“pootlin

Embedded Linux system development training

On-site training, 4 days
Latest update: September 06, 2022

Title Embedded Linux system development training

Training objectives + Understand the overall architecture of Embedded Linux systems.

» Understand the role and internals of a cross-compilation toolchain and setup
your own.

* Understand the booting process of embedded systems, the main bootloaders,
and setup your own bootloader.

 Understand the role and overall architecture of Linux kernel, how to configure,
build and install it on your embedded system.

* Understand the principle and contents of a Linux root filesystem, and create
your own Linux root filesystem from scratch.

* Discover the different filesystem for block storage devices, and use them on
your embedded system.

» Discover major open-source software components for embedded systems, un-
derstanding licensing constraints, how to integrate and cross-compile third-
party software components, and experiment cross-compilation of open-source
libraries.

* Discover the main embedded Linux build systems, and experiment one of
them.

* Understand the principles and tools for application development and debug-
ging on embedded Linux systems.

Duration Four days - 32 hours (8 hours per day).

* Lectures delivered by the trainer: 50% of the duration

Pedagogics * Practical labs done by participants: 50% of the duration
* Electronic copies of presentations, lab instructions and data files. They are
freely available at bootlin.com/doc/training/embedded-linux-4d.
Trainer One of the engineers listed on:
https://bootlin.com/training/trainers/
Language Oral lectures: English or French.
Materials: English.
Audience People developing devices using the Linux kernel

People supporting embedded Linux system developers.

https://bootlin.com/doc/training/embedded-linux-4d
https://bootlin.com/training/trainers/

Prerequisites

Alternative version

Required equipment

Certificate

Disabilities

“pootlin

* Knowledge and practice of UNIX or GNU/Linux commands: participants
must be familiar with the Linux command line. Participants lacking experience
on this topic should get trained by themselves, for example with our freely
available on-line slides at bootlin.com/blog/command-line/.

* Minimal English language level: B1, according to the Common European
Framework of References for Languages, for our sessions in English. See
bootlin.com/pub/training/cefr-grid.pdf for self-evaluation.

Full version of the Embedded Linux system development course, (5 days long) with
2 additional half days with practical labs:

* Flash filesystems

* Real time
Practical labs wusing a Microchip SAMASD3 Xplained board https:
//bootlin.com/doc/training/embedded-1linux/embedded-
linux-agenda. pdf.

For on-site sessions at our customer location, the customer must provide:

* Video projector

* One PC computer on each desk (for one or two persons) with at least 8 GB of
RAM, and Ubuntu Linux 20.04 installed in a free partition of at least 30 GB

* Distributions others than Ubuntu Linux 20.04 are not supported, and using
Linux in a virtual machine is not supported.

+ Unfiltered and fast connection to Internet: at least 50 Mbit/s of download
bandwidth, and no filtering of web sites or protocols.

* PC computers with valuable data must be backed up before being used in
our sessions.

Only the participants who have attended all training sessions, and who have scored
over 50% of correct answers at the final evaluation will receive a training certificate
from Bootlin.

Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

https://bootlin.com/blog/command-line/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/embedded-linux/embedded-linux-agenda.pdf
https://bootlin.com/doc/training/embedded-linux/embedded-linux-agenda.pdf
https://bootlin.com/doc/training/embedded-linux/embedded-linux-agenda.pdf

-
-

T o ¥ : ¥ N ' <
: ; f?ﬁ#‘ﬁs’r «5@“‘@ b < ol A% *"y bo Otl I rTe

Hardware

Using the STMicroelectronics STM32MP157D-DK1
Discovery board in all practical labs. This board fea-
tures:

* STM32MP157D dual ARM Cortex-A7 proces-

sor

» USB-C powered

* 512 MB DDR3L RAM

* Gigabit Ethernet port

* 4 USB 2.0 host ports

* 1 USB-C OTG port

* 1 Micro SD slot

* On-board ST-LINK/V2-1 debugger

* Arduino Uno v3-compatible header

* Audio codec

e Misc: buttons, LEDs

Day 1 - Morning

Lecture - Introduction to embedded Linux

* Introduction to Free Software

» Reasons for choosing Free Software in embedded operating systems
* Example embedded systems running Linux

* CPU, RAM and storage requirements

* Choosing a hardware platform

+ System architecture: main components

* Embedded system development tasks

Lecture - Embedded Linux development environ-
ment

» Operating system and tools to use on the devel-
opment workstation for embedded Linux devel-
opment.

Day 1 - Afternoon

“pootlin

Lecture - Cross-compiling toolchain and C library

* What’s inside a cross-compiling toolchain

* Choosing the target C library

* What’s inside the C library

* Ready to use cross-compiling toolchains

* Building a cross-compiling toolchain with auto-
mated tools.

Lab - Cross compiling toolchain

* Configuring Crosstool-NG
+ Executing it to build a custom uClibc toolchain.

Lab - Bootloader and U-boot

Using the STM32MP157D-DK1 Discovery board

* Set up serial communication with the board.

» Configure, compile and install the first-stage
bootloader and U-Boot on the Discovery board.

* Become familiar with U-Boot environment and
commands.

» Set up TFTP communication with the board.
Use TFTP U-Boot commands.

Lecture - Bootloaders

Available bootloaders
Bootloader features

* Installing a bootloader
Detailed study of U-Boot

Lecture - Linux kernel

* Role and general architecture of the Linux ker-
nel

* Features available in the Linux kernel, with a fo-
cus on features useful for embedded systems

* Kernel user interface

* Getting the sources

* Linux kernel release process. Long Term Sup-
port versions.

* Using the patch command

ootlin
Day 2 - Morning
Lab - Kernel sources Lecture — Configuring and compiling a Linux ker-
nel
* Downloading kernel sources Kernel configuration.
» Apply kernel patches » Using ready-made configuration files for spe-

cific architectures and boards.
» Kernel compilation.
» Generated files.
* Using kernel modules

Lab - Kernel cross-compiling and booting

Using the STM32MP157D-DK1 Discovery board
* Configuring the Linux kernel and cross-compiling it for the ARM board.
» Downloading your kernel on the board through U-boot’s tftp client.
* Booting your kernel from RAM.
+ Copying the kernel to flash and booting it from this location.
+ Storing boot parameters in flash and automating kernel booting from flash.

Day 2 - Afternoon

Lecture — Root filesystem in Linux Lecture - BusyBox
* Filesystems in Linux. * Detailed overview. Detailed features.
* Role and organization of the root filesystem. * Configuration, compiling and deploying.

* Location of the root filesystem: on storage, in
memory, from the network.

* Device files, virtual filesystems.

+ Contents of a typical root filesystem.

g

y. 3

i3 - Eﬁ‘: ?j"? .?_’F.:;:@ &

“bootlin

Lab — Tiny root filesystem built from scratch with BusyBox

Using the STM32MP157D-DK1 Discovery board
* Now build a basic root filesystem from scratch for your ARM system
+ Setting up a kernel to boot your system on a workstation directory exported by NFS
+ Passing kernel command line parameters to boot on NFS
* Creating the full root filesystem from scratch. Populating it with BusyBox based utilities.
* Creating device files and booting the virtual system.
+ System startup using BusyBox /sbin/init
 Using the BusyBox http server.
+ Controlling the target from a web browser on the PC host.
* Setting up shared libraries on the target and compiling a sample executable.

Day 3 - Morning

Lecture - Block filesystems Lab - Block filesystems

Using the STM32MP157D-DK1 Discovery board
* Booting a system with a mix of filesystems:
SquashFS for applications, ext3 for configura-
tion and user data, and tmpfs for temporary sys-
tem files.

* Filesystems for block devices.
 Usefulness of journaled filesystems.

* Read-only block filesystems.

* RAM filesystems.

» How to create each of these filesystems.
* Suggestions for embedded systems.

bOOtllhf'

Day 3 - Afternoon

Lecture — Leveraging existing open-source components in your system

» Reasons for leveraging existing components.

+ Find existing free and open source software components.

* Choosing the components.

 The different free software licenses and their requirements.

* Overview of well-known typical components used in embedded systems: graphical libraries and systems
(framebuffer, Gtk, Qt, etc.), system utilities, network libraries and utilities, multimedia libraries, etc.

 System building: integration of the components.

Lecture — Cross-compiling applications and li- Lab — Cross-compiling applications and libraries
braries

If enough time left
* Building a system with audio libraries and a
sound player application.
* Manual compilation and installation of several
free software packages.
 Learning about common techniques and issues.

* Configuring, cross-compiling and installing ap-
plications and libraries.

* Details about the build system used in most
open-source components.

* Overview of the common issues found when us-
ing these components.

Day 4 - Morning

Lecture - Embedded system building tools Lab - System build with Buildroot

Using the STM32MP157D-DK1 Discovery board
 Using Buildroot to rebuild the same system as
in the previous lab.
* Seeing how easier it gets.
» Optional: add a package to Buildroot.

* Review of existing system building tools.
* Buildroot example.

w=bootl I'h"‘"f

Day 4 - Afternoon

Lecture - Application development and debugging

* Programming languages and libraries available.

* Overview of the C library features for application development.

* Build system for your application, how to use existing libraries in your application.

* Debuggers. Debugging remote applications with gdb and gdbserver. Post-mortem debugging with core
files.

* Tracing and profiling solutions.

Lab - Application development and debugging

On the STM32MP157D-DK]1 Discovery board
» Develop and compile an application relying on the ncurses library
+ Using strace, ltrace and gdbserver to debug a crappy application on the remote system.
 Post mortem analysis: exploit a core dump to find out where an application crashed.

