bootloader, use basic U-Boot commands, set up TFTP com-
munication with the development workstation.

As the bootloader is the first piece of software executed by a hardware platform, the installation
procedure of the bootloader is very specific to the hardware platform. There are usually two
cases:

• The processor offers nothing to ease the installation of the bootloader, in which case the
JTAG has to be used to initialize flash storage and write the bootloader code to flash.
Detailed knowledge of the hardware is of course required to perform these operations.

• The processor offers a monitor, implemented in ROM, and through which access to the
memories is made easier.

The STM32MP1 SoC, falls into the second category. The monitor integrated in the ROM reads
the SD card to search for a valid bootloader (the boot mode is actually configurable via a few
input pins). In case no bootloader is found, it will operate in a fallback mode, that will allow
to use an external tool to reflash some executable through USB. Therefore, either by using an
MMC/SD card or that fallback mode, we can start up an STM32MP1-based board without
having anything installed on it.

Setting up serial communication with the board
Plug the USB-A to micro USB-B cable on the Discovery board. There is only one micro USB
port on the board, it is CN11, also named ST-LINK. This is a debug interface and exposes
multiple debugging interfaces, including a serial interface. When plugged in your computer, a
serial port should appear, /dev/ttyACM0.

You can also see this device appear by looking at the output of dmesg.

To communicate with the board through the serial port, install a serial communication program,
such as picocom:

$ sudo apt install picocom

You also need to make your user belong to the dialout group to be allowed to write to the serial
console:

$ sudo adduser $USER dialout

Important: for the group change to be effective, you have to completely log out from your
session and log in again (no need to reboot). A workaround is to run newgrp dialout, but it is
not global. You have to run it in each terminal.

Run $ picocom -b 115200 /dev/ttyACM0 , to start serial communication on /dev/ttyACM0,
with a baudrate of 115200.

If you wish to exit picocom, press [Ctrl][a] followed by [Ctrl][x].

© 2004-2022 Bootlin, CC BY-SA license 9

https://bootlin.com


Embedded Linux System Development

U-Boot setup
The boot process is done in two steps with the ROM monitor trying to execute a first piece of
software, called fsbl, from its internal SRAM, that will initialize the DRAM, a second program,
ssbl that will in turn load Linux and execute it.

In our case, both programs are provided by U-Boot.

Download U-Boot:

$ git clone https://gitlab.denx.de/u-boot/u-boot
$ cd u-boot
$ git checkout v2021.01

Get an understanding of U-Boot’s configuration and compilation steps by reading the README
file, and specifically the Building the Software section.

Basically, you need to:

1. Specify the cross-compiler prefix (the part before gcc in the cross-compiler executable
name):

$ export CROSS_COMPILE=arm-linux-

2. Run $ make <NAME>_defconfig , where the list of available configurations can be found in
the configs/ directory. There are four stm32mp15 configurations. We will use the basic
one (stm32mp15_basic).

3. Now that you have a valid initial configuration, you can now run $ make menuconfig to
further edit your bootloader features.

• In the SPL / TPL submenu, disable Support an environment, as SPL will jump to
the second stage bootloader U-Boot, and not directly to Linux.

• In the Environment submenu, we will configure U-Boot so that it stores its environ-
ment inside a file called uboot.env in an ext4 filesystem:

– Disable Environment is not stored. We want changes to variables to be per-
sistent across reboots

– Enable Environment is in a EXT4 filesystem. Disable all other options for
environment storage (e.g. MMC, SPI, UBI)

– Name of the block device for the environment: mmc

– Device and partition for where to store the environment in EXT4: 0:4

– Name of the EXT4 file to use for the environment: /uboot.env

• In the Device Drivers → Watchdog Timer Support submenu, disable IWDG watchdog
driver for STM32 MP's family, so that U-Boot doesn’t start the watchdog.

Install the following packages which may be needed to compile U-Boot for your board:

$ sudo apt install libssl-dev device-tree-compiler

4. Finally, run $ make DEVICE_TREE=stm32mp157a-dk1 3, which will build U-Boot. The

3You can speed up the compiling by using the -jX option with make, where X is the number of parallel jobs
used for compiling. Twice the number of CPU cores is a good value.

10 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

DEVICE_TREE variable specifies the specific Device Tree that describes our hardware board,
in our case the STM32MP1 Discover Kit 1. You can see that in this case, U-Boot only ships
a Device Tree for the board with the previous version of the chip (stm32mp157a instead
of stm32mp157d). Alternatively, if you wish to run just make, specify our board’s device
tree name on Device Tree Control → Default Device Tree for DT Control option.

Flashing U-Boot
The ROM monitor will look for the first stage bootloader in a partition named fsbl1. If it cannot
find a valid bootloader in this partition, it will then try to load it from a partition named fslb2.
This first stage bootloader (in our case the U-Boot SPL) will load the second bootloader (U-
Boot itself) from the partition named ssbl. Finally, U-Boot will store its environment in the
fourth partition, which we’ll name bootfs.

So, as far as bootloaders are concerned, the SD card partitioning will look like:

Number Start End Size File system Name Flags
1 2048s 4095s 2048s fsbl1
2 4096s 6143s 2048s fsbl2
3 6144s 10239s 4096s ssbl
4 10240s 131071s 120832s bootfs

Plug the SD card your instructor gave you on your workstation. Type the dmesg command to
see which device is used by your workstation. In case the device is /dev/mmcblk0, you will see
something like

[46939.425299] mmc0: new high speed SDHC card at address 0007
[46939.427947] mmcblk0: mmc0:0007 SD16G 14.5 GiB

The device file name may be different (such as /dev/sdb if the card reader is connected to a
USB bus (either internally or using a USB card reader).

In the following instructions, we will assume that your SD card is seen as /dev/mmcblk0 by your
PC workstation.

Type the mount command to check your currently mounted partitions. If SD partitions are
mounted, unmount them:

$ sudo umount /dev/mmcblk0p*

Then, clear possible SD card contents remaining from previous training sessions (only the first
megabytes matter):

$ sudo dd if=/dev/zero of=/dev/mmcblk0 bs=4k count=200

Now, let’s use the parted command to create the partitions that we are going to use:

$ sudo parted /dev/mmcblk0

The ROM monitor handles GPT partition tables, let’s create one:

(parted) mklabel gpt

Then, the 4 partitions are created with:

(parted) mkpart fsbl1 0% 4095s
(parted) mkpart fsbl2 4096s 6143s
(parted) mkpart ssbl 6144s 10239s

© 2004-2022 Bootlin, CC BY-SA license 11

https://bootlin.com


Embedded Linux System Development

(parted) mkpart bootfs 10240s 131071s

You can verify everything looks right with:

(parted) unit s
(parted) print

Once done, quit:

(parted) quit

Now, format the boot partition as an ext2 filesystem. This is where U-Boot saves its environ-
ment:

$ sudo mkfs.ext2 -L boot /dev/mmcblk0p4

The U-Boot SPL is fsbl. Write it in both fsbl partitions:

$ sudo dd if=spl/u-boot-spl.stm32 of=/dev/mmcblk0p1 bs=1M conv=fdatasync
$ sudo dd if=spl/u-boot-spl.stm32 of=/dev/mmcblk0p2 bs=1M conv=fdatasync

Then flash ssbl, this is the main U-Boot binary:

$ sudo dd if=u-boot.img of=/dev/mmcblk0p3 bs=1M conv=fdatasync

Testing U-Boot
Insert the SD card in the board slot. You can now power-up the board by connecting the USB-C
cable to the board, in CN6, PWR_IN and to your PC at the other end. Check that it boots your
new bootloaders. You can verify this by checking the build dates:

U-Boot SPL 2021.01 (Nov 03 2021 - 16:48:02 +0100)
Model: STMicroelectronics STM32MP157A-DK1 Discovery Board
RAM: DDR3-DDR3L 16bits 533000Khz
WDT: Not found!

U-Boot 2021.01 (Nov 03 2021 - 16:48:02 +0100)

CPU: STM32MP157DAC Rev.Z
Model: STMicroelectronics STM32MP157A-DK1 Discovery Board
Board: stm32mp1 in basic mode (st,stm32mp157a-dk1)
Board: MB1272 Var3.0 Rev.C-02
DRAM: 512 MiB
Clocks:
- MPU : 800 MHz
- MCU : 208.878 MHz
- AXI : 266.500 MHz
- PER : 24 MHz
- DDR : 533 MHz
WDT: Not found!
NAND: 0 MiB
MMC: STM32 SD/MMC: 0
Loading Environment from EXT4... ** File not found /uboot.env **

12 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

** Unable to read "/uboot.env" from mmc0:4 **
In: serial
Out: serial
Err: serial
****************************************************
* WARNING 500mA power supply detected *
* Current too low, use a 3A power supply! *
****************************************************

Net: eth0: ethernet@5800a000
Hit any key to stop autoboot: 0
Boot over mmc0!
Saving Environment to EXT4... File System is consistent
done
OK
switch to partitions #0, OK
mmc0 is current device
** Unrecognized filesystem type **
STM32MP>

In U-Boot, type the help command, and explore the few commands available.

Setting up Ethernet communication
Later on, we will transfer files from the development workstation to the board using the TFTP
protocol, which works on top of an Ethernet connection.

To start with, install and configure a TFTP server on your development workstation, as detailed
in the bootloader slides.

With a network cable, connect the Ethernet port of your board to the one of your computer. If
your computer already has a wired connection to the network, your instructor will provide you
with a USB Ethernet adapter. A new network interface should appear on your Linux system.

Find the name of this interface by typing:

=> ip a

The network interface name is likely to be enxxx4. If you have a pluggable Ethernet device, it’s
easy to identify as it’s the one that shows up after pluging in the device.

Then, instead of configuring the host IP address from NetWork Manager’s graphical interface,
let’s do it through its command line interface, which is so much easier to use:

$ nmcli con add type ethernet ifname en... ip4 192.168.0.1/24

Now, configure the network on the board in U-Boot by setting the ipaddr and serverip envi-
ronment variables:

=> setenv ipaddr 192.168.0.100
=> setenv serverip 192.168.0.1

To make these settings permanent, save the environment:
4Following the Predictable Network Interface Names convention: https://www.freedesktop.org/wiki/

Software/systemd/PredictableNetworkInterfaceNames/

© 2004-2022 Bootlin, CC BY-SA license 13

https://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/
https://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/
https://bootlin.com


Embedded Linux System Development

=> saveenv

You can then test the TFTP connection. First, put a small text file in the directory exported
through TFTP on your development workstation. Then, from U-Boot, do:

=> tftp 0xc4000000 textfile.txt

The tftp command should have downloaded the textfile.txt file from your development
workstation into the board’s memory at location 0xc40000005.

You can verify that the download was successful by dumping the contents of the memory:

=> md 0xc4000000

We will see in the next labs how to use U-Boot to download, flash and boot a kernel.

Known issues on stmp32mp157d-dk1
If your board doesn’t boot any more, even after making no changes to the micro SD card, even
after unplugging the USB-C power cable, you may need to unplug both the USB micro-B
(used for serial) and USB-C power cables to get the board to boot again. It’s probably because
the USB micro-B is also a power source.

Rescue binaries
If you have trouble generating binaries that work properly, or later make a mistake that causes
you to lose your bootloader binaries, you will find working versions under data/ in the current
lab directory.

5 This location is part of the board DRAM. If you want to check where this value comes from, you can
check the stm32mp157 datasheet at https://www.st.com/resource/en/reference_manual/dm00327659.pdf. It’s a
big document (more than 4,000 pages). In this document, look for Memory organization and you will find the
SoC memory map. You will see that the address range for the memory controller (DDRC) starts at 0xc0000000
and ends at 0xdfffffff. This shows that the 0xc4000000 address is within the address range for RAM. You can
also try with other values in the same address range.

14 © 2004-2022 Bootlin, CC BY-SA license

https://www.st.com/resource/en/reference_manual/dm00327659.pdf
https://bootlin.com


Embedded Linux System Development

Kernel sources
Objective: Learn how to get the kernel sources and patch them.

After this lab, you will be able to:

• Get the kernel sources from the official location

• Apply kernel patches

Setup
Create the $HOME/embedded-linux-4d-labs/kernel directory and go into it.

Get the sources
Go to the Linux kernel web site (https://kernel.org/) and identify the latest stable version.

Just to make sure you know how to do it, check the version of the Linux kernel running on your
machine.

We will use linux-5.10.x, which corresponds to an LTS release, and which this lab was tested
with.

To practice with the patch command later, download the full 5.9 sources. Unpack the archive,
which creates a linux-5.9 directory.

Remember that you can use wget <URL> on the command line to download files.

Apply patches
Download the patch files corresponding to the latest 5.10 stable release: a first patch to move
from 5.9 to 5.10 and if one exists, a second patch to move from 5.10 to 5.10.x.

Without uncompressing them to a separate file, apply the patches to the Linux source directory.

View one of the patch files with vi or gvim (if you prefer a graphical editor), to understand the
information carried by such a file. How are described added or removed files?

Rename the linux-5.9 directory to linux-5.10.<x>.

© 2004-2022 Bootlin, CC BY-SA license 15

https://kernel.org/
https://bootlin.com


Embedded Linux System Development

Kernel - Cross-compiling
Objective: Learn how to cross-compile a kernel for an ARM target
platform.

After this lab, you will be able to:

• Set up a cross-compiling environment

• Cross compile the kernel for the STM32MP157D-DK1 Discovery kit

• Use U-Boot to download the kernel

• Check that the kernel you compiled starts the system

Setup
Go to the $HOME/embedded-linux-4d-labs/kernel directory.

Kernel sources
We will re-use the kernel sources downloaded and patched in the previous lab.

Cross-compiling environment setup
To cross-compile Linux, you need to have a cross-compiling toolchain. We will use the cross-
compiling toolchain that we previously produced, so we just need to make it available in the
PATH:

$ export PATH=$HOME/x-tools/arm-training-linux-uclibcgnueabihf/bin:$PATH

Also, don’t forget to either:

• Define the value of the ARCH and CROSS_COMPILE variables in your environment (using
export)

• Or specify them on the command line at every invocation of make, i.e: make ARCH=...
CROSS_COMPILE=... <target>

Linux kernel configuration
We could use the multi_v7_defconfig default configuration to build a working kernel but to
save time and compile less code, we provide in $HOME/embedded-linux-4d-labs/linux-stm32/ a
minimal configuration file, named stm32mp157_defconfig. Copy it to .config and then run ei-
ther make olddefconfig or make oldconfig if you want to get asked for all the possible choices.

Don’t hesitate to visualize the new settings by running make xconfig afterwards!

In the kernel configuration, as an experiment, change the kernel compression from Gzip to XZ.
This compression algorithm is far more efficient than Gzip, in terms of compression ratio, at the
expense of a higher decompression time.

16 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

Cross compiling
You’re now ready to cross-compile your kernel. Simply run:

$ make

and wait a while for the kernel to compile. Don’t forget to use make -j<n> if you have multiple
cores on your machine!

Look at the end of the kernel build output to see which file contains the kernel image. You can
also see the Device Tree .dtb files which got compiled. Find which .dtb file corresponds to your
board.

Copy the linux kernel image and DTB files to the TFTP server home directory.

Load and boot the kernel using U-Boot
As we are going to boot the Linux kernel from U-Boot, we need to set the bootargs environment
corresponding to the Linux kernel command line:

=> setenv bootargs console=ttySTM0,115200
=> saveenv

We will use TFTP to load the kernel image on the board:

• On your workstation, copy the zImage and DTB (stm32mp157a-dk1.dtb) to the directory
exposed by the TFTP server.

• On the target (in the U-Boot prompt), load zImage from TFTP into RAM:

=> tftp 0xc0000000 zImage

• Now, also load the DTB file into RAM:

=> tftp 0xc4000000 stm32mp157a-dk1.dtb

• Boot the kernel with its device tree:

=> bootz 0xc0000000 - 0xc4000000

You should see Linux boot and finally panicking. This is expected: we haven’t provided a
working root filesystem for our device yet.

You can now automate all this every time the board is booted or reset. Reset the board, and
customize bootcmd:

=> setenv bootcmd 'tftp 0xc0000000 zImage; tftp 0xc4000000 stm32mp157a-dk1.dtb;
bootz 0xc0000000 - 0xc4000000'

=> saveenv

Restart the board to make sure that booting the kernel is now automated.

Writing the kernel and DTB on the SD card
In order to let the kernel boot on the board autonomously, we can copy the kernel image and
DTB in the boot partition we created previously.

© 2004-2022 Bootlin, CC BY-SA license 17

https://bootlin.com


Embedded Linux System Development

Insert the SD card in your PC, it will get auto-mounted. Copy the kernel and device tree:

$ sudo cp arch/arm/boot/dts/stm32mp157a-dk1.dtb arch/arm/boot/zImage /media/$USER\
/boot/

$ sudo umount /media/$USER/boot

Insert the SD card back in the board and reset it. You should now be able to load the DTB
and kernel image from the SD card and boot with:

=> ext2load mmc 0:4 0xc0000000 zImage
=> ext2load mmc 0:4 0xc4000000 stm32mp157a-dk1.dtb
=> bootz 0xc0000000 - 0xc4000000

You are now ready to modify bootcmd to boot the board from SD card. But first, save the
settings for booting from tftp:

=> setenv bootcmdtftp ${bootcmd}

This will be useful to switch back to tftp booting mode later in the labs.

Finally, using editenv bootcmd, adjust bootcmd so that the Discovery board starts using the
kernel from the SD card.

Now, reset the board to check that it boots in the same way from the SD card. Check that this
is really your own version of the kernel that’s running6.

6Look at the kernel log. You will find the kernel version number as well as the date when it was compiled.
That’s very useful to check that you’re not loading an older version of the kernel instead of the one that you’ve
just compiled.

18 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

Tiny embedded system with Busy-
Box
Objective: making a tiny yet full featured embedded system

After this lab, you will:

• be able to configure and build a Linux kernel that boots on a directory on your workstation,
shared through the network by NFS.

• be able to create and configure a minimalistic root filesystem from scratch (ex nihilo, out
of nothing, entirely hand made...) for your target board.

• understand how small and simple an embedded Linux system can be.

• be able to install BusyBox on this filesystem.

• be able to create a simple startup script based on /sbin/init.

• be able to set up a simple web interface for the target.

Lab implementation

While (s)he develops a root filesystem for a device, a developer needs to make frequent changes
to the filesystem contents, like modifying scripts or adding newly compiled programs.

It isn’t practical at all to reflash the root filesystem on the target every time a change is made.
Fortunately, it is possible to set up networking between the development workstation and the
target. Then, workstation files can be accessed by the target through the network, using NFS.

Unless you test a boot sequence, you no longer need to reboot the target to test the impact of
script or application updates.

Setup
Go to the $HOME/embedded-linux-4d-labs/tinysystem/ directory.

© 2004-2022 Bootlin, CC BY-SA license 19

https://bootlin.com


Embedded Linux System Development

Kernel configuration
We will re-use the kernel sources from our previous lab, in $HOME/embedded-linux-4d-labs/
kernel/.

In the kernel configuration built in the previous lab, verify that you have all options needed
for booting the system using a root filesystem mounted over NFS. Also check that CONFIG_
DEVTMPFS_MOUNT is enabled. If necessary, rebuild your kernel.

Setting up the NFS server
Create a nfsroot directory in the current lab directory. This nfsroot directory will be used to
store the contents of our new root filesystem.

Install the NFS server by installing the nfs-kernel-server package if you don’t have it yet.
Once installed, edit the /etc/exports file as root to add the following line, assuming that the
IP address of your board will be 192.168.0.100:

/home/<user>/embedded-linux-4d-labs/tinysystem/nfsroot 192.168.0.100(rw,
no_root_squash,no_subtree_check)

Of course, replace <user> by your actual user name.

Make sure that the path and the options are on the same line. Also make sure that there is no
space between the IP address and the NFS options, otherwise default options will be used for
this IP address, causing your root filesystem to be read-only.

Then, make the NFS server the new configuration:

$ sudo exportfs -r

Booting the system
First, boot the board to the U-Boot prompt. Before booting the kernel, we need to tell it that
the root filesystem should be mounted over NFS, by setting some kernel parameters.

So add settings to the bootargs environment variable, in just 1 line:

=> setenv bootargs ${bootargs} root=/dev/nfs ip=192.168.0.100:::::eth0
nfsroot=192.168.0.1:/home/<user>/embedded-linux-4d-labs/tinysystem/nfsroot,nfsvers=3,tcp rw

Once again, replace <user> by your actual user name.

Of course, you need to adapt the IP addresses to your exact network setup. Save the environment
variables (with saveenv).

You will later need to make changes to the bootargs value. Don’t forget you can do this with
the editenv command.

Now, boot your system. The kernel should be able to mount the root filesystem over NFS:

VFS: Mounted root (nfs filesystem) on device 0:16.

If the kernel fails to mount the NFS filesystem, look carefully at the error messages in the console.
If this doesn’t give any clue, you can also have a look at the NFS server logs in /var/log/syslog.

However, at this stage, the kernel should stop because of the below issue:

[ 7.476715] devtmpfs: error mounting -2

20 © 2004-2022 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT
https://bootlin.com


Embedded Linux System Development

This happens because the kernel is trying to mount the devtmpfs filesystem in /dev/ in the root
filesystem. To address this, create a dev directory under nfsroot and reboot.

Now, the kernel should complain for the last time, saying that it can’t find an init application:

Kernel panic - not syncing: No working init found. Try passing init= option to
kernel. See Linux Documentation/admin-guide/init.rst for guidance.

Obviously, our root filesystem being mostly empty, there isn’t such an application yet. In the
next paragraph, you will add BusyBox to your root filesystem and finally make it usable.

Root filesystem with BusyBox
Download the sources of the latest BusyBox 1.35.x release.

Now, configure BusyBox with the configuration file provided in the data/ directory (remember
that the BusyBox configuration file is .config in the BusyBox sources).

Then, you can use $ make menuconfig to further customize the BusyBox configuration. At
least, keep the setting that builds a static BusyBox. Compiling BusyBox statically in the first
place makes it easy to set up the system, because there are no dependencies on libraries. Later
on, we will set up shared libraries and recompile BusyBox.

Build BusyBox using the toolchain that you used to build the kernel.

Going back to the BusyBox configuration interface, check the installation directory for Busy-
Box7. Set it to the path to your nfsroot directory.

Now run $ make install to install BusyBox in this directory.

Try to boot your new system on the board. You should now reach a command line prompt,
allowing you to execute the commands of your choice.

Virtual filesystems

Run the $ ps command. You can see that it complains that the /proc directory does not
exist. The ps command and other process-related commands use the proc virtual filesystem to
get their information from the kernel.

From the Linux command line in the target, create the proc, sys and etc directories in your
root filesystem.

Now mount the proc virtual filesystem. Now that /proc is available, test again the ps command.

Note that you can also now halt your target in a clean way with the halt command, thanks to
proc being mounted8.

System configuration and startup
The first user space program that gets executed by the kernel is /sbin/init and its configuration
file is /etc/inittab.

In the BusyBox sources, read details about /etc/inittab in the examples/inittab file.
7You will find this setting in Settings -> Install Options -> BusyBox installation prefix.
8halt can find the list of mounted filesystems in /proc/mounts, and unmount each of them in a clean way

before shutting down.

© 2004-2022 Bootlin, CC BY-SA license 21

https://elixir.bootlin.com/busybox/latest/source/examples/inittab
https://bootlin.com


Embedded Linux System Development

Then, create a /etc/inittab file and a /etc/init.d/rcS startup script declared in /etc/
inittab. In this startup script, mount the /proc and /sys filesystems.

Any issue after doing this?

Starting the shell in a proper terminal
Before the shell prompt, you probably noticed the below warning message:

/bin/sh: can't access tty; job control turned off

This happens because the shell specified in the /etc/inittab file in started by default in /dev/
console:

::askfirst:/bin/sh

When nothing is specified before the leading ::, /dev/console is used. However, while this
device is fine for a simple shell, it is not elaborate enough to support things such as job control
([Ctrl][c] and [Ctrl][z]), allowing to interrupt and suspend jobs.

So, to get rid of the warning message, we need init to run /bin/sh in a real terminal device:

ttySTM0::askfirst:/bin/sh

Reboot the system and the message will be gone!

Switching to shared libraries
Take the hello.c program supplied in the lab data directory. Cross-compile it for ARM,
dynamically-linked with the libraries9, and run it on the target.

You will first encounter a very misleading not found error, which is not because the hello
executable is not found, but because something else is not found using the attempt to execute
this executable. What’s missing is the ld-uClibc.so.0 executable, which is the dynamic linker
required to execute any program compiled with shared libraries. Using the find command, look
for this file in the toolchain install directory, and copy it to the lib/ directory on the target.

Then, running the executable again and see that the loader executes and finds out which shared
libraries are missing.

If you still get the same error message, work, just try again a few seconds later. Such a delay can
be needed because the NFS client can take a little time (at most 30-60 seconds) before seeing
the changes made on the NFS server.

Similarly, find the missing libraries in the toolchain and copy them to lib/ on the target.

Once the small test program works, we are going to recompile BusyBox without the static
compilation option, so that BusyBox takes advantages of the shared libraries that are now
present on the target.

Before doing that, measure the size of the busybox executable.

Then, build BusyBox with shared libraries, and install it again on the target filesystem. Make
sure that the system still boots and see how much smaller the busybox executable got.

9Invoke your cross-compiler in the same way you did during the toolchain lab

22 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

Implement a web interface for your device
Replicate data/www/ to the /www directory in your target root filesystem.

Now, run the BusyBox http server from the target command line:

=> /usr/sbin/httpd -h /www/

It will automatically background itself.

If you use a proxy, configure your host browser so that it doesn’t go through the proxy to connect
to the target IP address, or simply disable proxy usage. Now, test that your web interface works
well by opening http://192.168.0.100/index.html on the host.

See how the dynamic pages are implemented. Very simple, isn’t it?

Going further
If you have time before the others complete their labs...

Initramfs booting

Configure your kernel to include the contents of the nfsroot directory as an initramfs.

Before doing this, you will need to create an init link in the toplevel directory to sbin/init,
because the kernel will try to execute /init. You will also need to mount devtmpfs from the rcS
script, it cannot be mounted automatically by the kernel when you’re booting from an initramfs.

Note: you won’t need to modify your root= setting in the kernel command line. It will just be
ignored if you have an initramfs.

© 2004-2022 Bootlin, CC BY-SA license 23

https://bootlin.com


Embedded Linux System Development

Filesystems - Block file systems
Objective: configure and boot an embedded Linux system relying on
block storage

After this lab, you will be able to:

• Produce file system images.

• Configure the kernel to use these file systems

• Use the tmpfs file system to store temporary files

Goals
After doing the A tiny embedded system lab, we are going to copy the filesystem contents to
the SD card. The filesystem will be split into several partitions, and your Discovery kit will be
booted with this SD card, without using NFS anymore.

Setup
Throughout this lab, we will continue to use the root filesystem we have created in the $HOME/
embedded-linux-4d-labs/tinysystem/nfsroot directory, which we will progressively adapt to
use block filesystems.

Filesystem support in the kernel
Recompile your kernel with support for SquashFS and ext410.

Update your kernel image in the boot partition.

Boot your board with this new kernel and on the NFS filesystem you used in this previous lab.

Now, check the contents of /proc/filesystems. You should see that ext4 and SquashFS are
now supported.

Add partitions to the SD card
We’re going to use the SD card as block device storage.

Plug the SD card in your workstation. If partitions are mounted, unmount them:

$ sudo umount /dev/mmcblk0p*

Using parted, add two partitions, starting from the beginning of the remaining space, with the
following properties:

• One partition, for the root filesystem, 2 MB big:
10Basic configuration options for these filesystems will be sufficient. No need for things like extended attributes.

24 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

mkpart rootfs 131072s 135167s

• One partition, that fills the rest of the SD card, that will be used for the data filesystem:

mkpart data 135168s 100%

Use quit when you are done.

Data partition on the SD card
Using the mkfs.ext4 create a journaled file system on the sixth partition of the SD card:

$ sudo mkfs.ext4 -L data -E nodiscard /dev/mmcblk0p6

• -L assigns a volume name to the partition

• -E nodiscard disables bad block discarding. While this should be a useful option for cards
with bad blocks, skipping this step saves long minutes in SD cards.

Now, mount this new partition and move the contents of the /www/upload/files directory (in
your target root filesystem) into it. The goal is to use the data partition of the SD card as the
storage for the uploaded images.

Insert the SD card in your board and boot. You should see the partitions in /proc/partitions.

Mount this sixth partition on /www/upload/files.

Once this works, modify the startup scripts in your root filesystem to do it automatically at
boot time.

Reboot your target system and with the mount command, check that /www/upload/files is
now a mount point for the sixth SD card partition. Also make sure that you can still upload
new images, and that these images are listed in the web interface.

Adding a tmpfs partition for log files
For the moment, the upload script was storing its log file in /www/upload/files/upload.log.
To avoid seeing this log file in the directory containing uploaded files, let’s store it in /var/log
instead.

Add the /var/log/ directory to your root filesystem and modify the startup scripts to mount a
tmpfs filesystem on this directory. You can test your tmpfs mount command line on the system
before adding it to the startup script, in order to be sure that it works properly.

Modify the www/cgi-bin/upload.cfg configuration file to store the log file in /var/log/upload.
log. You will lose your log file each time you reboot your system, but that’s OK in our system.
That’s what tmpfs is for: temporary data that you don’t need to keep across system reboots.

Reboot your system and check that it works as expected.

Making a SquashFS image
We are going to store the root filesystem in a SquashFS filesystem in the fifth partition of the
SD card.

In order to create SquashFS images on your host, you need to install the squashfs-tools
package. Now create a SquashFS image of your NFS root directory.

© 2004-2022 Bootlin, CC BY-SA license 25

https://bootlin.com


Embedded Linux System Development

Finally, using the dd command, copy the file system image to the fifth partition of the SD card.

Booting on the SquashFS partition
In the U-boot shell, configure the kernel command line to use the fifth partition of the SD
card as the root file system. Also add the rootwait boot argument, to wait for the SD card
to be properly initialized before trying to mount the root filesystem. Since the SD cards are
detected asynchronously by the kernel, the kernel might try to mount the root filesystem too
early without rootwait.

Check that your system still works. Congratulations if it does!

26 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

Third party libraries and applica-
tions
Objective: Learn how to leverage existing libraries and applications:
how to configure, compile and install them

To illustrate how to use existing libraries and applications, we will extend the small root filesys-
tem built in the A tiny embedded system lab to add the ALSA libraries and tools and an audio
playback application using the ALSA libraries. ALSA stands for Advanced Linux Sound Archi-
tecture, and is the Linux audio subsystem.

We’ll see that manually re-using existing libraries is quite tedious, so that more automated
procedures are necessary to make it easier. However, learning how to perform these operations
manually will significantly help you when you face issues with more automated tools.

Audio support in the Kernel

Recompile your kernel with support for USB audio cards: CONFIG_SND_USB_AUDIO=y. If neces-
sary, find out which dependencies are missing to allow for such a setting.

At this stage, the easiest solution to update your kernel is probably to get back to copying it
to RAM from tftp. Anyway, we will have to modify U-Boot environment variables, as we are
going to switch back to NFS booting anyway.

Make sure that your board still boots with this new kernel.

Figuring out library dependencies

We’re going to integrate the alsa-utils and ogg123 executables. As most software components,
they in turn depend on other libraries, and these dependencies are different depending on the
configuration chosen for them. In our case, the dependency chain for alsa-utils is quite simple,
it only depends on the alsa-lib library.

The dependencies are a bit more complex for ogg123. It is part of vorbis-tools, that depend
on libao and libvorbis. libao in turn depends on alsa-lib, and libvorbis on libogg.

libao, alsa-utils and alsa-lib are here to abstract the use of ALSA. vorbis-tools, libvorbis
and libogg are used to handle the audio files encoded using the Ogg container and Vorbis codec,
which are quite common.

So, we end up with the following dependency tree:

© 2004-2022 Bootlin, CC BY-SA license 27

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_SND_USB_AUDIO
https://bootlin.com


Embedded Linux System Development

Of course, all these libraries rely on the C library, which is not mentioned here, because it is
already part of the root filesystem built in the A tiny embedded system lab. You might wonder
how to figure out this dependency tree by yourself. Basically, there are several ways, that can
be combined:

• Read the library documentation, which often mentions the dependencies;

• Read the help message of the configure script (by running ./configure --help).

• By running the configure script, compiling and looking at the errors.

To configure, compile and install all the components of our system, we’re going to start from
the bottom of the tree with alsa-lib, then continue with alsa-utils, libao, libogg, and libvorbis, to
finally compile vorbis-tools.

Preparation
For our cross-compilation work, we will need two separate spaces:

• A staging space in which we will directly install all the packages: non-stripped versions
of the libraries, headers, documentation and other files needed for the compilation. This
staging space can be quite big, but will not be used on our target, only for compiling
libraries or applications;

• A target space, in which we will only copy the required files from the staging space: binaries
and libraries, after stripping, configuration files needed at runtime, etc. This target space
will take a lot less space than the staging space, and it will contain only the files that are
really needed to make the system work on the target.

To sum up, the staging space will contain everything that’s needed for compilation, while the
target space will contain only what’s needed for execution.

So, in $HOME/embedded-linux-4d-labs/thirdparty, create two directories: staging and target.

For the target, we need a basic system with BusyBox and initialization scripts. We will re-use
the system built in the A tiny embedded system lab, so copy this system in the target directory:

$ cp -a $HOME/embedded-linux-4d-labs/tinysystem/nfsroot/* target/

Note that for this lab, a lot of typing will be required. To save time typing, we advise you to
copy and paste commands from the electronic version of these instructions.

28 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

Testing
Make sure the target/ directory is exported by your NFS server to your board by modifying
/etc/exports and restarting your NFS server.

Make your board boot from this new directory through NFS.

alsa-lib
alsa-lib is a library supposed to handle the interaction with the ALSA subsystem. It is
available at https://alsa-project.org. Download version 1.2.3.2 (there’s an issue in version
1.2.4 for the moment), and extract it in $HOME/embedded-linux-4d-labs/thirdparty/.

Tip: if the website for any of the source packages that we need to download in the next sections
is down, a great mirror that you can use is http://sources.buildroot.net/.

Back to alsa-lib sources, look at the configure script and see that it has been generated
by autoconf (the header contains a sentence like Generated by GNU Autoconf 2.69). Most of
the time, autoconf comes with automake, that generates Makefiles from Makefile.am files. So
alsa-lib uses a rather common build system. Let’s try to configure and build it:

$ ./configure
$ make

You can see that the files are getting compiled with gcc, which generates code for x86 and not
for the target platform. This is obviously not what we want, so we clean-up the object and tell
the configure script to use the ARM cross-compiler:

$ make clean
$ CC=arm-linux-gcc ./configure

Of course, the arm-linux-gcc cross-compiler must be in your PATH prior to running the configure
script. The CC environment variable is the classical name for specifying the compiler to use.

Quickly, you should get an error saying:

checking whether we are cross compiling... configure: error: in `.../thirdparty/
alsa-lib-1.1.6':
configure: error: cannot run C compiled programs.
If you meant to cross compile, use `--host'.
See `config.log' for more details

If you look at the config.log file, you can see that the configure script compiles a binary with
the cross-compiler and then tries to run it on the development workstation. This is a rather
usual thing to do for a configure script, and that’s why it tests so early that it’s actually doable,
and bails out if not.

Obviously, it cannot work in our case, and the scripts exits. The job of the configure script
is to test the configuration of the system. To do so, it tries to compile and run a few sample
applications to test if this library is available, if this compiler option is supported, etc. But in
our case, running the test examples is definitely not possible.

We need to tell the configure script that we are cross-compiling, and this can be done using
the --build and --host options, as described in the help of the configure script:

System types:
--build=BUILD configure for building on BUILD [guessed]

© 2004-2022 Bootlin, CC BY-SA license 29

https://alsa-project.org
http://sources.buildroot.net/
https://bootlin.com


Embedded Linux System Development

--host=HOST cross-compile to build programs to run on HOST [BUILD]

The --build option allows to specify on which system the package is built, while the --host
option allows to specify on which system the package will run. By default, the value of the
--build option is guessed and the value of --host is the same as the value of the --build
option. The value is guessed using the ./config.guess script, which on your system should
return i686-pc-linux-gnu. See https://www.gnu.org/software/autoconf/manual/html_node/
Specifying-Names.html for more details on these options.

So, let’s override the value of the --host option:

$ CC=arm-linux-gcc ./configure --host=arm-linux

The configure script should end properly now, and create a Makefile. Run the make command,
which should run just fine.

Look at the result of compiling in src/.libs: a set of object files and a set of libasound.so*
files.

The libasound.so* files are a dynamic version of the library. The shared library itself is
libasound.so.2.0.0, it has been generated by the following command line:

$ arm-linux-gcc -shared conf.o confmisc.o input.o output.o async.o error.o \
dlmisc.o socket.o shmarea.o userfile.o names.o -lm -ldl -lpthread -lrt -Wl,\
-soname -Wl,libasound.so.2 -o libasound.so.2.0.0

And creates the symbolic links libasound.so and libasound.so.2.

$ ln -s libasound.so.2.0.0 libasound.so.2
$ ln -s libasound.so.2.0.0 libasound.so

These symlinks are needed for two different reasons:

• libasound.so is used at compile time when you want to compile an application that is
dynamically linked against the library. To do so, you pass the -lLIBNAME option to the
compiler, which will look for a file named lib<LIBNAME>.so. In our case, the compilation
option is -lasound and the name of the library file is libasound.so. So, the libasound.so
symlink is needed at compile time;

• libasound.so.2 is needed because it is the SONAME of the library. SONAME stands for
Shared Object Name. It is the name of the library as it will be stored in applications linked
against this library. It means that at runtime, the dynamic loader will look for exactly
this name when looking for the shared library. So this symbolic link is needed at runtime.

To know what’s the SONAME of a library, you can use:

$ arm-linux-readelf -d libasound.so.2.0.0

and look at the (SONAME) line. You’ll also see that this library needs the C library, because of
the (NEEDED) line on libc.so.0.

The mechanism of SONAME allows to change the library without recompiling the applications
linked with this library. Let’s say that a security problem is found in the alsa-lib release that
provides libasound 2.0.0, and fixed in the next alsa-lib release, which will now provide libasound
2.0.1.

You can just recompile the library, install it on your target system, change the libasound.so.2
link so that it points to libasound.so.2.0.1 and restart your applications. And it will work,

30 © 2004-2022 Bootlin, CC BY-SA license

https://www.gnu.org/software/autoconf/manual/html_node/Specifying-Names.html
https://www.gnu.org/software/autoconf/manual/html_node/Specifying-Names.html
https://bootlin.com


Embedded Linux System Development

because your applications don’t look specifically for libasound.so.2.0.0 but for the SONAME
libasound.so.2.

However, it also means that as a library developer, if you break the ABI of the library, you must
change the SONAME: change from libasound.so.2 to libasound.so.3.

Finally, the last step is to tell the configure script where the library is going to be installed.
Most configure scripts consider that the installation prefix is /usr/local/ (so that the library
is installed in /usr/local/lib, the headers in /usr/local/include, etc.). But in our system,
we simply want the libraries to be installed in the /usr prefix, so let’s tell the configure script
about this:

$ CC=arm-linux-gcc ./configure --host=arm-linux --prefix=/usr
$ make

For this library, this option may not change anything to the resulting binaries, but for safety, it
is always recommended to make sure that the prefix matches where your library will be running
on the target system.

Do not confuse the prefix (where the application or library will be running on the target system)
from the location where the application or library will be installed on your host while building
the root filesystem.

For example, libasound will be installed in $HOME/embedded-linux-4d-labs/thirdparty/target/
usr/lib/ because this is the directory where we are building the root filesystem, but once our
target system will be running, it will see libasound in /usr/lib.

The prefix corresponds to the path in the target system and never on the host. So, one should
never pass a prefix like $HOME/embedded-linux-4d-labs/thirdparty/target/usr, otherwise
at runtime, the application or library may look for files inside this directory on the target
system, which obviously doesn’t exist! By default, most build systems will install the application
or library in the given prefix (/usr or /usr/local), but with most build systems (including
autotools), the installation prefix can be overridden, and be different from the configuration
prefix.

We now only have the installation process left to do.

First, let’s make the installation in the staging space:

$ make DESTDIR=$HOME/embedded-linux-4d-labs/thirdparty/staging install

Now look at what has been installed by alsa-lib:

• Some configuration files in /usr/share/alsa

• The headers in /usr/include

• The shared library and its libtool (.la) file in /usr/lib

• A pkgconfig file in /usr/lib/pkgconfig. We’ll come back to these later

Finally, let’s install the library in the target space:

1. Create the target/usr/lib directory, it will contain the stripped version of the library

2. Copy the dynamic version of the library. Only libasound.so.2 and libasound.so.2.0.0
are needed, since libasound.so.2 is the SONAME of the library and libasound.so.2.0.0
is the real binary:

© 2004-2022 Bootlin, CC BY-SA license 31

https://bootlin.com


Embedded Linux System Development

• $ cp -a staging/usr/lib/libasound.so.2* target/usr/lib

3. Measure the size of the target/usr/lib/libasound.so.2.0.0 library before stripping.

4. Strip the library:
• $ arm-linux-strip target/usr/lib/libasound.so.2.0.0

5. Measure the size of the target/usr/lib/libasound.so.2.0.0 library library again after
stripping. How many unnecessary bytes were saved?

And we’re done with alsa-lib!

Alsa-utils
Download alsa-utils from the ALSA offical webpage. We tested the lab with version 1.2.4.

Once uncompressed, we quickly discover that the alsa-utils build system is based on the autotools,
so we will work once again with a regular configure script.

As we’ve seen previously, we will have to provide the prefix and host options and the CC variable:

$ CC=arm-linux-gcc ./configure --host=arm-linux --prefix=/usr

Now, we should quiclky get an error in the execution of the configure script:

checking for libasound headers version >= 1.0.27... not present.
configure: error: Sufficiently new version of libasound not found.

Again, we can check in config.log what the configure script is trying to do:

configure:7146: checking for libasound headers version >= 1.0.27
configure:7208: arm-linux-gcc -c -g -O2 conftest.c >&5
conftest.c:12:10: fatal error: alsa/asoundlib.h: No such file or directory

Of course, since alsa-utils uses alsa-lib, it includes its header file! So we need to tell the C
compiler where the headers can be found: there are not in the default directory /usr/include/,
but in the /usr/include directory of our staging space. The help text of the configure script
says:

CPPFLAGS C/C++/Objective C preprocessor flags,
e.g. -I<include dir> if you have headers
in a nonstandard directory <include dir>

Let’s use it:

$ CPPFLAGS=-I$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/include \
CC=arm-linux-gcc \
./configure --host=arm-linux --prefix=/usr

Now, it should stop a bit later, this time with the error:

checking for libasound headers version >= 1.0.27... found.
checking for snd_ctl_open in -lasound... no
configure: error: No linkable libasound was found.

The configure script tries to compile an application against libasound (as can be seen from
the -lasound option): alsa-utils uses alsa-lib, so the configure script wants to make sure this
library is already installed. Unfortunately, the ld linker doesn’t find it. So, let’s tell the linker
where to look for libraries using the -L option followed by the directory where our libraries

32 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

are (in staging/usr/lib). This -L option can be passed to the linker by using the LDFLAGS at
configure time, as told by the help text of the configure script:

LDFLAGS linker flags, e.g. -L<lib dir> if you have
libraries in a nonstandard directory <lib dir>

Let’s use this LDFLAGS variable:

$ LDFLAGS=-L$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/lib \
CPPFLAGS=-I$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/include \
CC=arm-linux-gcc \
./configure --host=arm-linux --prefix=/usr

Once again, it should fail a bit further down the tests, this time complaining about a missing
curses helper header. curses or ncurses is a graphical framework to design UIs in the terminal.
This is only used by alsamixer, one of the tools provided by alsa-utils, that we are not going to
use. Hence, we can just disable the build of alsamixer.

Of course, if we wanted it, we would have had to build ncurses first, just like we built alsa-lib.

$ LDFLAGS=-L$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/lib \
CPPFLAGS=-I$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/include \
CC=arm-linux-gcc \
./configure --host=arm-linux --prefix=/usr \
--disable-alsamixer

Then, run the compilation with make. Hopefully, it works!

Let’s now begin the installation process. Before really installing in the staging directory, let’s
install in a dummy directory, to see what’s going to be installed (this dummy directory will not
be used afterwards, it is only to verify what will be installed before polluting the staging space):

$ make DESTDIR=/tmp/alsa-utils/ install

The DESTDIR variable can be used with all Makefiles based on automake. It allows to override
the installation directory: instead of being installed in the configuration prefix directory, the
files will be installed in DESTDIR/configuration-prefix.

Now, let’s see what has been installed in /tmp/alsa-utils/ (run tree /tmp/alsa-utils):

/tmp/alsa-utils/
|-- lib
| |-- systemd
| | `-- system
| | |-- alsa-restore.service
| | |-- alsa-state.service
| | `-- sound.target.wants
| | |-- alsa-restore.service -> ../alsa-restore.service
| | `-- alsa-state.service -> ../alsa-state.service
| `-- udev
| `-- rules.d
| |-- 89-alsa-ucm.rules
| `-- 90-alsa-restore.rules
|-- usr
| |-- bin
| | |-- aconnect

© 2004-2022 Bootlin, CC BY-SA license 33

https://bootlin.com


Embedded Linux System Development

| | |-- alsabat
| | |-- alsaloop
| | |-- alsatplg
| | |-- alsaucm
| | |-- amidi
| | |-- amixer
| | |-- aplay
| | |-- aplaymidi
| | |-- arecord -> aplay
| | |-- arecordmidi
| | |-- aseqdump
| | |-- aseqnet
| | |-- axfer
| | |-- iecset
| | `-- speaker-test
| |-- sbin
| | |-- alsabat-test.sh
| | |-- alsaconf
| | |-- alsactl
| | `-- alsa-info.sh
| `-- share
| |-- alsa
| | |-- init
| | | |-- 00main
| | | |-- ca0106
| | | |-- default
| | | |-- hda
| | | |-- help
| | | |-- info
| | | `-- test
| | `-- speaker-test
| | `-- sample_map.csv
| |-- man
| | |-- fr
| | | `-- man8
| | | `-- alsaconf.8
| | |-- man1
| | | |-- aconnect.1
| | | |-- alsabat.1
| | | |-- alsactl.1
| | | |-- alsa-info.sh.1
| | | |-- alsaloop.1
| | | |-- amidi.1
| | | |-- amixer.1
| | | |-- aplay.1
| | | |-- aplaymidi.1
| | | |-- arecord.1 -> aplay.1
| | | |-- arecordmidi.1
| | | |-- aseqdump.1
| | | |-- aseqnet.1
| | | |-- axfer.1
| | | |-- axfer-list.1

34 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

| | | |-- axfer-transfer.1
| | | |-- iecset.1
| | | `-- speaker-test.1
| | |-- man7
| | `-- man8
| | `-- alsaconf.8
| `-- sounds
| `-- alsa
| |-- Front_Center.wav
| |-- Front_Left.wav
| |-- Front_Right.wav
| |-- Noise.wav
| |-- Rear_Center.wav
| |-- Rear_Left.wav
| |-- Rear_Right.wav
| |-- Side_Left.wav
| `-- Side_Right.wav
`-- var

`-- lib
`-- alsa

24 directories, 63 files

So, we have:

• The systemd service definitions in lib/systemd

• The udev rules in lib/udev

• The alsa-utils binaries in /usr/bin and /usr/sbin

• Some sound samples in /usr/share/sounds

• The various translations in /usr/share/locale

• The manual pages in /usr/share/man/, explaining how to use the various tools

• Some configuration samples in /usr/share/alsa.

Now, let’s make the installation in the staging space:

$ make DESTDIR=$HOME/embedded-linux-4d-labs/thirdparty/staging/ install

Then, let’s install only the necessary files in the target space, manually:

$ cd ..
$ cp -a staging/usr/bin/a* staging/usr/bin/speaker-test target/usr/bin/
$ cp -a staging/usr/sbin/alsa* target/usr/sbin
$ arm-linux-strip target/usr/bin/a*
$ arm-linux-strip target/usr/bin/speaker-test
$ arm-linux-strip target/usr/sbin/alsactl
$ mkdir -p target/usr/share/alsa/pcm
$ cp -a staging/usr/share/alsa/alsa.conf* target/usr/share/alsa/
$ cp -a staging/usr/share/alsa/cards target/usr/share/alsa/
$ cp -a staging/usr/share/alsa/pcm/default.conf target/usr/share/alsa/pcm/

And we’re finally done with alsa-utils!

© 2004-2022 Bootlin, CC BY-SA license 35

https://bootlin.com


Embedded Linux System Development

Now test that all is working fine by running the speaker-test util on your board, with the
headset provided by your instructor plugged in. You may need to add the missing libraries from
the toolchain install directory.

Caution: don’t copy the dmix.conf file. speaker-test will tell you that it cannot find this file,
but it won’t work if you copy this file from the staging area.

The sound you get will be mainly noise (as what you would get by running speaker-test on
your PCs). This is a way to test all possible frequencies, but is not really meant for a human to
listen to. At least, sound output is showing some signs of life! It will get much better when we
play samples with ogg123.

libogg
Now, let’s work on libogg. Download the 1.3.4 version from https://xiph.org and extract it.

Configuring libogg is very similar to the configuration of the previous libraries:

$ CC=arm-linux-gcc ./configure --host=arm-linux --prefix=/usr

Of course, compile the library:

$ make

Installation to the staging space can be done using the classical DESTDIR mechanism:

$ make DESTDIR=$HOME/embedded-linux-4d-labs/thirdparty/staging/ install

And finally, only install manually in the target space the files needed at runtime:

$ cd ..
$ cp -a staging/usr/lib/libogg.so.0* target/usr/lib/
$ arm-linux-strip target/usr/lib/libogg.so.0.8.4

Done with libogg!

libvorbis
Libvorbis is the next step. Grab the 1.3.7 version from https://xiph.org and uncompress it.

Once again, the libvorbis build system is a nice example of what can be done with a good usage
of the autotools. Cross-compiling libvorbis is very easy, and almost identical to what we’ve seen
with alsa-utils. First, the configure step:

$ CC=arm-linux-gcc ./configure --host=arm-linux --prefix=/usr

It will fail with:

configure: error: Ogg >= 1.0 required !

By running ./configure --help, you will find the --with-ogg-libraries and --with-ogg-
includes options. Use these:

$ CC=arm-linux-gcc ./configure --host=arm-linux --prefix=/usr \
--with-ogg-includes=$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/\

include \

36 © 2004-2022 Bootlin, CC BY-SA license

https://xiph.org
https://xiph.org
https://bootlin.com


Embedded Linux System Development

--with-ogg-libraries=$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/lib

Then, compile the library:

$ make

Install it in the staging space:

$ make DESTDIR=$HOME/embedded-linux-4d-labs/thirdparty/staging/ install

And install only the required files in the target space:

$ cd ..
$ cp -a staging/usr/lib/libvorbis.so.0* target/usr/lib/
$ arm-linux-strip target/usr/lib/libvorbis.so.0.4.9
$ cp -a staging/usr/lib/libvorbisfile.so.3* target/usr/lib/
$ arm-linux-strip target/usr/lib/libvorbisfile.so.3.3.8

And we’re done with libvorbis!

libao
Now, let’s work on libao. Download the 1.2.0 version from https://xiph.org and extract it.

Configuring libao is once again fairly easy, and similar to every sane autotools based build
system:

$ LDFLAGS=-L$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/lib \
CPPFLAGS=-I$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/include \
CC=arm-linux-gcc ./configure --host=arm-linux --prefix=/usr

Of course, compile the library:

$ make

In case you have the libpulse-dev development package on your host, compilation could fail
with:

ao_pulse.c:35:10: fatal error: pulse/pulseaudio.h: No such file or directory
35 | #include <pulse/pulseaudio.h>

| ^~~~~~~~~~~~~~~~~~~~
compilation terminated.

This can be addressed by disabling PulseAudio support, by adding the --disable-pulse con-
figure option (once again, look at ./configure --help).

After running make successfully, installation to the staging space can be done using the classical
DESTDIR mechanism:

$ make DESTDIR=$HOME/embedded-linux-4d-labs/thirdparty/staging/ install

And finally, install manually the only needed files at runtime in the target space:

$ cd ..
$ cp -a staging/usr/lib/libao.so.4* target/usr/lib/
$ arm-linux-strip target/usr/lib/libao.so.4.1.0

© 2004-2022 Bootlin, CC BY-SA license 37

https://xiph.org
https://bootlin.com


Embedded Linux System Development

We will also need the alsa plugin that is loaded dynamically by libao at startup:

$ mkdir -p target/usr/lib/ao/plugins-4/
$ cp -a staging/usr/lib/ao/plugins-4/libalsa.so target/usr/lib/ao/plugins-4/
$ arm-linux-strip target/usr/lib/ao/plugins-4/libalsa.so

Done with libao!

vorbis-tools
Finally, thanks to all the libraries we compiled previously, all the dependencies are ready. We
can now build the vorbis tools themselves. Download the 1.4.2 version from the official website,
at https://xiph.org/. As usual, extract the tarball.

Before starting the configuration, let’s have a look at the available options by running ./
configure --help. Many options are available. We see that we can, in addition to the usual
autotools configuration options:

• Enable/Disable the various tools that are going to be built: ogg123, oggdec, oggenc, etc.

• Enable or disable support for various other codecs: FLAC, Speex, etc.

• Enable or disable the use of various libraries that can optionally be used by the vorbis
tools

So, let’s begin with our usual configure line:

$ LDFLAGS=-L$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/lib \
CPPFLAGS=-I$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/include \
CC=arm-linux-gcc \
./configure --host=arm-linux --prefix=/usr

At the end, you should see the following warning:

configure: WARNING: Prerequisites for ogg123 not met, ogg123 will be skipped.
Please ensure that you have POSIX threads, libao, and (optionally) libcurl
libraries and headers present if you would like to build ogg123.

Which is unfortunate, since we precisely want ogg123.

If you look back at the script output, you should see that at some point that it tests for libao
and fails to find it:

checking for AO... no
configure: WARNING: libao too old; >= 1.0.0 required

If you look into the config.log file now, you should find something like:

configure:22343: checking for AO
configure:22351: $PKG_CONFIG --exists --print-errors "ao >= 1.0.0"
Package ao was not found in the pkg-config search path.
Perhaps you should add the directory containing `ao.pc'
to the PKG_CONFIG_PATH environment variable
No package 'ao' found

In this case, the configure script uses the pkg-config system to get the configuration parameters
to link the library against libao. By default, pkg-config looks in /usr/lib/pkgconfig/ for .pc

38 © 2004-2022 Bootlin, CC BY-SA license

https://xiph.org/
https://bootlin.com


Embedded Linux System Development

files, and because the libao-dev package is probably not installed in your system the configure
script will not find libao library that we just compiled.

It would have been worse if we had the package installed, because it would have detected and
used our host package to compile libao, which, since we’re cross-compiling, is a pretty bad thing
to do.

This is one of the biggest issue with cross-compilation: mixing host and target libraries, because
build systems have a tendency to look for libraries in the default paths.

So, now, we must tell pkg-config to look inside the /usr/lib/pkgconfig/ directory of our staging
space. This is done through the PKG_CONFIG_LIBDIR environment variable, as explained in the
manual page of pkg-config.

Moreover, the .pc files contain references to paths. For example, in $HOME/embedded-linux-4d-
labs/thirdparty/staging/usr/lib/pkgconfig/ao.pc, we can see:

prefix=/usr
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
includedir=${prefix}/include
[...]
Libs: -L${libdir} -lao
Cflags: -I${includedir}

So we must tell pkg-config that these paths are not absolute, but relative to our staging space.
This can be done using the PKG_CONFIG_SYSROOT_DIR environment variable.

Then, let’s run the configuration of the vorbis-tools again, passing the PKG_CONFIG_LIBDIR and
PKG_CONFIG_SYSROOT_DIR environment variables:

$ LDFLAGS=-L$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/lib \
CPPFLAGS=-I$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/include \
PKG_CONFIG_LIBDIR=$HOME/embedded-linux-4d-labs/thirdparty/staging/usr/lib/\

pkgconfig \
PKG_CONFIG_SYSROOT_DIR=$HOME/embedded-linux-4d-labs/thirdparty/staging \
CC=arm-linux-gcc \
./configure --host=arm-linux --prefix=/usr

Now, the configure script should end properly, we can now start the compilation:

$ make

It should fail with the following cryptic message:

make[2]: Entering directory '/home/tux/embedded-linux-4d-labs/thirdparty/
vorbis-tools-1.4.0/ogg123'
if arm-linux-gcc -DSYSCONFDIR=\"/usr/etc\" -DLOCALEDIR=\"/usr/share/locale\" -DHAVE
_CONFIG_H -I. -I. -I.. -I/usr/include -I../include -I../intl -I/home/tux/
embedded-linux-4d-labs/thirdparty/staging/usr/include -O2 -Wall -ffast-math
-fsigned-char -g -O2 -MT audio.o -MD -MP -MF ".deps/audio.Tpo" -c -o audio.o
audio.c; \
then mv -f ".deps/audio.Tpo" ".deps/audio.Po"; else rm -f ".deps/audio.Tpo"; exit
1; fi
In file included from audio.c:22:
/usr/include/stdio.h:27:10: fatal error: bits/libc-header-start.h: No such file or
directory

© 2004-2022 Bootlin, CC BY-SA license 39

https://bootlin.com


Embedded Linux System Development

You can notice that /usr/include is added to the include paths. Again, this is not what we
want because it contains includes for the host, not the target. It is coming from the autodetected
value for CURL_CFLAGS.

Add the --without-curl option to the configure invocation, restart the compilation.

Finally, it builds!

Now, install the vorbis-tools to the staging space using:

$ make DESTDIR=$HOME/embedded-linux-4d-labs/thirdparty/staging/ install

And then install them in the target space:

$ cd ..
$ cp -a staging/usr/bin/ogg* target/usr/bin
$ arm-linux-strip target/usr/bin/ogg*

You can now test that everything works! Run ogg123 on the sample file found in thirdparty/
data.

There should still be one missing C library object. Copy it, and you should get: +

ERROR: Failed to load plugin /usr/lib/ao/plugins-4/libalsa.so => dlopen() failed
=== Could not load default driver and no driver specified in config file. Exiting.

This error message is unfortunately not sufficient to figure out what’s going wrong. It’s a good
opportunity to use the strace utility (covered in upcoming lectures) to get more details about
what’s going on. To do so, you can use the one built by Crosstool-ng inside the toolchain
target/usr/bin directory.

You can now run ogg123 through strace:

$ strace ogg123 /sample.ogg

You can see that the command fails to open the ld-uClibc.so.1 file:

open("/lib/ld-uClibc.so.1", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/lib/ld-uClibc.so.1", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/usr/lib/ld-uClibc.so.1", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/usr/X11R6/lib/ld-uClibc.so.1", O_RDONLY) = -1 ENOENT (No such file or
directory)
open("/home/tux/embedded-linux-4d-labs/thirdparty/staging/usr/lib/ld-uClibc.so.1",
O_RDONLY) = -1 ENOENT (No such file or directory)
write(2, "ERROR: Failed to load plugin ", 29ERROR: Failed to load plugin ) = 29
write(2, "/usr/lib/ao/plugins-4/libalsa.so", 32/usr/lib/ao/plugins-4/libalsa.so) =
32
write(2, " => dlopen() failed\n", 20 => dlopen() failed

Now, look for ld-uClibc.so.1 in the toolchain. You can see that both ld-uClibc.so.1 and
ld-uClibc.so.0 are symbolic links to the same file. So, create the missing link under target/lib
and run ogg123 again.

Everything should work fine now. Enjoy the sound sample!

To finish this lab completely, and to be consistent with what we’ve done before, let’s strip the
libraries in target/lib:

40 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

$ arm-linux-strip target/lib/*

© 2004-2022 Bootlin, CC BY-SA license 41

https://bootlin.com


Embedded Linux System Development

Using a build system, example with
Buildroot
Objectives: discover how a build system is used and how it works,
with the example of the Buildroot build system. Build a Linux system
with libraries and make it work on the board.

Setup
Create the $HOME/embedded-linux-4d-labs/buildroot directory and go into it.

Get Buildroot and explore the source code
The official Buildroot website is available at https://buildroot.org/. Download the latest
2022.02.<n> (Long Term Support) version which we have tested for this lab. Uncompress the
tarball and go inside the Buildroot source directory.

Several subdirectories or files are visible, the most important ones are:

• boot contains the Makefiles and configuration items related to the compilation of common
bootloaders (Grub, U-Boot, Barebox, etc.)

• configs contains a set of predefined configurations, similar to the concept of defconfig in
the kernel.

• docs contains the documentation for Buildroot. You can start reading manual/manual.
html which is the main Buildroot documentation;

• fs contains the code used to generate the various root filesystem image formats

• linux contains the Makefile and configuration items related to the compilation of the
Linux kernel

• Makefile is the main Makefile that we will use to use Buildroot: everything works through
Makefiles in Buildroot;

• package is a directory that contains all the Makefiles, patches and configuration items to
compile the user space applications and libraries of your embedded Linux system. Have a
look at various subdirectories and see what they contain;

• system contains the root filesystem skeleton and the device tables used when a static /dev
is used;

• toolchain contains the Makefiles, patches and configuration items to generate the cross-
compiling toolchain.

Configure Buildroot
In our case, we would like to:

42 © 2004-2022 Bootlin, CC BY-SA license

https://buildroot.org/
https://bootlin.com


Embedded Linux System Development

• Generate an embedded Linux system for ARM;

• Use an already existing external toolchain instead of having Buildroot generating one for
us;

• Integrate BusyBox, alsa-utils and vorbis-tools in our embedded Linux system;

• Integrate the target filesystem into a tarball

To run the configuration utility of Buildroot, simply run:

$ make menuconfig

Set the following options. Don’t hesitate to press the Help button whenever you need more
details about a given option:

• Target options

– Target Architecture: ARM (little endian)

– Target Architecture Variant: cortex-A7

– Target ABI: EABIhf

– Floating point strategy: VFPv4

• Toolchain

– Toolchain type: External toolchain

– Toolchain: Custom toolchain

– Toolchain path: use the toolchain you built: /home/<user>/x-tools/arm-training-
linux-uclibcgnueabihf (replace <user> by your actual user name)

– External toolchain gcc version: 11.x

– External toolchain kernel headers series: 5.14.x

– External toolchain C library: uClibc/uClibc-ng

– We must tell Buildroot about our toolchain configuration, so select Toolchain has
WCHAR support?, Toolchain has SSP support? and Toolchain has C++ support?.
Buildroot will check these parameters anyway.

• Target packages

– Keep BusyBox (default version) and keep the BusyBox configuration proposed by
Buildroot;

– Audio and video applications

∗ Select alsa-utils

∗ ALSA utils selection

· Disable alsactl (we don’t use it)

· Keep alsamixer (good to see, and needed to pull the ncurses dependency
used in the next lab).

· Select speaker-test

∗ Select vorbis-tools

• Filesystem images

© 2004-2022 Bootlin, CC BY-SA license 43

https://bootlin.com


Embedded Linux System Development

– Select tar the root filesystem

Exit the menuconfig interface. Your configuration has now been saved to the .config file.

Generate the embedded Linux system

Just run:

$ make

Buildroot will first create a small environment with the external toolchain, then download,
extract, configure, compile and install each component of the embedded system.

All the compilation has taken place in the output/ subdirectory. Let’s explore its contents:

• build, is the directory in which each component built by Buildroot is extracted, and where
the build actually takes place

• host, is the directory where Buildroot installs some components for the host. As Buildroot
doesn’t want to depend on too many things installed in the developer machines, it installs
some tools needed to compile the packages for the target. In our case it installed pkg-config
(since the version of the host may be ancient) and tools to generate the root filesystem
image (genext2fs, makedevs, fakeroot).

• images, which contains the final images produced by Buildroot. In our case it’s just a
tarball of the filesystem, called rootfs.tar, but depending on the Buildroot configuration,
there could also be a kernel image or a bootloader image.

• staging, which contains the “build” space of the target system. All the target libraries,
with headers and documentation. It also contains the system headers and the C library,
which in our case have been copied from the cross-compiling toolchain.

• target, is the target root filesystem. All applications and libraries, usually stripped, are
installed in this directory. However, it cannot be used directly as the root filesystem, as
all the device files are missing: it is not possible to create them without being root, and
Buildroot has a policy of not running anything as root.

Run the generated system

Go back to the $HOME/embedded-linux-4d-labs/buildroot/ directory. Create a new nfsroot
directory that is going to hold our system, exported over NFS. Go into this directory, and untar
the rootfs using:

$ tar xvf ../buildroot-2022.02.<n>/output/images/rootfs.tar

Add our nfsroot directory to the list of directories exported by NFS in /etc/exports, and make
sure the board uses it too.

Boot the board, and log in (root account, no password).

You should now have a shell, where you will be able to run ogg123 like you used to in the
previous lab.

44 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

Going further
• Add dropbear (SSH server and client) to the list of packages built by Buildroot and log to

your target system using an ssh client on your development workstation. Hint: you will
have to set a non-empty password for the root account on your target for this to work.

• Add a new package in Buildroot for the GNU Gtypist game. Read the Buildroot documen-
tation to see how to add a new package. Finally, add this package to your target system,
compile it and run it. The newest versions require a library that is not fully supported by
Buildroot, so you’d better stick with the latest version in the 2.8 series.

© 2004-2022 Bootlin, CC BY-SA license 45

https://bootlin.com


Embedded Linux System Development

Application development
Objective: Compile and run your own ncurses application on the
target.

Setup
Go to the $HOME/embedded-linux-4d-labs/appdev directory.

Compile your own application
We will re-use the system built during the Buildroot lab and add to it our own application.

In the lab directory the file app.c contains a very simple ncurses application. It is a simple
game where you need to reach a target using the arrow keys of your keyboard. We will compile
and integrate this simple application to our Linux system.

Buildroot has generated toolchain wrappers in output/host/bin, which make it easier to use
the toolchain, since these wrappers pass some mandatory flags (especially the --sysroot gcc
flag, which tells gcc where to look for the headers and libraries).

Let’s add this directory to our PATH:

$ export PATH=$HOME/embedded-linux-4d-labs/buildroot/buildroot-2022.02.X/output/\
host/bin:$PATH

Let’s try to compile the application:

$ arm-linux-gcc -o app app.c

It complains about undefined references to some symbols. This is normal, since we didn’t tell
the compiler to link with the necessary libraries. So let’s use pkg-config to query the pkg-
config database about the location of the header files and the list of libraries needed to build an
application against ncurses11:

$ arm-linux-gcc -o app app.c $(pkg-config --libs --cflags ncurses)

Our application is now compiled! Copy the generated binary to the NFS root filesystem (in the
root/ directory for example), start your system, and run your application!

You can also try to run it over ssh if you add ssh support to your target.

11Again, output/host/bin has a special pkg-config that automatically knows where to look, so it already knows
the right paths to find .pc files and their sysroot.

46 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

Remote application debugging
Objective: Use strace and ltrace to diagnose program issues. Use
gdbserver and a cross-debugger to remotely debug an embedded ap-
plication

Setup
Go to the $HOME/embedded-linux-4d-labs/debugging directory. Create an nfsroot directory.

Debugging setup
Because of issues in gdb and ltrace in the uClibc version that we are using in our toolchain, we
will use a different toolchain in this lab, based on glibc.

As glibc has more complete features than lighter libraries, it looks like a good idea to do your
application debugging work with a glibc toolchain first, and then switch to lighter libraries once
your application and software stack is production ready.

Extract the Buildroot 2022.02.<n> sources into the current directory.

Then, in the menuconfig interface, configure the target architecture as done previously but
configure the toolchain and target packages differently:

• In Toolchain:

– Toolchain type: External toolchain

– Toolchain: Bootlin toolchains

– Toolchain origin: Toolchain to be downloaded and installed

– Bootlin toolchain variant: armv7-eabihf glibc stable 2020.08-1

– Select Copy gdb server to the Target

• Target packages

– Debugging, profiling and benchmark

∗ Select ltrace

∗ Select strace

Now, build your root filesystem.

Go back to the $HOME/embedded-linux-4d-labs/debugging directory and extract the buildroot-
2022.02.<n>/output/images/rootfs.tar archive in the nfsroot directory.

Add this directory to the /etc/exports file and run sudo exportfs -r.

Boot your ARM board over NFS on this new filesystem, using the same kernel as before.

© 2004-2022 Bootlin, CC BY-SA license 47

https://bootlin.com


Embedded Linux System Development

Using strace
Now, go to the $HOME/embedded-linux-4d-labs/debugging directory.

strace allows to trace all the system calls made by a process: opening, reading and writing files,
starting other processes, accessing time, etc. When something goes wrong in your application,
strace is an invaluable tool to see what it actually does, even when you don’t have the source
code.

Update the PATH:

$ export PATH=$HOME/embedded-linux-4d-labs/debugging/buildroot-2022.02.<n>/output\
/host/bin:$PATH

With your cross-compiling toolchain compile the data/vista-emulator.c program, strip it with
arm-linux-strip, and copy the resulting binary to the /root directory of the root filesystem.

Back to target system, try to run the /root/vista-emulator program. It should hang indefi-
nitely!

Interrupt this program by hitting [Ctrl] [C].

Now, running this program again through the strace command and understand why it hangs.
You can guess it without reading the source code!

Now add what the program was waiting for, and now see your program proceed to another bug,
failing with a segmentation fault.

Using ltrace
Now run the program through ltrace.

Now you should see what the program does: it tries to consume as much system memory as it
can!

Also run the program through ltrace -c, to see what function call statistics this utility can
provide.

It’s also interesting to run the program again with strace. You will see that memory allocations
translate into mmap() system calls. That’s how you can recognize them when you’re using strace.

Using gdbserver
We are now going to use gdbserver to understand why the program segfaults.

Compile vista-emulator.c again with the -g option to include debugging symbols. This time,
just keep it on your workstation, as you already have the version without debugging symbols
on your target.

Then, on the target side, run vista-emulator under gdbserver. gdbserver will listen on a TCP
port for a connection from gdb, and will control the execution of vista-emulator according to
the gdb commands:

=> gdbserver localhost:2345 vista-emulator

On the host side, run arm-linux-gdb (also found in your toolchain):

48 © 2004-2022 Bootlin, CC BY-SA license

https://bootlin.com


Embedded Linux System Development

$ arm-linux-gdb vista-emulator

gdb starts and loads the debugging information from the vista-emulator binary that has been
compiled with -g.

Then, we need to tell where to find our libraries, since they are not present in the default /lib
and /usr/lib directories on your workstation. This is done by setting the gdb sysroot variable
(on one line):

(gdb) set sysroot /home/<user>/embedded-linux-4d-labs/debugging/\
buildroot-2022.02.<n>/output/staging

Of course, replace <user> by your actual user name.

And tell gdb to connect to the remote system:

(gdb) target remote <target-ip-address>:2345

Then, use gdb as usual to set breakpoints, look at the source code, run the application step by
step, etc. Graphical versions of gdb, such as ddd can also be used in the same way. In our case,
we’ll just start the program and wait for it to hit the segmentation fault:

(gdb) continue

You could then ask for a backtrace to see where this happened:

(gdb) backtrace

This will tell you that the segmentation fault occurred in a function of the C library, called by
our program. This should help you in finding the bug in our application.

Post mortem analysis
Following the details in the slides, configure your shell on the target to get a core file dumped
when you run vista-emulator again.

Once you have such a file, inspect it with arm-linux-gdb on the target, set the sysroot setting,
and then generate a backtrace to see where the program crashed.

This way, you can have information about the crash without running the program through the
debugger.

What to remember
During this lab, we learned that...

• It’s easy to study the behavior of programs and diagnose issues without even having the
source code, thanks to strace and ltrace.

• You can leave a small gdbserver program (about 300 KB) on your target that allows to
debug target applications, using a standard gdb debugger on the development host.

• It is fine to strip applications and binaries on the target machine, as long as the programs
and libraries with debugging symbols are available on the development host.

• Thanks to core dumps, you can know where a program crashed, without having to repro-
duce the issue by running the program through the debugger.

© 2004-2022 Bootlin, CC BY-SA license 49

https://bootlin.com

	About this document
	Copying this document
	Training setup
	Install lab data
	Update your distribution
	Install extra packages
	More guidelines

	Building a cross-compiling toolchain
	Setup
	Install needed packages
	Getting Crosstool-ng
	Building and installing Crosstool-ng
	Configure the toolchain to produce
	Produce the toolchain
	Known issues

	Testing the toolchain
	Cleaning up

	Bootloader - U-Boot
	Setting up serial communication with the board
	U-Boot setup
	Flashing U-Boot
	Testing U-Boot
	Setting up Ethernet communication
	Known issues on stmp32mp157d-dk1
	Rescue binaries

	Kernel sources
	Setup
	Get the sources
	Apply patches

	Kernel - Cross-compiling
	Setup
	Kernel sources
	Cross-compiling environment setup
	Linux kernel configuration
	Cross compiling
	Load and boot the kernel using U-Boot
	Writing the kernel and DTB on the SD card

	Tiny embedded system with BusyBox
	Lab implementation
	Setup
	Kernel configuration
	Setting up the NFS server
	Booting the system
	Root filesystem with BusyBox
	Virtual filesystems
	System configuration and startup
	Starting the shell in a proper terminal
	Switching to shared libraries
	Implement a web interface for your device
	Going further
	Initramfs booting


	Filesystems - Block file systems
	Goals
	Setup
	Filesystem support in the kernel
	Add partitions to the SD card
	Data partition on the SD card
	Adding a tmpfs partition for log files
	Making a SquashFS image
	Booting on the SquashFS partition

	Third party libraries and applications
	Audio support in the Kernel
	Figuring out library dependencies
	Preparation
	Testing
	alsa-lib
	Alsa-utils
	libogg
	libvorbis
	libao
	vorbis-tools

	Using a build system, example with Buildroot
	Setup
	Get Buildroot and explore the source code
	Configure Buildroot
	Generate the embedded Linux system
	Run the generated system
	Going further

	Application development
	Setup
	Compile your own application

	Remote application debugging
	Setup
	Debugging setup
	Using strace
	Using ltrace
	Using gdbserver
	Post mortem analysis
	What to remember


