
Linux debugging, profiling and tracing training

Linux debugging, profiling and
tracing training

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Latest update: July 03, 2025.

Document updates and training details:
https://bootlin.com/training/debugging

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@bootlin.com

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/340

https://bootlin.com/training/debugging
mailto:feedback@bootlin.com

Linux debugging, profiling and tracing training

▶ These slides are the training materials for Bootlin’s Linux
debugging, profiling and tracing training course.

▶ If you are interested in following this course with an experienced
Bootlin trainer, we offer:

• Public online sessions, opened to individual registration. Dates
announced on our site, registration directly online.

• Dedicated online sessions, organized for a team of engineers
from the same company at a date/time chosen by our customer.

• Dedicated on-site sessions, organized for a team of engineers
from the same company, we send a Bootlin trainer on-site to
deliver the training.

▶ Details and registrations:
https://bootlin.com/training/debugging

▶ Contact: training@bootlin.com

Icon by Eucalyp, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/340

https://bootlin.com/training/debugging

About Bootlin

About Bootlin

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/340

Bootlin introduction

▶ Engineering company
• In business since 2004
• Before 2018: Free Electrons

▶ Team based in France and Italy
▶ Serving customers worldwide
▶ Highly focused and recognized expertise

• Embedded Linux
• Linux kernel
• Embedded Linux build systems

▶ Strong open-source contributor
▶ Activities

• Engineering services
• Training courses

▶ https://bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/340

https://bootlin.com

Bootlin engineering services

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/340

Bootlin training courses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/340

Bootlin, an open-source contributor

▶ Strong contributor to the Linux kernel
• In the top 30 of companies contributing to Linux worldwide
• Contributions in most areas related to hardware support
• Several engineers maintainers of subsystems/platforms
• 9000 patches contributed
• https://bootlin.com/community/contributions/kernel-contributions/

▶ Contributor to Yocto Project
• Maintainer of the official documentation
• Core participant to the QA effort

▶ Contributor to Buildroot
• Co-maintainer
• 6000 patches contributed

▶ Significant contributions to U-Boot, OP-TEE, Barebox, etc.
▶ Fully open-source training materials

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/340

https://bootlin.com/community/contributions/kernel-contributions/

Bootlin on-line resources

▶ Website with a technical blog:
https://bootlin.com

▶ Engineering services:
https://bootlin.com/engineering

▶ Training services:
https://bootlin.com/training

▶ LinkedIn:
https://www.linkedin.com/company/bootlin

▶ Elixir - browse Linux kernel sources on-line:
https://elixir.bootlin.com

Icon by Freepik, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/340

https://bootlin.com
https://bootlin.com/engineering
https://bootlin.com/training
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

Generic course information

Generic course
information

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/340

Supported hardware

Discovery Kits from STMicroelectronics: STM32MP157A-DK1, STM32MP157D-DK1,
STM32MP157C-DK2 or STM32MP157F-DK2
▶ STM32MP157 (Dual Cortex-A7 + Cortex-M4) CPU

from STMicroelectronics
▶ 512 MB DDR3L RAM
▶ Gigabit Ethernet port
▶ 4 USB 2.0 host ports, 1 USB-C OTG port
▶ 1 Micro SD slot
▶ On-board ST-LINK/V2-1 debugger
▶ Misc: buttons, LEDs, audio codec
▶ LCD touchscreen (DK2 only) DK1 Discovery Kit
Board and CPU documentation, design files, software: A-DK1, D-DK1, C-DK2, F-DK2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/340

https://www.st.com/en/evaluation-tools/stm32mp157a-dk1.html
https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html
https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
https://www.st.com/en/evaluation-tools/stm32mp157f-dk2.html

Shopping list: hardware for this course

▶ STMicroelectronics STM32MP157D-DK1 Discovery kit
▶ USB-C cable for the power supply
▶ USB-A to micro B cable for the serial console
▶ RJ45 cable for networking
▶ A micro SD card with at least 128 MB of capacity

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/340

Training quiz and certificate

▶ You have been given a quiz to test your knowledge on the topics covered by the
course. That’s not too late to take it if you haven’t done it yet!

▶ At the end of the course, we will submit this quiz to you again. That time, you
will see the correct answers.

▶ It allows Bootlin to assess your progress thanks to the course. That’s also a kind
of challenge, to look for clues throughout the lectures and labs / demos, as all the
answers are in the course!

▶ Another reason is that we only give training certificates to people who achieve at
least a 50% score in the final quiz and who attended all the sessions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/340

Participate!

During the lectures...
▶ Don’t hesitate to ask questions. Other people in the audience may have similar

questions too.
▶ Don’t hesitate to share your experience too, for example to compare Linux with

other operating systems you know.
▶ Your point of view is most valuable, because it can be similar to your colleagues’

and different from the trainer’s.
▶ In on-line sessions

• Please always keep your camera on!
• Also make sure your name is properly filled.
• You can also use the ”Raise your hand” button when you wish to ask a question but

don’t want to interrupt.
▶ All this helps the trainer to engage with participants, see when something needs

clarifying and make the session more interactive, enjoyable and useful for everyone.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/340

Collaborate!

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
▶ Use the dedicated Matrix channel for this session to add

questions.
▶ If your session offers practical labs, you can also report issues,

share screenshots and command output there.
▶ Don’t hesitate to share your own answers and to help others

especially when the trainer is unavailable.
▶ The Matrix channel is also a good place to ask questions outside

of training hours, and after the course is over.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/340

Practical lab - Training Setup

Prepare your lab environment
▶ Download and extract the lab archive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/340

Debugging, Tracing, Profiling

Debugging, Tracing,
Profiling

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/340

Debugging, Tracing, Profiling

▶ Debugging, tracing and profiling are often used
for development purposes

▶ All of these methods have different goals which
aim at perfecting the software that is being
developed

▶ Requires some knowledge about underlying
mechanisms to correctly identify and fix bugs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/340

Debugging

▶ Finding and fixing bugs that might exist in your software/system
▶ Use of various tools and methods to achieve that

• Interactive debugging (With GDB for instance)
• Postmortem analysis (Using coredump for instance)
• Control flow analysis (With tracing tools)
• Testing (Targeted tests)

▶ Most commonly done through debuggers in development environment
▶ Generally intrusive, allowing to pause and resume execution

”Everyone knows that debugging is twice as hard as writing a program in the first place. So if
you’re as clever as you can be when you write it, how will you ever debug it?”
- Brian Kernighan

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/340

Tracing

▶ Following the execution flow of an application to understand the bottlenecks and
problems.

▶ Achieved by instrumenting code either at compile time or runtime.
• Can be done using specific tracers such as LTTng, trace-cmd, SystemTap etc

▶ Goes from the user space called functions up to the kernel ones
▶ Allows to identify functions and values that are used while application executes
▶ Often works by recording traces during runtime and then visualizing data.

• Implies a large amount of recorded data since the complete execution trace is
recorded

• Often bigger overhead than profiling.
▶ Can also be used for debugging purpose since data can be extracted with

tracepoints.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/340

Profiling

▶ Analysis at program runtime to assist performance optimizations
▶ Often achieved by sampling counters during execution
▶ Uses specific tools, libraries and operating system features to measure

performance.
• Using perf, OProfile for instance.

▶ First step consists in gathering data from program execution
• Function call count, memory usage, CPU load, cache miss, etc

▶ Then extracting meaningful information from these data and modify the program
to optimize it

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/340

Event sources

▶ Some activities like tracing or profiling involve some preliminary data collection
▶ Those data are gathered from different event sources, which can be of various

types.
• Some low-level events are gathered directly by the hardware (eg: CPU cycles, MMU

exceptions...)
• Some events are generated by some code explicitely added to generate traces, either

in an application or in the kernel: those are static tracepoints
• Some are generated by instrumentation added at runtime (ie without having to

modify/rebuild the application and/or the kernel): those are dynamic probes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/340

Linux Application Stack

Linux Application Stack

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/340

Linux Application Stack

User/Kernel mode

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/340

User/Kernel mode

▶ User mode vs Kernel mode are often used to refer to the privilege level of
execution.

▶ This mode actually refers to the processor execution mode which is a hardware
mode.

• Might be named differently between architectures but the goal is the same
▶ Allows the kernel to control the full processor state (handle exceptions, MMU,

etc) whereas the userspace can only do basic control and execute under the kernel
supervision.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/340

Linux Application Stack

Introduction to Processes and Threads

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/340

Processes and Threads (1/2)

▶ A process is a group of resources that are allocated by the operating to allow the
execution of a program.

• Memory regions, threads, file descriptors, etc.
▶ A process is identified by a PID (Process ID) and all the information that are

specific to this process are exposed in /proc/<pid>.
• A special file named /proc/self accessible by the process points to the proc folder

associated to it.
▶ When starting a process, it initially has one execution thread that is represented

by a struct task_struct and that can be scheduled.
• A process is represented in the kernel by a thread associated to multiple resources.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/340

https://elixir.bootlin.com/linux/latest/ident/task_struct

Processes and Threads (2/2)

▶ Threads are independent execution units that are sharing common resources inside
a process.

• Same address space, file descriptors, etc.
▶ A new process is created using the fork() system call (man 2 fork) and a new

thread is created using pthread_create() (man 3 pthread_create).
• Internally, both will call clone() with different flags

▶ At any moment, only one task is executing on a CPU core and is accessible using
get_current() function (defined by architecture and often stored in a register).

▶ Each CPU core will execute a different task.
▶ A task can only be executing on one core at a time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/340

https://man7.org/linux/man-pages/man2/fork.2.html
https://man7.org/linux/man-pages/man3/pthread_create.3.html
https://elixir.bootlin.com/linux/latest/ident/get_current

Linux Application Stack

MMU and memory management

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/340

MMU and memory management

▶ Under Linux Kernel (when using CONFIG_MMU=y), all addresses that are accessed
by the CPU are virtual

▶ The Memory Management Unit allows to map these virtual addresses to physical
memory (either RAM or IO)

▶ All these mappings are inserted into the page table that is used by the MMU
hardware to translate the CPU access from virtual to physical addresses

▶ The MMU allows to restrict access to the page mappings via some attributes
• No Execute, Writable, Readable bits, Privileged/User bit, cacheability

▶ The MMU base unit for mappings is called a page
▶ Page size is fixed and depends on the architecture/kernel configuration.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_MMU

Userspace/Kernel memory layout

▶ Each process has its own set of virtual
memory areas (mm field of
struct task_struct).

▶ Also have their own page table
• But share the same kernel mappings

▶ By default, all user mapping addresses are
randomized to minimize attack surface
(base of heap, stack, text, data, etc).

• Address Space Layout Randomization
• Can be disabled using norandmaps

command line parameter

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/340

https://elixir.bootlin.com/linux/latest/ident/task_struct

Userspace/Kernel memory layout

Multiple processes have different user memory spaces

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/340

Kernel memory map

▶ The kernel has it own memory mapping.
▶ Linear mapping is setup at kernel startup

by inserting all the entries in the kernel init
page table.

▶ Multiple areas are identified and their
location differs between the architectures.

▶ Kernel Address Space Layout
Randomization also allows to randomize
kernel address space layout.

• Can be disabled using nokaslr command
line parameter

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/340

Userspace memory segments

▶ When starting a process, the kernel sets up several Virtual Memory Areas (VMA),
backed by struct vm_area_struct, with different execution attributes.

▶ VMA are actually memory zones that are mapped with specific attributes
(R/W/X).

▶ A segmentation fault happens when a program tries to access an unmapped area
or a mapped area with an access mode that is not allowed.

• Writing data in a read-only segment
• Executing data from a non-executable segment

▶ New memory zones can be created using mmap() (man 2 mmap)
▶ Per application mappings are visible in /proc/<pid>/maps

7f1855b2a000-7f1855b2c000 rw-p 00030000 103:01 3408650 ld-2.33.so
7ffc01625000-7ffc01646000 rw-p 00000000 00:00 0 [stack]
7ffc016e5000-7ffc016e9000 r--p 00000000 00:00 0 [vvar]
7ffc016e9000-7ffc016eb000 r-xp 00000000 00:00 0 [vdso]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/340

https://elixir.bootlin.com/linux/latest/ident/vm_area_struct
https://man7.org/linux/man-pages/man2/mmap.2.html

Userspace memory types

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/340

Terms for memory in Linux tools

▶ When using Linux tools, four terms are used to describe memory:
• VSS/VSZ: Virtual Set Size (Virtual memory size, shared libraries included).
• RSS: Resident Set Size (Total physical memory usage, shared libraries included).
• PSS: Proportional Set Size (Actual physical memory used, divided by the number of

times it has been mapped).
• USS: Unique Set Size (Physical memory occupied by the process, shared mappings

memory excluded).
▶ VSS >= RSS >= PSS >= USS.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/340

Linux Application Stack

The process context

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/340

Process context

▶ The process context can be seen as the content of the CPU registers associated to
a process: execution register, stack register...

▶ This context also designates an execution state and allows to sleep inside kernel
mode.

▶ A process that is executing in process context can be preempted.
▶ While executing in such context, the current process struct task_struct can be

accessed using get_current().

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/340

https://elixir.bootlin.com/linux/latest/ident/task_struct
https://elixir.bootlin.com/linux/latest/ident/get_current

Linux Application Stack

Scheduling

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/340

Scheduling

▶ The scheduler can be invoked for various reasons
• On a periodic tick caused by interrupt (HZ)
• On a programmed interrupt on tickless systems (CONFIG_NO_HZ=y)
• Voluntarily by calling schedule() in code
• Implicitly by calling functions that can sleep (blocking operations such as

kmalloc(), wait_event()).
▶ When entering the schedule function, the scheduler will elect a new

struct task_struct to run and will eventually call the switch_to() macro.
▶ switch_to() is defined by architecture code and it will save the current task

process context and restore the one of the next task to be run while setting the
new current task running.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/340

https://elixir.bootlin.com/linux/latest/K/ident/HZ
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NO_HZ
https://elixir.bootlin.com/linux/latest/ident/schedule
https://elixir.bootlin.com/linux/latest/ident/kmalloc
https://elixir.bootlin.com/linux/latest/ident/wait_event
https://elixir.bootlin.com/linux/latest/ident/task_struct
https://elixir.bootlin.com/linux/latest/ident/switch_to
https://elixir.bootlin.com/linux/latest/ident/switch_to

The Linux Kernel Scheduler

▶ The Linux Kernel Scheduler is a key piece in having a real-time behaviour
▶ It is in charge of deciding which runnable task gets executed
▶ It also elects on which CPU the task runs, and is tightly coupled to CPUidle and

CPUFreq
▶ It schedules both userspace tasks and kernel tasks
▶ Each task is assigned one scheduling class or policy
▶ The class determines the algorithm used to elect each task
▶ Tasks with different scheduling classes can coexist on the system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/340

Non-Realtime Scheduling Classes

There are 3 Non-RealTime classes
▶ SCHED_OTHER: The default policy, using a time-sharing algorithm

• This policy is actually called SCHED_NORMAL by the kernel
▶ SCHED_BATCH: Similar to SCHED_OTHER, but designed for CPU-intensive loads that

affect the wakeup time
▶ SCHED_IDLE: Very low priority class. Tasks with this policy will run only if nothing

else needs to run.
▶ SCHED_OTHER and SCHED_BATCH use the nice value to increase or decrease their

scheduling frequency
• A higher nice value means that the tasks gets scheduled less often

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/340

https://elixir.bootlin.com/linux/latest/ident/SCHED_NORMAL
https://elixir.bootlin.com/linux/latest/ident/SCHED_BATCH
https://elixir.bootlin.com/linux/latest/ident/SCHED_IDLE
https://elixir.bootlin.com/linux/latest/ident/SCHED_BATCH

Realtime Scheduling Classes

There are 3 Realtime classes
▶ Runnable tasks will preempt any other lower-priority task
▶ SCHED_FIFO: All tasks with the same priority are scheduled First in, First out
▶ SCHED_RR: Similar to SCHED_FIFO but with a time-sharing round-robin between

tasks with the same priority
▶ Both SCHED_FIFO and SCHED_RR can be assigned a priority between 1 and 99
▶ SCHED_DEADLINE: For tasks doing recurrent jobs, extra attributes are attached to

a task
• A computation time, which represents the time the task needs to complete a job
• A deadline, which is the maximum allowable time to compute the job
• A period, during which only one job can occur

▶ Using one of these classes is necessary but not sufficient to get real-time behavior

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/340

https://elixir.bootlin.com/linux/latest/ident/SCHED_FIFO
https://elixir.bootlin.com/linux/latest/ident/SCHED_RR
https://elixir.bootlin.com/linux/latest/ident/SCHED_FIFO
https://elixir.bootlin.com/linux/latest/ident/SCHED_FIFO
https://elixir.bootlin.com/linux/latest/ident/SCHED_RR
https://elixir.bootlin.com/linux/latest/ident/SCHED_DEADLINE

Changing the Scheduling Class

▶ The Scheduling Class is set per-task, and defaults to SCHED_OTHER

▶ The man 2 sched_setscheduler syscall allows changing the class of a task
▶ The chrt tool uses it to allow changing the class of a running task:

• chrt -f/-b/-o/-r/-d -p PRIO PID

▶ It can also be used to launch a new program with a dedicated class:
• chrt -f/-b/-o/-r/-d PRIO CMD

▶ To show the current class and priority:
• chrt -p PID

▶ New processes will inherit the class of their parent except if the
SCHED_RESET_ON_FORK flag is set with man 2 sched_setscheduler

▶ See man 7 sched for more information

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/340

https://man7.org/linux/man-pages/man2/sched_setscheduler.2.html
https://elixir.bootlin.com/linux/latest/ident/SCHED_RESET_ON_FORK
https://man7.org/linux/man-pages/man2/sched_setscheduler.2.html
https://man7.org/linux/man-pages/man7/sched.7.html

Linux Application Stack

Context switching

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/340

Context switching

▶ Context switching is the action of changing the execution mode of the processor
(Kernel ↔ User).

• Explicitly by executing system calls instructions (synchronous request to the kernel
from user mode).

• Implicitly when receiving exceptions (MMU fault, interrupts, breakpoints, etc).
▶ This state change will end up in a kernel entrypoint (often call vectors) that will

execute necessary code to setup a correct state for kernel mode execution.
▶ The kernel takes care of saving registers, switching to the kernel stack and

potentially other things depending on the architecture.
• Does not use the user stack but a specific kernel fixed size stack for security

purposes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/340

Exceptions

▶ Exceptions designate the kind of events that will trigger a CPU execution mode
change to handle the exception.

▶ Two main types of exceptions exist: synchronous and asynchronous.
• Asynchronous exceptions when a fault happens while executing (MMU, bus abort,

etc) or when an interrupt is received (either software or hardware).
• Synchronous when executing some specific instructions (breakpoint, syscall, etc)

▶ When such exception is triggered, the processor will jump to the exception vector
and execute the code that was setup for this exception.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/340

Interrupts

▶ Interrupts are asynchronous signals that are generated by the hardware
peripherals.

• Can also be synchronous when generated using a specific instruction (Inter
Processor Interrupts for instance).

▶ When receiving an interrupt, the CPU will change its execution mode by jumping
to a specific vector and switching to kernel mode to handle the interrupt.

▶ When multiple CPUs (cores) are present, interrupts are often directed to a single
core.

▶ This is called ”IRQ affinity” and it allows to control the IRQ load for each CPU
• See core-api/irq/irq-affinity and man irqbalance(1)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/340

https://www.kernel.org/doc/html/latest/core-api/irq/irq-affinity.html
https://linux.die.net/man/1/irqbalance

Interrupts

▶ While handling the interrupts, the kernel is executing in a specific context named
interrupt context.

▶ This context does not have access to userspace and should not use
get_current().

▶ Depending on the architecture, might use an IRQ stack.
▶ Interrupts are disabled (no nested interrupt support)!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/340

https://elixir.bootlin.com/linux/latest/ident/get_current

System Calls (1/2)

▶ A system call allows the user space to request services from the kernel by executing
a special instruction that will switch to the kernel mode (man 2 syscall)

• When executing functions provided by the libc (read(), write(), etc), they often
end up executing a system call.

▶ System calls are identified by a numeric identifier that is passed via the registers.
• The kernel exports some defines (in unistd.h) that are named __NR_<sycall> and

defines the syscall identifiers.

#define __NR_read 63
#define __NR_write 64

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/340

https://man7.org/linux/man-pages/man2/syscall.2.html

System Calls (2/2)

▶ The kernel holds a table of function pointers which matches these identifiers and
will invoke the correct handler after checking the validity of the syscall.

▶ System call parameters are passed via registers (up to 6).
▶ When executing this instruction the CPU will change its execution state and

switch to the kernel mode.
▶ Each architecture uses a specific hardware mechanism (man 2 syscall)

mov w8, #__NR_getpid
svc #0
tstne x0, x1

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/340

https://man7.org/linux/man-pages/man2/syscall.2.html

Linux Application Stack

Kernel execution contexts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/340

Kernel execution contexts

▶ The kernel runs code in various contexts depending on the event it is handling.
▶ Might have interrupts disabled, specific stack, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/340

Kernel threads

▶ Kernel threads (kthreads) are a special kind of struct task_struct that do not
have any user resources associated (mm == NULL).

▶ These processes are cloned from the kthreadd process and can be created using
kthread_create().

▶ Kernel threads are scheduled and are allowed to sleep much like a process
executing in process context.

▶ Kernel threads are visible and their names are displayed between brackets under ps:

$ ps --ppid 2 -p 2 -o uname,pid,ppid,cmd,cls
USER PID PPID CMD CLS
root 2 0 [kthreadd] TS
root 3 2 [rcu_gp] TS
root 4 2 [rcu_par_gp] TS
root 5 2 [netns] TS
root 7 2 [kworker/0:0H-events_highpr TS
root 10 2 [mm_percpu_wq] TS
root 11 2 [rcu_tasks_kthread] TS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/340

https://elixir.bootlin.com/linux/latest/ident/task_struct
https://elixir.bootlin.com/linux/latest/ident/kthread_create

Workqueues

▶ Workqueues allows to schedule some work to be executed at some point in the
future

▶ Workqueues are executing the work functions in kernel threads.
• Allows to sleep while executing the deferred work.
• Interrupts are enabled while executing

▶ Work can be executed either in dedicated work queues or in the default workqueue
that is shared by multiple users.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/340

softirq

▶ SoftIRQs is a specific kernel mecanism that is executed in software interrupt
context.

▶ Allows to execute code that needs to be deferred after interrupt handling but
needs low latency.

• Executed right after hardware IRQ have been handled in interrupt context.
• Same context as executing interrupt handler so sleeping is not allowed.

▶ Anyone wanting to run some code in softirq context should likely not create its
own but prefer some entities implemented on top of it. There are for example
tasklets, and the BH workqueues (Bottom Half workqueues) which aim to replace
tasklets since 6.9.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/340

Interrupts & Softirqs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/340

Threaded interrupts

▶ Threaded interrupts are a mecanism that allows to handle the interrupt using a
hard IRQ handler and a threaded IRQ handler.

• Created calling request_threaded_irq() instead of request_irq()
▶ A threaded IRQ handler will allow to execute work that can potentially sleep in a

kthread.
▶ One kthread is created for each interrupt line that was requested as a threaded

IRQ.
• kthread is named irq/<irq>-<name> and can be seen using ps.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/340

https://elixir.bootlin.com/linux/latest/ident/request_threaded_irq
https://elixir.bootlin.com/linux/latest/ident/request_irq

Allocations and context

▶ Allocating memory in the kernel can be done using multiple functions:
• void *kmalloc(size_t size, gfp_t gfp_mask);
• void *kzalloc(size_t size, gfp_t gfp_mask);
• unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)

▶ All allocation functions take a gfp_mask parameter which allows to designate the
kind of memory that is needed.

• GFP_KERNEL: Normal allocation, can sleep while allocating memory (can not be used
in interrupt context).

• GFP_ATOMIC: Atomic allocation, won’t sleep while allocating data.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/340

https://elixir.bootlin.com/linux/latest/ident/GFP_KERNEL
https://elixir.bootlin.com/linux/latest/ident/GFP_ATOMIC

Practical lab - Preparing the system

Prepare the STM32MP157D board
▶ Build an image using Buildroot
▶ Connect the board
▶ Load the kernel from SD card
▶ Mount the root filesystem over NFS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/340

Linux Common Analysis & Observability Tools

Linux Common Analysis
& Observability Tools

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/340

Linux Common Analysis & Observability Tools

Pseudo Filesystems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/340

Pseudo Filesystems

▶ Some virtual filesystems are exposed by the kernel and provide a lot of information
on the system.

▶ procfs contains information about processes and system information.
• Mounted on /proc
• Often parsed by tools to display raw data in a more user-friendly way.

▶ sysfs provides information about hardware/logical devices, association between
devices and drivers.

• Mounted on /sys

▶ debugfs exposes information related to debug.
• Typically mounted on /sys/kernel/debug/
• mount -t debugfs none /sys/kernel/debug

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/340

procfs
▶ procfs exposes information about processes and system (man 5 proc).

• /proc/cpuinfo CPU information.
• /proc/meminfo memory information (used, free, total, etc).
• /proc/sys/ contains system parameters that can be tuned. The list of parameters

that can be modified is available at admin-guide/sysctl/index
• /proc/interrupts: interrupt count per CPU for each interrupt in use

We also have one entry per interrupt in /proc/irq for specific configuration/status
for each interrupt line

• /proc/<pid>/ process related information
/proc/<pid>/status process basic information
/proc/<pid>/maps process memory mappings
/proc/<pid>/fd file descriptors of the process
/proc/<pid>/task descriptors of threads belonging to the process

• /proc/self/ will refer to the process used to access the file
▶ A list of all available procfs file and their content is described at

filesystems/proc and man 5 proc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/340

https://man7.org/linux/man-pages/man5/proc.5.html
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/index.html
https://www.kernel.org/doc/html/latest/filesystems/proc.html
https://man7.org/linux/man-pages/man5/proc.5.html

sysfs

▶ sysfs filesystem exposes information about various kernel subsystems, hardware
devices and association with drivers (man 5 sysfs).

▶ This allows to find the link between drivers and devices through a file hierarchy
representing the kernel internal tree of devices.

▶ /sys/kernel contains interesting files for kernel debugging:
• irq with information about interrupts (mapping, count, etc).
• tracing for tracing control.

▶ admin-guide/abi-stable

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/340

https://man7.org/linux/man-pages/man5/sysfs.5.html
https://www.kernel.org/doc/html/latest/admin-guide/abi-stable.html

debugfs

▶ debugfs is a simple RAM-based filesystem which exposes debugging information.
▶ Used by some subsystems (clk, block, dma, gpio, etc) to expose debugging

information related to the internals.
▶ Usually mounted on /sys/kernel/debug

• Dynamic debug features exposed through /sys/kernel/debug/dynamic_debug (also
exposed in proc)

• Clock tree exposed through /sys/kernel/debug/clk/clk_summary.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/340

Linux Common Analysis & Observability Tools

ELF file analysis

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/340

ELF files

Executable and Linkable Format
▶ File starting with a header which holds binary structures

defining the file
▶ Collection of segments and sections that contain data

• .text section: Code
• .data section: Data
• .rodata section: Read-only Data
• .debug_info section: Contains debugging information

▶ Sections are part of a segment which can be loadable in
memory

▶ Same format for all architectures supported by the kernel
and also vmlinux format

• Also used by a lot of other operating systems as the
standard executable file format

...

.data

.rodata

.text

Program header table

ELF header

Section header table

⎧
⎪
⎨
⎪
⎩

⎧
⎪
⎪
⎨
⎪
⎪
⎩

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/340

binutils for ELF analysis

▶ The binutils are used to deal with binary files, either object files or executables.
• Includes ld, as and other useful tools.

▶ readelf displays information about ELF files (header, section, segments, etc).
▶ objdump allows to display information and disassemble ELF files.
▶ objcopy can convert ELF files or extract/translate some parts of it.
▶ nm displays the list of symbols embedded in ELF files.
▶ addr2line finds the source code line/file pair from an address using an ELF file

with debug information

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/340

binutils example (1/2)

▶ Finding the address of ksys_read() kernel function using nm:

$ nm vmlinux | grep ksys_read
c02c7040 T ksys_read

▶ Using addr2line to match a kernel OOPS address or a symbol name with source
code:

$ addr2line -s -f -e vmlinux ffffffff8145a8b0
queue_wc_show
blk-sysfs.c:516

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/340

binutils example (2/2)

▶ Display an ELF header with readelf:

$ readelf -h binary
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: DYN (Position-Independent Executable file)
Machine: Advanced Micro Devices X86-64
...

▶ Convert an ELF file to a flat binary file using objcopy:

$ objcopy -O binary file.elf file.bin

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/340

ldd

▶ In order to display the shared libraries used by an ELF binary, one can use ldd
(Generally packaged with C library. See man 1 ldd).

▶ ldd will list all the libraries that were used at link time.
• Libraries that are loaded at runtime using dlopen() are not displayed.

$ ldd /usr/bin/bash
linux-vdso.so.1 (0x00007ffdf3fc6000)
libreadline.so.8 => /usr/lib/libreadline.so.8 (0x00007fa2d2aef000)
libc.so.6 => /usr/lib/libc.so.6 (0x00007fa2d2905000)
libncursesw.so.6 => /usr/lib/libncursesw.so.6 (0x00007fa2d288e000)
/lib64/ld-linux-x86-64.so.2 => /usr/lib64/ld-linux-x86-64.so.2 (0x00007fa2d2c88000)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/340

https://man7.org/linux/man-pages/man1/ldd.1.html

Linux Common Analysis & Observability Tools

Monitoring tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/340

Monitoring Tools

▶ Lots of monitoring tools on Linux to allow monitoring various part of the system.
▶ Most of the time, these are CLI interactive programs.

• Processes with ps, top, htop, etc
• Memory with free, vmstat
• Networking

▶ Almost all these tools rely on the sysfs or procfs filesystem to obtain the
processes, memory and system information but will display them in a more
human-readable way.

• Networking tools use a netlink interface with the networking subsystem of the kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/340

Linux Common Analysis & Observability Tools

Process and CPU monitoring tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/340

Processes with ps

▶ The ps command allows to display a snapshot of active processes and their
associated information (man 1 ps)

• Lists both user processes and kernel threads.
• Displays PID, CPU usage, memory usage, uptime, etc.
• Uses /proc/<pid>/ directory to obtain process information.
• Almost always present on embedded platforms (provided by Busybox).

▶ By default, displays only the current user/current tty processes, but output is
highly customizable:

• aux/-e: show all processes
• -L: show threads
• -p: target a specific process
• -o: select output columns to display

▶ Useful for scripting and parsing since its output is static.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/340

https://man7.org/linux/man-pages/man1/ps.1.html

Processes with ps

▶ Display all processes in a friendly way:

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 168864 12800 ? Ss 09:08 0:00 /sbin/init
root 2 0.0 0.0 0 0 ? S 09:08 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? I< 09:08 0:00 [rcu_gp]
root 4 0.0 0.0 0 0 ? I< 09:08 0:00 [rcu_par_gp]
root 5 0.0 0.0 0 0 ? I< 09:08 0:00 [netns]
...
root 914 0.0 0.0 396216 16220 ? Ssl 09:08 0:04 /usr/libexec/udisks2/udisksd
avahi 929 0.0 0.0 8728 412 ? S 09:08 0:00 avahi-daemon: chroot helper
root 956 0.0 0.1 260304 19024 ? Ssl 09:08 0:02 /usr/sbin/NetworkManager --no-daemon
root 960 0.0 0.0 17040 5704 ? Ss 09:08 0:00 /sbin/wpa_supplicant -u -s -O /run/wpa_suppli
root 962 0.0 0.0 317644 11896 ? Ssl 09:08 0:00 /usr/sbin/ModemManager
vnstat 987 0.0 0.0 5516 3696 ? Ss 09:08 0:00 /usr/sbin/vnstatd -n

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/340

Processes with top

▶ top command output information similar to ps but dynamic and interactive
(man 1 top).

• Also almost always present on embedded platforms (provided by Busybox)

$ top
top - 18:38:11 up 9:29, 1 user, load average: 2.84, 2.74, 2.02
Tasks: 371 total, 1 running, 370 sleeping, 0 stopped, 0 zombie
%Cpu(s): 5.8 us, 2.1 sy, 0.0 ni, 77.4 id, 14.7 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 15947.6 total, 1476.9 free, 7685.7 used, 6784.9 buff/cache
MiB Swap: 15259.0 total, 15238.7 free, 20.2 used. 7742.3 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2988 cleger 20 0 5184816 1.2g 430244 S 26.7 7.9 60:24.27 firefox-esr
4326 cleger 20 0 16.4g 208104 81504 S 26.7 1.3 9:27.33 code
909 root -51 0 0 0 0 S 13.3 0.0 15:12.15 irq/104-nvidia

41704 cleger 20 0 38.4g 373744 116984 S 13.3 2.3 13:25.76 code
91926 cleger 20 0 2514784 145360 95144 S 13.3 0.9 1:29.85 Web Content

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/340

https://man7.org/linux/man-pages/man1/top.1.html

mpstat

▶ mpstat displays Multiprocessor statistics (man 1 mpstat).
▶ Useful to detect unbalanced CPU workloads, bad IRQ affinity, etc.

$ mpstat -P ALL
Linux 6.0.0-1-amd64 (fixe) 19/10/2022 _x86_64_ (4 CPU)

17:02:50 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
17:02:50 all 6,77 0,00 2,09 11,67 0,00 0,06 0,00 0,00 0,00 79,40
17:02:50 0 6,88 0,00 1,93 8,22 0,00 0,13 0,00 0,00 0,00 82,84
17:02:50 1 4,91 0,00 1,50 8,91 0,00 0,03 0,00 0,00 0,00 84,64
17:02:50 2 6,96 0,00 1,74 7,23 0,00 0,01 0,00 0,00 0,00 84,06
17:02:50 3 9,32 0,00 2,80 54,67 0,00 0,00 0,00 0,00 0,00 33,20
17:02:50 4 5,40 0,00 1,29 4,92 0,00 0,00 0,00 0,00 0,00 88,40

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/340

https://man7.org/linux/man-pages/man1/mpstat.1.html

Linux Common Analysis & Observability Tools

Memory monitoring tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/340

free

▶ free is a simple program that displays the amount of free and used memory in the
system (man 1 free).

• Useful to check if the system suffers from memory exhaustion
• Uses /proc/meminfo to obtain memory information.

$ free -h
total used free shared buff/cache available

Mem: 15Gi 7.5Gi 1.4Gi 192Mi 6.6Gi 7.5Gi
Swap: 14Gi 20Mi 14Gi

▶ A small free value does not mean that your system suffers from memory
depletion! Linux considers any unused memory as ”wasted” so it uses it for buffers
and caches to optimize performance. See also drop_caches from man 5 proc to
observe buffers/cache impact on free/available memory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/340

https://man7.org/linux/man-pages/man1/free.1.html
https://man7.org/linux/man-pages/man5/proc.5.html

vmstat

▶ vmstat displays information about system virtual memory usage
▶ Can also display stats from processes, memory, paging, block IO, traps, disks and

cpu activity (man 8 vmstat).
▶ Can be used to gather data at periodic interval using

vmstat <interval> <number>

$ vmstat 1 6
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
3 0 253440 1237236 194936 9286980 3 6 186 540 134 157 3 5 82 10 0

▶ Note: vmstat consider a kernel block to be 1024 bytes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/340

https://man7.org/linux/man-pages/man8/vmstat.8.html

pmap

▶ pmap displays process mappings more easily than accessing /proc/<pid>/maps
(man 1 pmap).

pmap 2002
2002: /usr/bin/dbus-daemon --session --address=systemd: --nofork --nopidfile --systemd-activation --syslog-only
...
00007f3f958bb000 56K r---- libdbus-1.so.3.32.1
00007f3f958c9000 192K r-x-- libdbus-1.so.3.32.1
00007f3f958f9000 84K r---- libdbus-1.so.3.32.1
00007f3f9590e000 8K r---- libdbus-1.so.3.32.1
00007f3f95910000 4K rw--- libdbus-1.so.3.32.1
00007f3f95937000 8K rw--- [anon]
00007f3f95939000 8K r---- ld-linux-x86-64.so.2
00007f3f9593b000 152K r-x-- ld-linux-x86-64.so.2
00007f3f95961000 44K r---- ld-linux-x86-64.so.2
00007f3f9596c000 8K r---- ld-linux-x86-64.so.2
00007f3f9596e000 8K rw--- ld-linux-x86-64.so.2
00007ffe13857000 132K rw--- [stack]
00007ffe13934000 16K r---- [anon]
00007ffe13938000 8K r-x-- [anon]
total 11088K

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/340

https://man7.org/linux/man-pages/man1/pmap.1.html

Linux Common Analysis & Observability Tools

I/O monitoring tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/340

iostat

▶ iostat displays information about IOs per device on the system.
▶ Useful to see if a device is overloaded by IOs.

$ iostat
Linux 5.19.0-2-amd64 (fixe) 11/10/2022 _x86_64_ (12 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle
8,43 0,00 1,52 8,77 0,00 81,28

Device tps kB_read/s kB_wrtn/s kB_dscd/s kB_read kB_wrtn kB_dscd
nvme0n1 55,89 1096,88 149,33 0,00 5117334 696668 0
sda 0,03 0,92 0,00 0,00 4308 0 0
sdb 104,42 274,55 2126,64 0,00 1280853 9921488 0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/340

iotop
▶ iotop displays information about IOs much like top for each process.
▶ Useful to find applications generating too much I/O traffic.

• Needs CONFIG_TASKSTATS=y, CONFIG_TASK_DELAY_ACCT=y and
CONFIG_TASK_IO_ACCOUNTING=y to be enabled in the kernel.

• Also needs to be enabled at runtime: sysctl -w kernel.task_delayacct=1

iotop
Total DISK READ: 20.61 K/s | Total DISK WRITE: 51.52 K/s
Current DISK READ: 20.61 K/s | Current DISK WRITE: 24.04 K/s

TID PRIO USER DISK READ DISK WRITE> COMMAND
2629 be/4 cleger 20.61 K/s 44.65 K/s firefox-esr [Cache2 I/O]
322 be/3 root 0.00 B/s 3.43 K/s [jbd2/nvme0n1p1-8]

39055 be/4 cleger 0.00 B/s 3.43 K/s firefox-esr [DOMCacheThread]
1 be/4 root 0.00 B/s 0.00 B/s init
2 be/4 root 0.00 B/s 0.00 B/s [kthreadd]
3 be/0 root 0.00 B/s 0.00 B/s [rcu_gp]
4 be/0 root 0.00 B/s 0.00 B/s [rcu_par_gp]
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_TASKSTATS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_TASK_DELAY_ACCT
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_TASK_IO_ACCOUNTING

Linux Common Analysis & Observability Tools

Networking observability tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/340

ss
▶ ss shows the status of network sockets

• IPv4 and IPv6, UDP, TCP, ICMP and UNIX domain sockets
▶ Replaces netstat, now obsolete
▶ Gets info from /proc/net

▶ Usage:
ss by default shows connected sockets
ss -l shows listening sockets
ss -a shows both listening and connected sockets
ss -4/-6/-x shows only IPv4, IPv6, or UNIX sockets
ss -t/-u shows only TCP or UDP sockets
ss -p shows process using each socket
ss -n shows numeric addresses
ss -s shows a summary of existing sockets

▶ See the ss manpage for all the options

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/340

https://www.man7.org/linux/man-pages/man8/ss.8.html

ss example output

ss
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port Process
u_dgr ESTAB 0 0 * 304840 * 26673
u_str ESTAB 0 0 /run/dbus/system_bus_socket 42871 * 26100
icmp6 UNCONN 0 0 *:ipv6-icmp *:*
udp ESTAB 0 0 192.168.10.115%wlp0s20f3:bootpc 192.168.10.88:bootps
tcp ESTAB 0 136 172.16.0.1:41376 172.16.11.42:ssh
tcp ESTAB 0 273 192.168.1.77:55494 87.98.181.233:https
tcp ESTAB 0 0 [2a02:...:dbdc]:38466 [2001:...:9]:imap2
...
#

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/340

iftop

▶ iftop displays bandwidth usage on an interface by remote host
▶ Visualizes bandwidth using histograms
▶ iftop -i eth0

▶ The output can be customized interactively
▶ See the iftop manpage for details

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/340

https://linux.die.net/man/8/iftop

tcpdump

▶ tcpdump allows to capture network traffic and decode many protocols
▶ tcpdump -i eth0

▶ based on the libpcap library for packet capture
▶ It can also store captured packets to a file and read them back

• In the pcap format or the newer pcapng format
• tcpdump -i eth0 -w capture.pcap
• tcpdump -r capture.pcap

▶ A BPF capture filter can be used to avoid capturing irrelevant packets
• tcpdump -i eth0 tcp and not port 22

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/340

https://www.tcpdump.org/

tcpdump example output

tcpdump -i eth0
18:41:22.913058 IP localhost.localnet.40764 > srv.localnet: 14324+ AAAA? bootlin.com. (29)
18:41:22.913797 IP srv.localnet > localhost.localnet.40764: 14324 0/1/0 (89)
18:41:22.914268 IP localhost.localnet > bootlin.com: ICMP echo request, id 3, seq 1, length 64
18:41:23.933063 IP localhost.localnet > bootlin.com: ICMP echo request, id 3, seq 2, length 64
18:41:24.957027 IP localhost.localnet > bootlin.com: ICMP echo request, id 3, seq 3, length 64
18:41:24.996415 IP bootlin.com > localhost.localnet: ICMP echo reply, id 3, seq 3, length 64
^C
tcpdump -i eth0 tcp and not port 22
... IP B.https > A.38910: Flags [.], ack 469, win 501, options [...], length 0
... IP B.https > A.38910: Flags [P.], seq 2602:2857, ack 469, win 501, options [...], length 255
... IP A.38910 > B.https: Flags [.], ack 2857, win 501, options [...], length 0
... IP A.38910 > B.https: Flags [P.], seq 469:621, ack 2857, win 501, options [...], length 152
... IP B.https > A.38910: Flags [.], ack 621, win 501, options [...], length 0
... IP B.https > A.38910: Flags [P.], seq 2857:3825, ack 621, win 501, options [...], length 968
... IP A.38910 > B.https: Flags [P.], seq 621:779, ack 3825, win 501, options [...], length 158
^C
#

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/340

Wireshark

▶ Similar to tcpdump, but with a GUI
▶ Also based on libpcap

• Can capture and use the same BPF capture filters
• Can load and save the same file formats

Useful for embedded: capture on the target with tcpdump, analyze on the host with
Wireshark

▶ Has dissectors to decode hundreds of protocols
• Each individual value from each packet is dissected into a separate field
• Fields are very fine-grained, at least for the most common protocols

▶ Has display filters that allow filtering already captured packets
• Each dissected field is also a filter key

▶ Can also capture and decode Bluetooth, USB, D-Bus and more

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/340

https://www.wireshark.org/

Wireshark

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/340

https://www.wireshark.org/

Practical lab - System Status

Check what is running on a system and its load
▶ Observe processes and IOs
▶ Display memory mappings
▶ Monitor resources

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/340

Application Debugging

Application Debugging

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/340

Application Debugging

Good practices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/340

Good practices

▶ Some good practices can allow you to save time before even needing to use a
debugger

▶ Compiler are now smart enough to detect a wide range of errors at compile-time
using warnings

• Using -Werror -Wall -Wextra is recommended if possible to catch errors as early
as possible

▶ Compilers now offer static analysis capabilities
• GCC allows to do so using the -fanalyzer flag
• LLVM provides dedicated tools that can be used in build process

▶ You can also enable component-specific helpers/hardening
• If you are using the GNU C library, you can for example enable

_FORTIFY_SOURCE macro to add runtime checks on inputs (e.g: buffers)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/340

https://gcc.gnu.org/onlinedocs/gcc-11.1.0/gcc/Static-Analyzer-Options.html
https://clang.llvm.org/docs/analyzer/user-docs/CommandLineUsage.html
https://www.gnu.org/software/libc/manual/html_node/Source-Fortification.html

Application Debugging

Building with debug information

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/340

Debugging with ELF files

▶ GDB uses ELF files since they contain the debugging
information

▶ Debugging information uses the DWARF format
▶ Allows the debugger to match addresses and symbol names,

call sites, etc
▶ Debugging information is generated by the compiler and

included in the ELF file when compiled with -g
• -g1: minimal debug information (enough for backtraces)
• -g2: default debug level when using -g
• -g3: includes extra debugging information (macro

definitions)
▶ See GCC documentation about debugging for more

information

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/340

https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html

Debugging with compiler optimizations

▶ Compiler optimizations (-O<level>) can lead to optimizing out some variables
and function calls.

▶ Trying to display them with GDB will display
• $1 = <value optimized out>

▶ If one wants to inspect variables and functions, it is possible to compile the code
using -O0 (no optimization).

• Note: The kernel can only be compiled with -O2 or -Os
▶ It is also possible to annotate function with compiler attributes:

• __attribute__((optimize("O0")))

▶ Remove function static qualifier to avoid inlining the function
• Note: LTO (Link Time Optimization) can defeat this.

▶ Set a specific variable as volatile to prevent the compiler from optimizing it out.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/340

Application Debugging

Instrumenting code crashes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/340

Instrumenting code crashes

▶ Manually displaying a backtrace from your application is helpful, whether you
have an explicit crash or not.

▶ This can be done by using external libraries like libunwind, or even directly your C
library, for example backtrace() (man 3 backtrace) if you are using glibc:

char **backtrace_symbols(void *const *buffer, int size);

▶ Thanks to sigaction() (man 2 sigaction) we can add hooks on specific signals
to print our backtrace

• This is for example very useful to catch SIGSEGV signal to dump our current
backtrace

int sigaction(int sig, const struct sigaction *restrict act,
struct sigaction *restrict oact);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/340

https://www.nongnu.org/libunwind/man/libunwind(3).html
https://man7.org/linux/man-pages/man3/backtrace.3.html
https://man7.org/linux/man-pages/man2/sigaction.2.html

Custom code crash report

[...]
void callee(void *ptr) {
int *myptr = (int *)ptr;
printf("Executing suspicious operation\n");
myptr[2] = 0;

}

void caller(void) {
void *ptr = NULL;
callee(ptr);

}

void segfault_handler(int sig) {
void *array[20];
size_t size;

fprintf(stderr, "Segmentation fault!\n");
size = backtrace(array, 20);
backtrace_symbols_fd(array, size, STDERR_FILENO);
exit(1);

}

int main() {
const struct sigaction act = {
.sa_handler = segfault_handler,
.sa_mask = 0,
.sa_flags = 0,

};
if (sigaction(SIGSEGV, &act, NULL))
exit(EXIT_FAILURE);

printf("Calling a faulty function\n");
caller();
return 0;

}

[root@arch-bootlin-alexis custom_backtrace]# ./main
Calling a faulty function
Executing suspicious operation
Segmentation fault!
./main(segfault_handler+0x60)[0x55c6e4c1723c]
/usr/lib/libc.so.6(+0x38f50)[0x7fecb0a95f50]
./main(callee+0x2b)[0x55c6e4c171b4]
./main(caller+0x1c)[0x55c6e4c171d9]
./main(main+0x2c)[0x55c6e4c1729a]
/usr/lib/libc.so.6(+0x23790)[0x7fecb0a80790]
/usr/lib/libc.so.6(__libc_start_main+0x8a)[0x7fecb0a8084a]
./main(_start+0x25)[0x55c6e4c170b5]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/340

Application Debugging

The ptrace system call

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/340

ptrace

▶ The ptrace mechanism allows processes to trace other processes by accessing
tracee memory and register contents

▶ A tracer can observe and control the execution state of another process
▶ Works by attaching to a tracee process using the ptrace() system call (see

man 2 ptrace)
▶ Can be executed directly using the ptrace() call but often used indirectly using

other tools.

long ptrace(enum __ptrace_request request, pid_t pid, void *addr, void *data);

▶ Used by GDB, strace and all debugging tools that need access to the tracee
process state

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/340

https://man7.org/linux/man-pages/man2/ptrace.2.html

Application Debugging

GDB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/340

GDB: GNU Project Debugger

▶ The debugger on GNU/Linux, available for most embedded
architectures.

▶ Supported languages: C, C++, Pascal, Objective-C, Fortran,
Ada...

▶ Command-line interface
▶ Integration in many graphical IDEs
▶ Can be used to

• control the execution of a running program, set breakpoints or
change internal variables

• to see what a program was doing when it crashed: post mortem
analysis

▶ https://www.gnu.org/software/gdb/
▶ https://en.wikipedia.org/wiki/Gdb
▶ New alternative: lldb (https://lldb.llvm.org/)

from the LLVM project.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/340

https://www.gnu.org/software/gdb/
https://en.wikipedia.org/wiki/Gdb
https://lldb.llvm.org/

GDB crash course (1/3)

▶ GDB is used mainly to debug a process by starting it with gdb
• $ gdb <program>

▶ GDB can also be attached to running processes using the program PID
• $ gdb -p <pid>

▶ When using GDB to start a program, the program needs to be run with
• (gdb) run [prog_arg1 [prog_arg2] ...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/340

GDB crash course (2/3)

A few useful GDB commands
▶ break foobar (b)

Put a breakpoint at the entry of function foobar()

▶ break foobar.c:42
Put a breakpoint in foobar.c, line 42

▶ print var, print $reg or print task->files[0].fd (p)
Print the variable var, the register $reg or a more complicated reference. GDB can also
nicely display structures with all their members

▶ info registers
Display architecture registers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/340

GDB crash course (3/3)

▶ continue (c)
Continue the execution after a breakpoint

▶ next (n)
Continue to the next line, stepping over function calls

▶ step (s)
Continue to the next line, entering into subfunctions

▶ stepi (si)
Continue to the next instruction

▶ finish
Execute up to function return

▶ backtrace (bt)
Display the program stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/340

GDB advanced commands (1/3)

▶ info threads (i threads)
Display the list of threads that are available

▶ info breakpoints (i b)
Display the list of breakpoints/watchpoints

▶ delete <n> (d <n>)
Delete breakpoint <n>

▶ thread <n> (t <n>)
Select thread number <n>

▶ frame <n> (f <n>)
Select a specific frame from the backtrace, the number being the one displayed when
using backtrace at the beginning of each line

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/340

GDB advanced commands (2/3)

▶ watch <variable> or watch *<address>
Add a watchpoint on a specific variable/address.

▶ print variable = value (p variable = value)
Modify the content of the specified variable with a new value

▶ break foobar.c:42 if condition
Break only if the specified condition is true

▶ watch <variable> if condition
Trigger the watchpoint only if the specified condition is true

▶ display <expr>
Automatically prints expression each time program stops

▶ x/<n><u> <address>
Display memory at the provided address. n is the amount of memory to display, u is the
type of data to be displayed (b/h/w/g). Instructions can be displayed using the i type.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/340

GDB advanced commands (3/3)

▶ list <expr>
Display the source code associated to the current program counter location.

▶ disassemble <location,start_offset,end_offset> (disas)
Display the assembly code that is currently executed.

▶ p function(arguments)
Execute a function using GDB. NOTE: be careful of any side effects that may happen
when executing the function

▶ p $newvar = value
Declare a new gdb variable that can be used locally or in command sequence

▶ define <command_name>
Define a new command sequence. GDB will prompt for the sequence of commands.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/340

Remote debugging
▶ In a non-embedded environment, debugging takes place using gdb or one of its

front-ends.
▶ gdb has direct access to the binary and libraries compiled with debugging symbols,

which is often false for embedded systems (binaries are stripped, without
debug_info) to save storage space.

▶ For the same reason, embedding the gdb program on embedded targets is rarely
desirable (2.4 MB on x86).

▶ Remote debugging is preferred
• ARCH-linux-gdb is used on the development workstation, offering all its features.
• gdbserver is used on the target system (only 400 KB on arm).

ARCH-linux-gdb
gdbserver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/340

Remote debugging: architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/340

Remote debugging: target setup

▶ On the target, run a program through gdbserver.
Program execution will not start immediately.
gdbserver :<port> <executable> <args>
gdbserver /dev/ttyS0 <executable> <args>

▶ Otherwise, attach gdbserver to an already running program:
gdbserver --attach :<port> <pid>

▶ You can also start gdbserver without passing any program to start or attach (and
set the target program later, on client side):
gdbserver --multi :<port>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/340

Remote debugging: host setup

▶ Then, on the host, start ARCH-linux-gdb <executable>,
and use the following gdb commands:

• To tell gdb where shared libraries are:
gdb> set sysroot <library-path> (typically path to build space without lib/)

• To connect to the target:
gdb> target remote <ip-addr>:<port> (networking)
gdb> target remote /dev/ttyUSB0 (serial link)

Make sure to replace target remote with target extended-remote if you have
started gdbserver with the --multi option

• If you did not set the program to debug on gdbserver commandline:
gdb> set remote exec-file <path_to_program_on_target>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/340

Coredumps for post mortem analysis
▶ It is sometime not possible to have a debugger attached when a crash occurs
▶ Fortunately, Linux can generate a core file (a snapshot of the whole process

memory at the moment of the crash), in the ELF format. gdb can use this core
file to let us analyze the state of the crashed application

▶ On the target
• Use ulimit -c unlimited in the shell starting the application, to enable the

generation of a core file when a crash occurs
• The output name and path for the coredump file can be modified using

/proc/sys/kernel/core_pattern (see man 5 core)
Example: echo /tmp/mycore > /proc/sys/kernel/core_pattern

• Depending on the system configuration, the core_pattern file may be rewritten
automatically by some software to handle core files or even disable core generation
(eg: systemd)

▶ On the host
• After the crash, transfer the core file from the target to the host, and run

ARCH-linux-gdb -c core-file application-binary

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/340

https://man7.org/linux/man-pages/man5/core.5.html

minicoredumper

▶ Coredumps can be huge for complex applications
▶ minicoredumper is a userspace tool based on the standard core dump feature

• Based on the possibility to redirect the core dump output to a user space program
via a pipe

▶ Based on a JSON configuration file, it can:
• save only the relevant sections (stack, heap, selected ELF sections)
• compress the output file
• save additional information from /proc

▶ https://github.com/diamon/minicoredumper
▶ “Efficient and Practical Capturing of Crash Data on Embedded Systems”

• Presentation by minicoredumper author John Ogness
• Video: https://www.youtube.com/watch?v=q2zmwrgLJGs
• Slides: elinux.org/images/8/81/Eoss2023_ogness_minicoredumper.pdf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/340

https://github.com/diamon/minicoredumper
https://www.youtube.com/watch?v=q2zmwrgLJGs
https://elinux.org/images/8/81/Eoss2023_ogness_minicoredumper.pdf

GDB: going further
▶ Tutorial: Debugging Embedded Devices using GDB - Chris Simmonds, 2020

• Slides: https://elinux.org/images/0/01/Debugging-with-gdb-csimmonds-
elce-2020.pdf

• Video: https://www.youtube.com/watch?v=JGhAgd2a_Ck

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/340

https://elinux.org/images/0/01/Debugging-with-gdb-csimmonds-elce-2020.pdf
https://elinux.org/images/0/01/Debugging-with-gdb-csimmonds-elce-2020.pdf
https://www.youtube.com/watch?v=JGhAgd2a_Ck

GDB Python Extension

▶ GDB features a python integration, allowing to script some debugging operations
▶ When executing python under GDB, a module named gdb is available and all the

GDB specific classes are accessible under this module
▶ Allows to add new types of commands, breakpoint, printers

• Used by the kernel to create new commands with the python GDB scripts
▶ Allows full control and observability over the debugged program using GDB

capabilities from Python scripts
• Controlling execution, adding breakpoints, watchpoints, etc
• Accessing the process memory, frames, symbols, etc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/340

https://sourceware.org/gdb/onlinedocs/gdb/Python.html

GDB Python Extension (1/2)

class PrintOpenFD(gdb.FinishBreakpoint):
def __init__(self, file):

self.file = file
super(PrintOpenFD, self).__init__()

def stop (self):
print ("---> File " + self.file + " opened with fd " + str(self.return_value))
return False

class PrintOpen(gdb.Breakpoint):
def stop(self):

PrintOpenFD(gdb.parse_and_eval("file").string())
return False

class TraceFDs (gdb.Command):
def __init__(self):

super(TraceFDs, self).__init__("tracefds", gdb.COMMAND_USER)

def invoke(self, arg, from_tty):
print("Hooking open() with custom breakpoint")
PrintOpen("open")

TraceFDs()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/340

GDB Python Extension (2/2)

▶ Python scripts can be loaded using gdb source command
• Or the script can be named <program>-gdb.py and will be loaded automatically by

GDB

(gdb) source trace_fds.py
(gdb) tracefds
Hooking open() with custom breakpoint
Breakpoint 1 at 0x33e0
(gdb) run
Starting program: /usr/bin/touch foo bar
Temporary breakpoint 2 at 0x5555555587da
---> File foo opened with fd 3
Temporary breakpoint 3 at 0x5555555587da
---> File bar opened with fd 0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/340

Common debugging issues

▶ You will likely encounter some issues while debugging, like poor address->symbols
conversion, ”optimized out” values or functions, empty backtraces...

▶ A quick checklist before starting debugging can spare you some troubles:
• Make sure your host binary has debug symbols: with gcc, ensure -g is provided, and

use non-stripped version with host gdb
• Disable optimizations on final binary (-O0) if possible, or at least use a less intrusive

level (-Og)
Static functions can for example be folded into caller depending on the optimization
level, so they would be missing from backtraces

• Prevent code optimization from reusing frame pointer register: with GCC, make sure
-fno-omit-frame-pointer option is set

Not only true for debugging: any profiling/tracing tool relying on backtraces will
benefit from it

▶ Your application is probably composed of multiple libraries: you will need to apply
those configurations on all used components!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/340

https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/Optimize-Options.html

Practical lab - Solving an application crash

Debugging an application crash
▶ Code generation analysis with compiler-explorer
▶ Using GDB and its Python support
▶ Analyzing and using a coredump

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/340

Application Tracing

Application Tracing

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/340

Application Tracing

strace

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/340

strace

System call tracer - https://strace.io
▶ Available on all GNU/Linux systems

Can be built by your cross-compiling toolchain generator or by
your build system.

▶ Allows to see what any of your processes is doing: accessing files,
allocating memory... Often sufficient to find simple bugs.

▶ Usage:
strace <command> (starting a new process)
strace -f <command> (follow child processes too)
strace -p <pid> (tracing an existing process)
strace -c <command> (time statistics per system call)
strace -e <expr> <command> (use expression for advanced
filtering)

See the strace manual for details. Image credits: https://strace.io/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/340

https://strace.io
https://man7.org/linux/man-pages/man1/strace.1.html
https://strace.io/

strace example output
> strace cat Makefile
[...]
fstat64(3, {st_mode=S_IFREG|0644, st_size=111585, ...}) = 0
mmap2(NULL, 111585, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb7f69000
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
open("/lib/tls/i686/cmov/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\320h\1\0004\0\0\0\344"..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1442180, ...}) = 0
mmap2(NULL, 1451632, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb7e06000
mprotect(0xb7f62000, 4096, PROT_NONE) = 0
mmap2(0xb7f66000, 9840, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xb7f66000
close(3) = 0
[...]
openat(AT_FDCWD, "Makefile", O_RDONLY) = 3
newfstatat(3, "", {st_mode=S_IFREG|0644, st_size=173, ...}, AT_EMPTY_PATH) = 0
fadvise64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = 0
mmap(NULL, 139264, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f7290d28000
read(3, "ifneq ($(KERNELRELEASE),)\nobj-m "..., 131072) = 173
write(1, "ifneq ($(KERNELRELEASE),)\nobj-m "..., 173ifneq ($(KERNELRELEASE),)

Hint: follow the open file descriptors returned by open(). This tells you what files are
handled by further system calls.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/340

strace -c example output

> strace -c cheese
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 36.24 0.523807 19 27017 poll
 28.63 0.413833 5 75287 115 ioctl
 25.83 0.373267 6 63092 57321 recvmsg
 3.03 0.043807 8 5527 writev
 2.69 0.038865 10 3712 read
 2.14 0.030927 3 10807 getpid
 0.28 0.003977 1 3341 34 futex
 0.21 0.002991 3 1030 269 openat
 0.20 0.002889 2 1619 975 stat
 0.18 0.002534 4 568 mmap
 0.13 0.001851 5 356 mprotect
 0.10 0.001512 2 784 close
 0.08 0.001171 3 461 315 access
 0.07 0.001036 2 538 fstat
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/340

Application Tracing

ltrace

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/340

ltrace

A tool to trace shared library calls used by a program and all the signals it receives
▶ Very useful complement to strace, which shows only system calls.
▶ Of course, works even if you don’t have the sources
▶ Allows to filter library calls with regular expressions, or just by a list of function

names.
▶ With the -S option it shows system calls too!
▶ Also offers a summary with its -c option.
▶ Manual page: https://linux.die.net/man/1/ltrace
▶ Works better with glibc. ltrace used to be broken with uClibc (now fixed), and is

not supported with Musl (Buildroot 2022.11 status).
See https://en.wikipedia.org/wiki/Ltrace for details

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/340

https://linux.die.net/man/1/ltrace
https://en.wikipedia.org/wiki/Ltrace

ltrace example output

ltrace ffmpeg -f video4linux2 -video_size 544x288 -input_format mjpeg -i /dev
/video0 -pix_fmt rgb565le -f fbdev /dev/fb0
__libc_start_main(["ffmpeg", "-f", "video4linux2", "-video_size"...] <unfinished ...>
setvbuf(0xb6a0ec80, nil, 2, 0) = 0
av_log_set_flags(1, 0, 1, 0) = 1
strchr("f", ':') = nil
strlen("f") = 1
strncmp("f", "L", 1) = 26
strncmp("f", "h", 1) = -2
strncmp("f", "?", 1) = 39
strncmp("f", "help", 1) = -2
strncmp("f", "-help", 1) = 57
strncmp("f", "version", 1) = -16
strncmp("f", "buildconf", 1) = 4
strncmp("f", "formats", 1) = 0
strlen("formats") = 7
strncmp("f", "muxers", 1) = -7
strncmp("f", "demuxers", 1) = 2
strncmp("f", "devices", 1) = 2
strncmp("f", "codecs", 1) = 3
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/340

ltrace summary
Example summary at the end of the ltrace output (-c option)

% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
52.64 5.958660 5958660 1 __libc_start_main
20.64 2.336331 2336331 1 avformat_find_stream_info
14.87 1.682895 421 3995 strncmp
7.17 0.811210 811210 1 avformat_open_input
0.75 0.085290 584 146 av_freep
0.49 0.055150 434 127 strlen
0.29 0.033008 660 50 av_log
0.22 0.025090 464 54 strcmp
0.20 0.022836 22836 1 avformat_close_input
0.16 0.017788 635 28 av_dict_free
0.15 0.016819 646 26 av_dict_get
0.15 0.016753 440 38 strchr
0.13 0.014536 581 25 memset

...
------ ----------- ----------- --------- --------------------
100.00 11.318773 4762 total

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/340

Application Tracing

LD_PRELOAD

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/340

Shared libraries

▶ Shared libraries are provided as .so files that are actually ELF files
• Loaded at startup by ld.so (the dynamic loader)
• Or at runtime using dlopen() from your code

▶ When starting a program (an ELF file actually), the kernel will parse it and load
the interpreter that needs to be invoked.

• Most of the time PT_INTERP program header of the ELF file is set to ld-linux.so.
▶ At loading time, the dynamic loader ld.so will resolve all the symbols that are

present in dynamic libraries.
▶ Shared libraries are loaded only once by the OS and then mappings are created for

each application that uses the library.
• This allows to reduce the memory used by libraries.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/340

Hooking Library Calls

▶ In order to do some more complex library call hooks, one can use the
LD_PRELOAD environment variable.

▶ LD_PRELOAD is used to specify a shared library that will be loaded before any
other library by the dynamic loader.

▶ Allows to intercept all library calls by preloading another library.
• Overrides libraries symbols that have the same name.
• Allows to redefine only a few specific symbols.
• ”Real” symbol can still be loaded and used with dlsym (man 3 dlsym)

▶ Used by some debugging/tracing libraries (libsegfault, libefence)
▶ Works for C and C++.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/340

https://man7.org/linux/man-pages/man3/dlsym.3.html

LD_PRELOAD example 1/2
▶ Library snippet that we want to preload using LD_PRELOAD:

#include <string.h>
#include <unistd.h>

ssize_t read(int fd, void *data, size_t size) {
memset(data, 0x42, size);
return size;

}

▶ Compilation of the library for LD_PRELOAD usage:

$ gcc -shared -fPIC -o my_lib.so my_lib.c

▶ Preloading the new library using LD_PRELOAD:

$ LD_PRELOAD=./my_lib.so ./exe

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/340

LD_PRELOAD example 2/2

▶ Chaining a call to the real symbol to avoid altering the application behavior:

#include <stdio.h>
#include <unistd.h>
#include <dlfcn.h>

ssize_t read(int fd, void *data, size_t size)
{

size_t (*read_func)(int, void *, size_t);
char *error;

read_func = dlsym(RTLD_NEXT, "read");
if (!read_func) {

fprintf(stderr, "Can not find read symbol: %s\n", dlerror());
return 0;

}
fprintf(stderr, "Trying to read %lu bytes to %p from file descriptor %d\n", size, data, fd);
return read_func(fd, data, size);

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/340

Application Tracing

uprobes and perf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/340

Probes in linux

▶ The linux kernel is able to dynamically add some instrumentation (or ”probes”) to
almost any code running on a platform, either in userspace, kernel space, or both.

▶ This mechanism works by ”patching” the code at runtime to insert the probe.
When the patched code is executed, the probe records the execution. It can also
collect additional data.

▶ There are different kinds of probes exposed by the kernel:
• uprobes: hook on almost any userspace instruction and capture local data
• uretprobes: hook on userspace function exit and capture return value
• entry fprobe: hook on kernel function entry
• exit fprobe: hook on kernel function exit
• kprobes: hook on almost any kernel instruction and capture local data
• kretprobe: hook on kernel function exit and capture return value

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/340

uprobes

▶ uprobe is a probe mechanism offered by the kernel allowing to trace userspace
code.

▶ Can target any userspace instruction
• Internally patches the loaded .text section with breakpoints that are handled by the

kernel trace system
▶ Exposed by file /sys/kernel/tracing/uprobe_events

▶ User is expected to compute the offset of the targeted instruction inside the
corresponding VMA (containing the .text section) of the targeted process

echo 'p /bin/bash:0x4245c0' > /sys/kernel/tracing/uprobe_events

▶ Uprobes are wrapped by some common tools (e.g: perf, bcc) for easier usage
▶ trace/uprobetracer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/340

https://www.kernel.org/doc/html/latest/trace/uprobetracer.html

The perf tool

▶ perf tool was started as a tool to profile application under Linux using
performance counters (man 1 perf).

▶ It became much more than that and now allows to manage tracepoints, kprobes
and uprobes.

▶ perf can profile both user-space and kernel-space execution.
▶ perf is based on the perf_event interface that is exposed by the kernel.
▶ Provides a set of operations, each having specific arguments (see perf help).

• stat, record, report, top, annotate, ftrace, list, probe, etc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/340

https://man7.org/linux/man-pages/man1/perf.1.html

Using perf record

▶ perf record allows to record performance events per-thread, per-process and
per-cpu basis.

▶ Kernel needs to be configured with CONFIG_PERF_EVENTS=y.
▶ This is the first command that needs to be run to gather data from program

execution and output them into perf.data.
▶ perf.data file can then be analyzed using perf annotate and perf report.

• Useful on embedded systems to analyze data on another computer.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PERF_EVENTS

Probing userspace functions

▶ List functions that can be probed in a specific executable:

$ perf probe --source=<source_dir> -x my_app -F

▶ List lines number that can be probed in a specific executable/function:

$ perf probe --source=<source_dir> -x my_app -L my_func

▶ Create uprobes on user-space library/executable functions:

$ perf probe -x /lib/libc.so.6 printf
$ perf probe -x my_app my_func:3 my_var
$ perf probe -x my_app my_func%return \$retval

▶ Record the execution of these tracepoints:

$ perf record -e probe_my_app:my_func_L3 -e probe_libc:printf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/340

Practical lab - Application tracing

Analyzing of application interactions
▶ Analyze dynamic library calls from an

application using ltrace.
▶ Overriding a library function with LD_PRELOAD.
▶ Using strace to analyze program syscalls.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/340

Memory Issues

Memory Issues

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/340

Usual Memory Issues

▶ Programming (almost) always involves accessing memory
▶ If done incorrectly, a large variety of errors can be triggered

• Segmentation Faults can happen when accessing invalid memory addresses (NULL
pointers or use-after-free for instance)

• Buffer Overflows can happen if accessing a buffer outside its boundaries
• Memory Leaks when allocating memory and forgetting to free it after usage

▶ Fortunately, there are tools to debug these errors

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/340

Segmentation Faults

▶ Segmentation Faults are generated by the kernel when a program tries to access a
memory area that it is not allowed to or to access it in an incorrect way

• Might be generated by a write on a read only memory zone
• Can also be triggered when trying to execute memory that is not executable

int *ptr = NULL;
*ptr = 1;

▶ Execution will yield a Segmentation fault message in the terminal

$./program
Segmentation fault

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/340

Buffer Overflows

▶ Buffer Overflows are easily triggered when accessing an array outside of its
boundaries (most often past the end)

▶ Such access might generate a crash or not depending on the access
• Writing past the end of a malloc()’ed array will most often overwrite the malloc

data structure leading to corruption
• Writing past the end of an array allocated on the stack can corrupt data on the stack
• Reading past the end of an array might generate a segfault but not always, this

depends on the area of memory that is accessed

uint32_t *array = malloc(10 * sizeof(*array));
array[10] = 0xDEADBEEF;

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/340

Memory Leaks

▶ Memory leaks are another class of memory errors that will not directly trigger a
crash but will exhaust the system memory (sooner or later)

▶ This happens when allocating memory in your program and not releasing it after
using it

▶ Can trigger in production when the program runs for a very long time
• Better to debug that kind of problem early in the development process

void func1(void) {
uint32_t *array = malloc(10 * sizeof(*array));
do_something_with_array(array);

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/340

Memory Issues

Valgrind memcheck

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/340

Valgrind (1/2)

▶ Valgrind is an instrumentation framework for building dynamic
analysis tools

▶ valgrind is also a tool that is based on this framework and
provides a memory error detector, heap profilers and others
profilers.

▶ It is supported on all the popular platforms: Linux on x86,
x86_64, arm (armv7 only), arm64, mips32, s390, ppc32 and
ppc64.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/340

https://valgrind.org/

Valgrind (2/2)

▶ Works by adding its own instrumentation to your code and then
running in on its own virtual cpu core. Significantly slows down
execution, and thus is suited for debugging and profiling

▶ Memcheck is the default valgrind tool and it detects
memory-management errors

• Access to invalid memory zones, use of uninitialized values,
memory leaks, bad freeing of heap blocks, etc

• Can be run on any application, no need to recompile them

$ valgrind --tool=memcheck --leak-check=full <program>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/340

Valgrind Memcheck usage and report

$ valgrind ./mem_leak
==202104== Memcheck, a memory error detector
==202104== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==202104== Using Valgrind-3.18.1 and LibVEX; rerun with -h for copyright info
==202104== Command: ./mem_leak
==202104==
==202104== Conditional jump or move depends on uninitialised value(s)
==202104== at 0x109161: do_actual_jump (in /home/user/mem_leak)
==202104== by 0x109187: compute_address (in /home/user/mem_leak)
==202104== by 0x1091A2: do_jump (in /home/user/mem_leak)
==202104== by 0x1091D7: main (in /home/user/mem_leak)
==202104==
==202104== HEAP SUMMARY:
==202104== in use at exit: 120 bytes in 1 blocks
==202104== total heap usage: 1 allocs, 0 frees, 120 bytes allocated
==202104==
==202104== LEAK SUMMARY:
==202104== definitely lost: 120 bytes in 1 blocks
==202104== indirectly lost: 0 bytes in 0 blocks
==202104== possibly lost: 0 bytes in 0 blocks
==202104== still reachable: 0 bytes in 0 blocks
==202104== suppressed: 0 bytes in 0 blocks
==202104== Rerun with --leak-check=full to see details of leaked memory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/340

Valgrind and VGDB

▶ Valgrind can also act as a GDB server which can receive and process commands.
One can interact with valgrind gdb server either with a gdb client, or directly with
vgdb program (provided with valgrind). vgdb can be used in different ways:

• As a standalone CLI program to send ”monitor” commands to valgrind
• As a relay between a gdb client and an existing valgrind session
• As a server to drive multiple valgrind sessions from a remote gdb client

▶ See man 1 vgdb for available modes, commands and options

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/340

https://man7.org/linux/man-pages/man1/vgdb.1.html

Using GDB with Memcheck
▶ valgrind allows to attach with GDB to the process that is currently analyzed.

$ valgrind --tool=memcheck --leak-check=full --vgdb=yes --vgdb-error=0 ./mem_leak

▶ Then attach gdb to the valgrind gdbserver using vgdb

$ gdb ./mem_leak
(gdb) target remote | vgdb

▶ If valgrind detects an error, it will stop the execution and break into GDB.

(gdb) continue
Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
0x0000000000109161 in do_actual_jump (p=0x4a52040) at mem_leak.c:5
5 if (p[1])
(gdb) bt
#0 0x0000000000109161 in do_actual_jump (p=0x4a52040) at mem_leak.c:5
#1 0x0000000000109188 in compute_address (p=0x4a52040) at mem_leak.c:11
#2 0x00000000001091a3 in do_jump (p=0x4a52040) at mem_leak.c:16
#3 0x00000000001091d8 in main () at mem_leak.c:27

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/340

Memory Issues

Electric Fence

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/340

libefence (1/2)

▶ libefence is more lightweight than valgrind but less precise
▶ Allows to catch two types of common memory errors

• Buffer overflows and use after free
▶ libefence will actually trigger a segfault upon the first error encountered in order

to generate a coredump.
▶ Uses a shared library that can either be linked with statically (-lefence) or

preloaded using LD_PRELOAD.

$ gcc -g program.c -o program
$ LD_PRELOAD=libefence.so.0.0 ./program

Electric Fence 2.2 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>
Segmentation fault (core dumped)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/340

libefence (2/2)

▶ Upon segfault, a coredump will be generated in the current directory
▶ This coredump can be opened with GDB and will pinpoint the exact location

where the error happened

$ gdb ./program core-program-3485
Reading symbols from ./libefence...
[New LWP 57462]
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Core was generated by `./libefence'.
Program terminated with signal SIGSEGV, Segmentation fault.
#0 main () at libefence.c:8
8 data[99] = 1;
(gdb)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/340

Practical lab - Debugging Memory Issues

Debug various memory issues using specific tooling
▶ Memory leak and misbehavior detection with

valgrind and vgdb.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/340

Application Profiling

Application Profiling

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/340

Profiling

▶ Profiling is the act of gathering data from a program execution in order to analyze
them and then optimize or fix performance issues.

▶ Profiling is achieved by using programs that insert instrumentation in the code or
leverage kernel/userspace mechanisms.

• Profiling function calls and count of calls allow to optimize performance.
• Profiling processor usage allows to optimize performance and reduce power usage.
• Profiling memory usage allows to optimize memory consumption.

▶ After profiling, the data set must be analyzed to identify potential improvements
(and not the reverse!).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/340

Performance issues

”Premature optimization is the root of all evil”, Donald Knuth

▶ Profiling is often useful to identify and fix performance issues.
▶ Performance can be affected by memory usage, IOs overload, or CPU usage.
▶ Gathering profiling data before trying to fix performance issues is needed to do the

correct choices.
▶ Profiling is often guided by a first coarse-grained analysis using some classic tools.
▶ Once the class of problems has been identified, a fine-grained profiling analysis

can be done.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/340

Profiling metrics

▶ Multiple tools allow to profile various metrics.
▶ Memory usage with Massif, heaptrack or memusage.
▶ Function calls using perf and callgrind.
▶ CPU hardware usage (Cache, MMU, etc) using perf.
▶ Profiling data can include both the user space application and kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/340

Application Profiling

Memory profiling

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/340

Memory profiling

▶ Profiling memory usage (heap/stack) in an application is useful for optimization.
▶ Allocating too much memory can lead to system memory exhaustion.
▶ Allocating/freeing memory too often can lead to the kernel spending a

considerable amount of time in clear_page().
• The kernel clears pages before giving them to processes to avoid data leakage.

▶ Reducing application memory footprint can allow optimizing cache usage as well
as page miss.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/340

Massif usage

▶ Massif is a tool provided by valgrind which allows to profile heap usage during the
program execution (user-space only).

▶ Works by making snapshots of allocations.

$ valgrind --tool=massif --time-unit=B program

▶ Once executed, a massif.out.<pid> file will be generated in the current directory
▶ ms_print tool can then be used to display a graph of heap allocation

$ ms_print massif.out.275099

▶ #: Peak allocation
▶ @: Detailed snapshot (count can be adjusted thanks to --detailed-freq)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/340

Massif report

KB
547.0^ # :: : :@ : :: :

| @:#:::::::@::::::::@
| ::@:#:::::::@::::::::@::
| :::::@:#:::::::@::::::::@:::::
| :::::::@:#:::::::@::::::::@:::::::
| :::::::@:#:::::::@::::::::@:::::::
| :::::::@:#:::::::@::::::::@:::::::
| :::::::@:#:::::::@::::::::@:::::::
| @@@@@@@@:::::::@:#:::::::@::::::::@:::::::
| @ :::::::@:#:::::::@::::::::@:::::::
| @ :::::::@:#:::::::@::::::::@:::::::
| :::::::@ :::::::@:#:::::::@::::::::@:::::::
| : @ :::::::@:#:::::::@::::::::@:::::::
| ::::::: @ :::::::@:#:::::::@::::::::@:::::::
| : : @ :::::::@:#:::::::@::::::::@:::::::
| :::::: : @ :::::::@:#:::::::@::::::::@:::::::
| : : : @ :::::::@:#:::::::@::::::::@:::::::
| ::::: : : @ :::::::@:#:::::::@::::::::@:::::::
| :::: : : : @ :::::::@:#:::::::@::::::::@:::::::
| :::: : : : : @ :::::::@:#:::::::@::::::::@:::::::

0 +--->KB
0 830.5

Number of snapshots: 52
Detailed snapshots: [9, 19, 22 (peak), 32, 42]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/340

massif-visualizer - Visualizing massif profiling data

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/340

heaptrack usage

▶ heaptrack is a heap memory profiler for Linux.
• Works with LD_PRELOAD library.

▶ Finer tracking than with Massif and visualizing tool is more advanced.
• Each allocation is associated to a stacktrace.
• Allows finding memory leaks, allocation hotspots and temporary allocations.

▶ Results can be seen using GUI (heaptrack_gui) or CLI tool (heaptrack_print).
▶ https://github.com/KDE/heaptrack

$ heaptrack program

▶ This will generate a heaptrack.<process_name>.<pid>.zst file that can be
analyzed using heaptrack_gui on another computer.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 171/340

https://github.com/KDE/heaptrack

heaptrack_gui - Visualizing heaptrack profiling data

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 172/340

heaptrack_gui - Flamegraph view

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/340

memusage

▶ memusage is a program that leverages libmemusage.so
to profile memory usage (man 1 memusage) (user-space
only).

▶ Can profile heap, stack and also mmap memory usage.
▶ Profiling information can be shown on the console,

logged to a file for post-treatment or visualized in a
PNG file.

▶ Lightweight solution compared to valgrind Massif tool
since it uses the LD_PRELOAD mechanism.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/340

https://man7.org/linux/man-pages/man1/memusage.1.html

memusage usage

$ memusage convert foo.png foo.jpg
Memory usage summary: heap total: 2635857, heap peak: 2250856, stack peak: 83696

total calls total memory failed calls
malloc| 1496 2623648 0

realloc| 6 3744 0 (nomove:0, dec:0, free:0)
calloc| 16 8465 0

free| 1480 2521334
Histogram for block sizes:

0-15 329 21% ==
16-31 239 15% ====================================
32-47 287 18% ===
48-63 321 21% ==
64-79 43 2% ======
80-95 141 9% =====================

...
21424-21439 1 <1%
32768-32783 1 <1%
32816-32831 1 <1%

large 3 <1%

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/340

Application Profiling

Execution profiling

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 176/340

Execution profiling

▶ In order to optimize a program, one may have to understand what hardware
resources are used.

▶ Many hardware elements can have an impact on the program execution:
• CPU cache performance can be degraded by an application without memory spatial

locality.
• Page miss due to using too much memory without spatial locality.
• Alignment faults when doing misaligned accesses.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/340

Using perf stat

▶ perf stat allows to profile an application by gathering performance counters.
• Using performance counters might require root permissions. This can be modified

using # echo -1 > /proc/sys/kernel/perf_event_paranoid

▶ The number of performance counters that are present on the hardware are often
limited.

▶ Requesting more events than possible will result in multiplexing and perf will scale
the results.

▶ Collected performance counters are then approximate.
• To acquire more precise numbers, reduce the number of events observed and run

perf multiple times changing the events set to observe all the expected events.
• See perf wiki for more information.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 178/340

https://perfwiki.github.io/main/

perf stat example (1/2)

$ perf stat convert foo.png foo.jpg

Performance counter stats for 'convert foo.png foo.jpg':

45,52 msec task-clock # 1,333 CPUs utilized
4 context-switches # 87,874 /sec
0 cpu-migrations # 0,000 /sec

1 672 page-faults # 36,731 K/sec
146 154 800 cycles # 3,211 GHz (81,16%)
6 984 741 stalled-cycles-frontend # 4,78% frontend cycles idle (91,21%)

81 002 469 stalled-cycles-backend # 55,42% backend cycles idle (91,36%)
222 687 505 instructions # 1,52 insn per cycle

0,36 stalled cycles per insn (91,21%)
37 776 174 branches # 829,884 M/sec (74,51%)

567 408 branch-misses # 1,50% of all branches (70,62%)

0,034156819 seconds time elapsed

0,041509000 seconds user
0,004612000 seconds sys

▶ NOTE: the percentage displayed at the end denotes the time during which the
kernel measured the event due to multiplexing

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/340

perf stat example (2/2)

▶ List all events:

$ perf list
List of pre-defined events (to be used in -e):

branch-instructions OR branches [Hardware event]
branch-misses [Hardware event]
cache-misses [Hardware event]
cache-references [Hardware event]
...

▶ Count L1-dcache-load-misses and branch-load-misses events for a specific
command

$ perf stat -e L1-dcache-load-misses,branch-load-misses cat /etc/fstab
...
Performance counter stats for 'cat /etc/fstab':

23 418 L1-dcache-load-misses
7 192 branch-load-misses

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/340

Cachegrind

▶ Cachegrind is a tool provided by valgrind for profiling program interactions with
the instruction and data cache hierarchy.

• Cachegrind also profiles branch prediction success.
▶ Simulate a machine with independent I$ and D$ backed with a unified L2 cache.
▶ Really helpful to detect cache usage problems (too many misses, etc).

$ valgrind --tool=cachegrind --cache-sim=yes ./my_program

▶ It generates a cachegrind.out.<pid> file containing the measures
▶ cg_annotate is a CLI tool used to visualize cachegrind simulation results.
▶ It also has a --diff option to allow comparing two measures files

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 181/340

Kcachegrind - Visualizing Cachegrind profiling data

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/340

Callgrind

▶ Provided by valgrind and allowing to profile an application call graph (user-space
only).

▶ Collects the number of instructions executed during your program execution and
associate these data with the source lines

▶ Records the call relationship between functions and their call count.

$ valgrind --tool=callgrind ./my_program

▶ callgrind_annotate is a CLI tool used to visualize callgrind simulation results.
▶ Kcachegrind can visualize callgrind results too.
▶ The cache simulation (done using cachegrind) has some accuracy shortcomings

(See Cachegrind accuracy)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/340

https://valgrind.org/docs/manual/cg-manual.html#cg-manual.annopts.accuracy

Kcachegrind - Visualizing Callgrind profiling data

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/340

Practical lab - Profiling applications

Profiling an application using various tools
▶ Profiling application heap using Massif.
▶ Profiling an application with Cachegrind,

Callgrind and KCachegrind.
▶ Analyzing application performance with perf.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/340

System-wide Profiling & Tracing

System-wide Profiling &
Tracing

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/340

System-wide Profiling & Tracing

▶ Sometimes, the problems are not tied to an application but rather due to the
usage of multiple layers (drivers, application, kernel).

▶ In that case, it might be useful to analyze the whole stack.
▶ The kernel already includes a large number of tracepoints that can be recorded

using specific tools.
▶ New tracepoints can also be created statically or dynamically using various

mechanisms (kprobes for instance).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/340

System-wide Profiling & Tracing

kprobes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/340

Kprobes
▶ Allows to insert breaks at almost any kernel address dynamically and to extract

debugging and performance information
▶ Uses code patching to modify text code to insert calls to specific handlers

• kprobes allows to execute specific handlers when the hooked instruction is executed
• kretprobes will trigger when returning from a function allowing to extract the return

value of functions but also display the parameters that were used for the function call
▶ Needs some basic kernel configuration:

• CONFIG_KPROBES=y to enable general kprobe support
• CONFIG_KALLSYMS_ALL=y to allow hooking probes using <symbol_name> instead of

raw function address
• CONFIG_KPROBE_EVENTS=y to enable kprobes usage as tracing events in tracefs

▶ At the lowest level, k(ret)probes are manipulated with dedicated kernel APIs,
allowing to write our own kprobe tools (eg as kernel modules)

▶ Can also be used from userspace with /sys/kernel/tracing/kprobe_events

▶ See trace/kprobes for more information
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KPROBES
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KALLSYMS_ALL
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KPROBE_EVENTS
https://www.kernel.org/doc/html/latest/trace/kprobes.html

Basic kprobe tracing (1/2)

▶ Add a kprobe on do_sys_openat2:

$ echo "p:my_probe do_sys_openat2" > /sys/kernel/tracing/kprobe_events

▶ Add a kprobe in the same function but at a specific offset, and capture some
arguments

$ echo "p:my_probe_2 do_sys_openat2+0x7c file=%r2" > /sys/kernel/tracing/kprobe_events

▶ Insert a kretprobe

$ echo 'r:my_retprobe do_sys_openat2 $retval' > /sys/kernel/tracing/kprobe_events

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/340

Basic kprobe tracing (2/2)

▶ Show existing kprobes

$ cat /sys/kernel/tracing/kprobe_events

▶ Enable a kprobe (ie: start capturing the corresponding event)

$ echo 1 > /sys/kernel/tracing/events/kprobes/my_probe/enable

▶ Get data emitted by kprobes

$ cat /sys/kernel/tracing/trace

▶ Delete a kprobe

$ echo "-:my_probe" >> /sys/kernel/tracing/kprobe_events

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 191/340

System-wide Profiling & Tracing

perf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/340

perf

▶ perf allows to do a wide range of tracing and recording operations.
▶ The kernel already contains events and tracepoints that can be used. The list is

given using perf list.
▶ Syscall tracepoints should be enabled in kernel configuration using

CONFIG_FTRACE_SYSCALLS.
▶ New tracepoint can be created dynamically on all symbols and registers when

debug info are not present.
▶ Tracing functions, recording variables and parameters content using their names

will require a kernel compiled with CONFIG_DEBUG_INFO.
▶ If perf does not find vmlinux you have to provide it using -k <vmlinux>.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 193/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_FTRACE_SYSCALLS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_INFO

perf example
▶ List all events that matches syscalls:*

$ perf list syscalls:*
List of pre-defined events (to be used in -e):

syscalls:sys_enter_accept [Tracepoint event]
syscalls:sys_enter_accept4 [Tracepoint event]
syscalls:sys_enter_access [Tracepoint event]
syscalls:sys_enter_adjtimex_time32 [Tracepoint event]
syscalls:sys_enter_bind [Tracepoint event]

...

▶ Record all syscalls:sys_enter_read events for sha256sum command into
perf.data file.

$ perf record -e syscalls:sys_enter_read sha256sum /bin/busybox
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.018 MB perf.data (215 samples)]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 194/340

perf report example

▶ Display the collected samples ordered by time spent.

$ perf report
Samples: 591 of event 'cycles', Event count (approx.): 393877062
Overhead Command Shared Object Symbol

22,88% firefox-esr [nvidia] [k] _nv031568rm
3,21% firefox-esr ld-linux-x86-64.so.2 [.] __minimal_realloc
2,00% firefox-esr libc.so.6 [.] __stpncpy_ssse3
1,86% firefox-esr libglib-2.0.so.0.7400.0 [.] g_hash_table_lookup
1,62% firefox-esr ld-linux-x86-64.so.2 [.] _dl_strtoul
1,56% firefox-esr [kernel.kallsyms] [k] clear_page_rep
1,52% firefox-esr libc.so.6 [.] __strncpy_sse2_unaligned
1,37% firefox-esr ld-linux-x86-64.so.2 [.] strncmp
1,30% firefox-esr firefox-esr [.] malloc
1,27% firefox-esr libc.so.6 [.] __GI___strcasecmp_l_ssse3
1,23% firefox-esr [nvidia] [k] _nv013165rm
1,09% firefox-esr [nvidia] [k] _nv007298rm
1,03% firefox-esr [kernel.kallsyms] [k] unmap_page_range
0,91% firefox-esr ld-linux-x86-64.so.2 [.] __minimal_free

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/340

perf probe

▶ perf allows to create dynamic tracepoints on both kernel functions and user-space
functions.

▶ In order to be able to insert probes, CONFIG_KPROBES must be enabled in the
kernel.

• Note: libelf is required to compile perf with probe command support.
▶ New dynamic probes can be created and then used using perf record.
▶ Often on embedded platforms, vmlinux is not present on the target and thus only

symbols and registers can be used.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 196/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KPROBES

perf probe examples (1/3)

▶ List all the kernel symbols that can be probed (no debug info needed):

$ perf probe --funcs

▶ Create a new probe on do_sys_openat2 with filename named parameter (debug
info required).

$ perf probe --vmlinux=vmlinux_file do_sys_openat2 filename:string
Added new event:

probe:do_sys_openat2 (on do_sys_openat2 with filename:string)

▶ Execute tail and capture previously created probe event:

$ perf record -e probe:do_sys_openat2 tail /var/log/messages
...
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.003 MB perf.data (19 samples)]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/340

perf probe examples (2/3)

▶ Display the recorded tracepoints with perf script:

$ perf script
tail 164 [000] 3552.956573: probe:do_sys_openat2: (c02c3750) filename_string="/etc/ld.so.cache"
tail 164 [000] 3552.956642: probe:do_sys_openat2: (c02c3750) filename_string="/lib/tls/v7l/neon/vfp/libresolv.so.2"
...

▶ Create a new probe to capture the return value from ksys_read

$ perf probe ksys_read%return \$retval

▶ Execute sha256sum and capture previously created probe events:

$ perf record -e probe:ksys_read__return sha256sum /etc/fstab

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/340

perf probe examples (3/3)

▶ List all probes that have been created:

$ perf probe -l
probe:ksys_read__return (on ksys_read%return with ret)

▶ Remove an existing tracepoint:

$ perf probe -d probe:ksys_read__return

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/340

perf record example

▶ Record all events for all cpus (system-wide mode):

$ perf record -a
^C

▶ Display recorded events from perf.data using perf script

$ perf script
...
klogd 85 [000] 208.609712: 116584 cycles: b6dd551c memset+0x2c (/lib/libc.so.6)
klogd 85 [000] 208.609898: 121267 cycles: c0a44c84 _raw_spin_unlock_irq+0x34 (vmlinux)
klogd 85 [000] 208.610094: 127434 cycles: c02f3ef4 kmem_cache_alloc+0xd0 (vmlinux)
perf 130 [000] 208.610311: 132915 cycles: c0a44c84 _raw_spin_unlock_irq+0x34 (vmlinux)
perf 130 [000] 208.619831: 143834 cycles: c0a44cf4 _raw_spin_unlock_irqrestore+0x3c (vmlinux)

klogd 85 [000] 208.620048: 143834 cycles: c01a07f8 syslog_print+0x170 (vmlinux)
klogd 85 [000] 208.620241: 126328 cycles: c0100184 vector_swi+0x44 (vmlinux)
klogd 85 [000] 208.620434: 128451 cycles: c096f228 unix_dgram_sendmsg+0x46c (vmlinux)
kworker/0:2-mm_ 44 [000] 208.620653: 133104 cycles: c0a44c84 _raw_spin_unlock_irq+0x34 (vmlinux)
perf 130 [000] 208.620859: 138065 cycles: c0198460 lock_acquire+0x184 (vmlinux)

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/340

Using perf trace

▶ perf trace captures and displays all tracepoints/events that have been triggered
when executing a command

$ perf trace -e "net:*" ping -c 1 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.

0.000 ping/37820 net:net_dev_queue(skbaddr: 0xffff97bbc6a17900, len: 98,
name: "enp34s0")

0.005 ping/37820 net:net_dev_start_xmit(name: "enp34s0",
skbaddr: 0xffff97bbc6a17900, protocol: 2048, len: 98,
network_offset: 14, transport_offset_valid: 1, transport_offset: 34)

0.009 ping/37820 net:net_dev_xmit(skbaddr: 0xffff97bbc6a17900, len: 98,
name: "enp34s0")

64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.867 ms

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/340

Using perf top

▶ perf top allows to do a live analysis of the running kernel
▶ It will sample all function calls and display them ordered by most time consuming

one.
▶ This allows to profile the whole system usage

$ perf top
Samples: 19K of event 'cycles', 4000 Hz, Event count (approx.): 4571734204 lost: 0/0 drop: 0/0
Overhead Shared Object Symbol

2,01% [nvidia] [k] _nv023368rm
0,94% [kernel] [k] __static_call_text_end
0,89% [vdso] [.] 0x0000000000000655
0,81% [nvidia] [k] _nv027733rm
0,79% [kernel] [k] clear_page_rep
0,76% [kernel] [k] psi_group_change
0,70% [kernel] [k] check_preemption_disabled
0,69% code [.] 0x000000000623108f
0,60% code [.] 0x0000000006231083
0,59% [kernel] [k] preempt_count_add
0,54% [kernel] [k] module_get_kallsym
0,53% [kernel] [k] copy_user_generic_string

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/340

Using a GUI to display perf data

▶ perf report is the default way to display perf data, directly in the console
▶ There are also graphical tools to display perf data:

• Flamegraphs
Visualization based on hierarchical stacks
Allows to quickly find bottlenecks and explore the call stack
Popularized by Brendan Gregg tools which allows to generate flamegraphs from perf
results.

• Hotspot software
Developed and maintained by KDAB
A larger tool able to generate various types of visualizations from a perf.data file
Can also perform the actual perf recording

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/340

http://www.brendangregg.com/flamegraphs.html
https://github.com/KDAB/hotspot

Visualizing data with flamegraphs
▶ Get the flamegraph scripts:

git clone https://github.com/brendangregg/FlameGraph fl

▶ Capture data:

perf record -g -- sleep 30

• The -g option records call stacks for each sample
▶ Format the data:

perf script | ./fl/stackcollapse-perf.pl > out.perf-folded

• Other data sources are supported (eg: DTrace, SystemTap, Intel VTune, gdb...)
▶ Generate the Flamegraph:

./fl/flamegraph.pl out.perf-folded > flamegraph.svg

▶ The flamegraph can then be opened in a web browser
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/340

Flamegraph example: CPU flamegraph

▶ The plates on top represent the functions sampled by perf during the recording
▶ The plates width represents how often a function has been sampled by perf
▶ The plates below represent the call stacks for the sampled functions
▶ Flamegraphs are interactive: clicking on a plate will zoom on the corresponding

callstack
▶ Colors can be tuned at flamegraph generation (eg: to get a clear split between

kernel and userspace)
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/340

Visualizing data with hotspot (1/2)

▶ Designed to provide a frontend to perf data files
▶ Can generate flamegraphs on the fly, but not only:

• CPU/tasks timelines
• Interactive callstacks navigation
• Code disassembly

▶ Configurable (eg: allows to set paths to find all needed debug informations)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/340

Visualizing data with hotspot (2/2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 207/340

System-wide Profiling & Tracing

ftrace and trace-cmd

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/340

ftrace

▶ ftrace is a tracing framework within the kernel which stands for ”Function Tracer”.
▶ It offers a wide range of tracing capabilities allowing to observe the system

behavior.
• Trace static tracepoints already inserted at various locations in the kernel (scheduler,

interrupts, etc).
• Relies on GCC mcount() capability and kernel code patching mechanism to call

ftrace tracing handlers.
▶ All traces are recorded in a ring buffer that is optimized for tracing.
▶ Uses tracefs filesystem to control and display tracing events.

• # mount -t tracefs nodev /sys/kernel/tracing.
▶ ftrace support must be enabled in the kernel using CONFIG_FTRACE=y.
▶ CONFIG_DYNAMIC_FTRACE allows to have a zero overhead tracing support.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_FTRACE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DYNAMIC_FTRACE

ftrace files

▶ ftrace controls are exposed through some specific files located under
/sys/kernel/tracing.

• current_tracer: Current tracer that is used.
• available_tracers: List of available tracers that are compiled in the kernel.
• tracing_on: Enable/disable tracing.
• trace: Acquired trace in human readable format. Format will differ depending on

the tracer used.
• trace_pipe: same as trace, but each read consumes the trace as it is read.
• trace_marker{_raw}: Emit comments from userspace in the trace buffer.
• set_ftrace_filter: Filter some specific functions.
• set_graph_function: Graph only the specified functions child.

▶ Many other files are exposed, see trace/ftrace.
▶ trace-cmd CLI and Kernelshark GUI tools allow to record and visualize tracing

data more easily.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/340

https://www.kernel.org/doc/html/latest/trace/ftrace.html

ftrace tracers

▶ ftrace provides several ”tracers” which allow to trace different things.
▶ The tracer to be used should be written to the current_tracer file

• nop: Trace nothing, used to disable all tracing.
• function: Trace all kernel functions that are called.
• function_graph: Similar to function but traces both entry and exit.
• hwlat: Trace hardware latency.
• irqsoff: Trace sections where interrupts are disabled.
• branch: Trace likely()/unlikely() prediction errors.
• mmiotrace: Trace all accesses to the hardware (read[bwlq]/write[bwlq]).

▶ Warning: Some tracers can be expensive!

echo "function" > /sys/kernel/tracing/current_tracer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/340

function_graph tracer report example

▶ The function_graph traces all the function that executed and their associated
callgraphs

▶ Will display the process, CPU, timestamp and function graph:

$ trace-cmd report
...
dd-113 [000] 304.526590: funcgraph_entry: | sys_write() {
dd-113 [000] 304.526597: funcgraph_entry: | ksys_write() {
dd-113 [000] 304.526603: funcgraph_entry: | __fdget_pos() {
dd-113 [000] 304.526609: funcgraph_entry: 6.541 us | __fget_light();
dd-113 [000] 304.526621: funcgraph_exit: + 18.500 us | }
dd-113 [000] 304.526627: funcgraph_entry: | vfs_write() {
dd-113 [000] 304.526634: funcgraph_entry: 6.334 us | rw_verify_area();
dd-113 [000] 304.526646: funcgraph_entry: 6.208 us | write_null();
dd-113 [000] 304.526658: funcgraph_entry: 6.292 us | __fsnotify_parent();
dd-113 [000] 304.526669: funcgraph_exit: + 43.042 us | }
dd-113 [000] 304.526675: funcgraph_exit: + 78.833 us | }
dd-113 [000] 304.526680: funcgraph_exit: + 91.291 us | }
dd-113 [000] 304.526689: funcgraph_entry: | sys_read() {
dd-113 [000] 304.526695: funcgraph_entry: | ksys_read() {
dd-113 [000] 304.526702: funcgraph_entry: | __fdget_pos() {
dd-113 [000] 304.526708: funcgraph_entry: 6.167 us | __fget_light();
dd-113 [000] 304.526719: funcgraph_exit: + 18.083 us | }

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/340

irqsoff tracer

▶ ftrace irqsoff tracer allows to trace the irqs latency due to interrupts being
disabled for too long.

▶ Helpful to find why interrupts have high latencies on a system.
▶ This tracer will record the longest trace with interrupts being disabled.
▶ This tracer needs to be enabled with IRQSOFF_TRACER=y.

• preemptoff, premptirqsoff tracers also exist to trace section of code were
preemption is disabled.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 213/340

https://elixir.bootlin.com/linux/latest/K/ident/IRQSOFF_TRACER

irqsoff: report example

latency: 276 us, #104/104, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)

| task: stress-ng-114 (uid:0 nice:0 policy:0 rt_prio:0)

=> started at: __irq_usr
=> ended at: irq_exit
#
#
_------=> CPU#
/ _-----=> irqs-off
| / _----=> need-resched
|| / _---=> hardirq/softirq
||| / _--=> preempt-depth
|||| / delay
cmd pid ||||| time | caller
\ / ||||| \ | /
stress-n-114 0d... 2us : __irq_usr
stress-n-114 0d... 7us : gic_handle_irq <-__irq_usr
stress-n-114 0d... 10us : __handle_domain_irq <-gic_handle_irq
...
stress-n-114 0d... 270us : __local_bh_disable_ip <-__do_softirq
stress-n-114 0d.s. 275us : __do_softirq <-irq_exit
stress-n-114 0d.s. 279us+: tracer_hardirqs_on <-irq_exit
stress-n-114 0d.s. 290us : <stack trace>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 214/340

Hardware latency detector

▶ ftrace hwlat tracer will help to find if the hardware generates latency.
• Sytem Management interrupts for instance are non maskable and directly trigger

some firmware support feature, suspending CPU execution.
• Interrupts handled by secure monitor can also cause this kind of latency.

▶ If some latency is found with this tracer, the system is probably not suitable for
real time usage.

▶ Uses a single core looping while interrupts are disabled and measuring the time
elapsed between two consecutive time reads.

▶ Needs to be builtin the kernel with CONFIG_HWLAT_TRACER=y.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_HWLAT_TRACER

trace_printk()

▶ trace_printk() allows to emit strings in the trace buffer
▶ Useful to trace some specific conditions in your code and display it in the trace

buffer

#include <linux/ftrace.h>
void read_hw()
{

if (condition)
trace_printk("Condition is true!\n");

}

▶ Will display the following in the trace buffer for function_graph tracer

1) | read_hw() {
1) | /* Condition is true! */
1) 2.657 us | }

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/340

https://elixir.bootlin.com/linux/latest/ident/trace_printk
https://elixir.bootlin.com/linux/latest/ident/trace_printk

trace-cmd

▶ trace-cmd is a tool written by Steven Rostedt which allows interacting with ftrace
(man 1 trace-cmd).

▶ The tracers supported by trace-cmd are those exposed by ftrace.
▶ trace-cmd offers multiple commands:

• list: List available plugins/events that can be recorded.
• record: Record a trace into the file trace.dat.
• report: Display trace.dat acquisition results.

▶ At the end of recording, a trace.dat file will be generated.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/340

https://man7.org/linux/man-pages/man1/trace-cmd.1.html

trace-cmd examples (1/3)
▶ List available tracers

$ trace-cmd list -t
blk mmiotrace function_graph function nop

▶ List available events
$ trace-cmd list -e
...
migrate:mm_migrate_pages_start
migrate:mm_migrate_pages
tlb:tlb_flush
syscalls:sys_exit_process_vm_writev
...

▶ List available functions for filtering with function and function_graph tracers

$ trace-cmd list -f
...
wait_for_initramfs
__ftrace_invalid_address___64
calibration_delay_done
calibrate_delay
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/340

trace-cmd examples (2/3)

▶ Start the function tracer and record data globally on the system

$ trace-cmd record -p function

▶ Use the function tracer but filter only spi_* functions

$ trace-cmd record -l spi_* -p function

▶ Trace the dd command using the function graph tracer:

$ trace-cmd record -p function_graph dd if=/dev/mmcblk0 of=out bs=512 count=10

▶ Visualize the data that have been acquired in trace.dat:

$ trace-cmd report

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/340

trace-cmd examples (3/3)

▶ Reset all the ftrace buffers and remove tracers
$ trace-cmd reset

▶ Run the irqsoff tracer on the system:

$ trace-cmd record -p irqsoff

▶ Record only irq_handler_exit/irq_handler_entry events on the system:

$ trace-cmd record -e irq:irq_handler_exit -e irq:irq_handler_entry

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 220/340

Remote tracing with trace-cmd

▶ trace-cmd output can be quite big and thus difficult to store on an embedded
platform with limited storage.

▶ For that purpose, a listen command is available and allows sending the
acquisitions over the network:

• Run trace-cmd listen -p 6578 on the remote system that will be collecting the
traces

• On the target system, use trace-cmd record -N <target_ip>:6578 to specify the
remote system that will collect the traces

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 221/340

Adding ftrace tracepoints (1/2)
▶ For some custom needs, it might be needed to add custom tracepoints
▶ First, one needs to declare the tracepoint definition in a .h file

#undef TRACE_SYSTEM
#define TRACE_SYSTEM subsys

#if !defined(_TRACE_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_SUBSYS_H

#include <linux/tracepoint.h>

DECLARE_TRACE(subsys_eventname,
TP_PROTO(int firstarg, struct task_struct *p),
TP_ARGS(firstarg, p));

#endif /* _TRACE_SUBSYS_H */

/* This part must be outside protection */
#include <trace/define_trace.h>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/340

Adding ftrace tracepoints (2/2)

▶ Then, emit tracepoint in a .c file using that header file

#include <trace/events/subsys.h>

#define CREATE_TRACE_POINTS
DEFINE_TRACE(subsys_eventname);

void any_func(void)
{

...
trace_subsys_eventname(arg, task);
...

}

▶ See trace/tracepoints for more information

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 223/340

https://www.kernel.org/doc/html/latest/trace/tracepoints.html

Kernelshark

▶ Kernelshark is a Qt-based graphical interface for
processing trace-cmd trace.dat reports.

▶ Can also setup and acquire data using trace-cmd.
▶ Displays CPU and tasks as different colors along

with the recorded events.
▶ Useful when a deep analysis is required for a

specific bug.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 224/340

kernelshark

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 225/340

Practical lab - System wide profiling

Profiling a system from userspace to kernel space
▶ Profiling with ftrace, uprobes and kernelshark
▶ Profiling with perf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/340

System-wide Profiling & Tracing

LTTng

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/340

LTTng

▶ LTTng is an open source tracing framework for
Linux maintained by the EfficiOS company.

▶ LTTng allows understanding the interactions
between the kernel and applications (C, C++,
Java, Python).

• Also expose a /dev/lttng-logger that can be
used from any application.

▶ Tracepoints are associated with a payload (data).
▶ LTTng is focused on low-overhead tracing.
▶ Uses the Common Trace Format (so traces are

readable with other software like babeltrace or
trace-compass)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 228/340

https://www.efficios.com/

Tracepoints with LTTng

▶ LTTng works with a session daemon that receive all events from kernel and
userspace LTTng tracing components.

▶ LTTng can use and trace the following instrumentation points:
• LTTng kernel tracepoints
• kprobes and kretprobes
• Linux kernel system calls
• Linux user space probe
• User space LTTng tracepoints

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 229/340

Creating userspace tracepoints with LTTng

▶ New userspace tracepoints can be defined using LTTng.
▶ Tracepoints have multiple characteristics:

• A provider namespace
• A name identifying the tracepoint
• Parameters of various types (int, char *, etc)
• Fields describing how to display the tracepoint parameters (decimal, hexadecimal,

etc) (see LTTng-ust manpage for types)
▶ Developers must perform multiple operations to use UST tracepoint: write a

tracepoint provider (.h), write a tracepoint package (.c), build the package, call
the tracepoint in the traced application, and finally build the application, linked
with lttng-ust library and the package provider.

▶ LTTng provides the lttng-gen-tp to ease all those steps, allowing to only write a
template (.tp) file.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 230/340

https://lttng.org/man/3/lttng-ust/v2.13/

Defining a LTTng tracepoint (1/2)

▶ Tracepoint template (hello_world-tp.tp):

LTTNG_UST_TRACEPOINT_EVENT(
// Tracepoint provider name
hello_world,

// Tracepoint/event name
my_first_tracepoint,

// Tracepoint arguments (input)
LTTNG_UST_TP_ARGS(

char *, text
),

// Tracepoint/event fields (output)
LTTNG_UST_TP_FIELDS(

lttng_ust_field_string(message, text)
)

)

▶ lttng-gen-tp will take this template file and generate/build all needed files (.h,
.c and .o files)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 231/340

Defining a LTTng tracepoint (2/2)

▶ Build tracepoint provider:

$ lttng-gen-tp hello_world-tp.tp

▶ Tracepoint usage (hello_world.c):

#include <stdio.h>
#include "hello-tp.h"

int main(int argc, char *argv[])
{

lttng_ust_tracepoint(hello_world, my_first_tracepoint, "hi there!");
return 0;

}

▶ Compilation:

$ gcc hello_world.c hello_world-tp.o -llttng-ust -o hello_world

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/340

Using LTTng

$ lttng create my-tracing-session --output=./my_traces
$ lttng list --kernel
$ lttng list --userspace
$ lttng enable-event --userspace hello_world:my_first_tracepoint
$ lttng enable-event --kernel --syscall open,close,write
$ lttng start
$ /* Run your application or do something */
$ lttng destroy
$ babeltrace2 ./my_traces

▶ You can also use trace-compass to display the traces in a GUI

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/340

https://eclipse.dev/tracecompass/trace-compass

Remote tracing with LTTng

▶ LTTng allows to record traces over the network.
▶ Useful for embedded systems with limited storage capabilities.
▶ On the remote computer, run lttng-relayd command

$ lttng-relayd --output=${PWD}/traces

▶ Then on the target, at session creation, use the --set-url

$ lttng create my-session --set-url=net://remote-system

▶ Traces will then be recorded directly on the remote computer.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 234/340

System-wide Profiling & Tracing

eBPF

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 235/340

The ancestor: Berkeley Packet filter

▶ BPF stands for Berkeley Packet Filter and was initially used for network packet
filtering

▶ BPF is implemented and used in Linux to perform Linux Socket Filtering (see
networking/filter)

▶ tcpdump and Wireshark heavily rely on BPF (through libpcap) for packet capture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 236/340

https://www.kernel.org/doc/html/latest/networking/filter.html

BPF in libpcap: setup

▶ tcpdump passes the capture filter string from the user to
libpcap

▶ libpcap translates the capture filter into a binary program
• This program uses the instruction set of an abstract machine

(the “BPF instruction set”)
▶ libpcap sends the binary program to the kernel via the

setsockopt() syscall

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 237/340

BPF in libpcap: capture

▶ The kernel implements the BPF “virtual
machine”

▶ The BPF virtual machine executes the
program for every packet

▶ The program inspects the packet data and
returns a non-zero value if the packet must
be captured

▶ If the return value is non-zero, the packet
is captured in addition to regular packet
processing

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/340

eBPF (1/2)
▶ eBPF is a new framework allowing to run small user programs directly in the

kernel, in a safe and efficient way. It has been added in kernel 3.18 but it is still
evolving and receiving updates frequently.

▶ eBPF programs can capture and expose kernel data to userspace, and also alter
kernel behavior based on some user-defined rules.

▶ eBPF is event-driven: an eBPF program is triggered and executed on a specific
kernel event

▶ A major benefit from eBPF is the possibility to reprogram the kernel behavior,
without performing kernel development:

• no risk of crashing the kernel because of bugs
• faster development cycles to get a new feature ready

Image credits: https://ebpf.io/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 239/340

https://ebpf.io/
https://ebpf.io/

eBPF (2/2)

▶ The most notable eBPF features are:
• A new instruction set, interpreter and verifier
• A wide variety of ”attach” locations, allowing to hook programs almost anywhere in

the kernel
• dedicated data structures called ”maps”, to exchange data between multiple eBPF

programs or between programs and userspace
• A dedicated bpf() syscall to manipulate eBPF programs and data
• plenty of (kernel) helper functions accessible from eBPF programs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 240/340

eBPF program lifecycle

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 241/340

Kernel configuration for eBPF

▶ CONFIG_NET to enable eBPF subsystem
▶ CONFIG_BPF_SYSCALL to enable the bpf() syscall
▶ CONFIG_BPF_JIT to enable JIT on programs and so increase performance
▶ CONFIG_BPF_JIT_ALWAYS_ON to force JIT
▶ CONFIG_BPF_UNPRIV_DEFAULT_OFF=n in development to allow eBPF usage

without root
▶ You may then want to enable more general features to ”unlock” specific hooking

locations:
• CONFIG_KPROBES to allow hooking programs on kprobes
• CONFIG_TRACING to allow hooking programs on kernel tracepoints
• CONFIG_NET_CLS_BPF to write packets classifiers
• CONFIG_CGROUP_BPF to attach programs on cgroups hooks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 242/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NET
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_BPF_SYSCALL
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_BPF_JIT
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_BPF_JIT_ALWAYS_ON
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_BPF_UNPRIV_DEFAULT_OFF
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KPROBES
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_TRACING
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NET_CLS_BPF
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CGROUP_BPF

eBPF ISA

▶ eBPF is a ”virtual” ISA, defining its own set of instructions: load and store
instruction, arithmetic instructions, jump instructions,etc

▶ It also defines a set of 10 64-bits wide registers as well as a calling convention:
• R0: return value from functions and BPF program
• R1, R2, R3, R4, R5: function arguments
• R6, R7, R8, R9: callee-saved registers
• R10: stack pointer

; bpf_printk("Hello %s\n", "World");
0: r1 = 0x0 ll
2: r2 = 0xa
3: r3 = 0x0 ll
5: call 0x6

; return 0;
6: r0 = 0x0
7: exit

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 243/340

The eBPF verifier

▶ When loaded into the kernel, a program must first be validated by the eBPF
verifier.

▶ The verifier is a complex piece of software which checks eBPF programs against a
set of rules to ensure that running those may not compromise the whole kernel.
For example:

• a program must always return and so not contain paths which could make them
”infinite” (e.g: no infinite loop)

• a program must make sure that a pointer is valid before dereferencing it
• a program can not access arbitrary memory addresses, it must use passed context

and available helpers
▶ If a program violates one of the verifier rules, it will be rejected.
▶ Despite the presence of the verifier, you still need to be careful when writing

programs! eBPF programs run with preemption enabled (but CPU migration
disabled), so they can still suffer from concurrency issues

• There are mechanisms and helpers to avoid those issues, like per-CPU maps types.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/340

Program types and attach points
▶ There are different categories of hooks to which a program can be attached:

• an arbitrary kprobe
• a kernel-defined static tracepoint
• a specific perf event
• throughout the network stack
• an arbitrary uprobe
• and a lot more, see bpf_attach_type

▶ A specific attach-point type can only be hooked with a set of specific program
types, see bpf_prog_type and bpf/libbpf/program_types.

▶ The program type then defines the data passed to an eBPF program as input
when it is invoked. For example:

• A BPF_PROG_TYPE_TRACEPOINT program will receive a structure containing all data
returned to userspace by the targeted tracepoint.

• A BPF_PROG_TYPE_SCHED_CLS program (used to implement packets classifiers) will
receive a struct __sk_buff, the kernel representation of a socket buffer.

• You can learn about the context passed to any program type by checking
include/linux/bpf_types.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/340

https://elixir.bootlin.com/linux/latest/ident/bpf_attach_type
https://elixir.bootlin.com/linux/latest/ident/bpf_prog_type
https://www.kernel.org/doc/html/latest/bpf/libbpf/program_types.html
https://elixir.bootlin.com/linux/latest/ident/__sk_buff
https://elixir.bootlin.com/linux/latest/source/include/linux/bpf_types.h

eBPF maps

▶ eBPF programs exchange data with userspace or other programs through maps of
different nature:

• BPF_MAP_TYPE_ARRAY: generic array storage. Can be differentiated per CPU
• BPF_MAP_TYPE_HASH: a storage composed of key-value pairs. Keys can be of

different types: __u32, a device type, an IP address...
• BPF_MAP_TYPE_QUEUE: a FIFO-type queue
• BPF_MAP_TYPE_CGROUP_STORAGE: a specific hash map keyed by a cgroup id. There

are other types of maps specific to other object types (inodes, tasks, sockets, etc)
• etc...

▶ For basic data, it is easier and more efficient to directly use eBPF global variables
(no syscalls involved, contrary to maps)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 246/340

The bpf() syscall

▶ The kernel exposes a bpf() syscall to allow interacting with the eBPF subsystem
▶ The syscall takes a set of subcommands, and depending on the subcommand,

some specific data:
• BPF_PROG_LOAD to load a bpf program
• BPF_MAP_CREATE to allocate maps to be used by a program
• BPF_MAP_LOOKUP_ELEM to search for an entry in a map
• BPF_MAP_UPDATE_ELEM to update an entry in a map
• etc

▶ The syscall works with file descriptors pointing to eBPF resources. Those
resources (program, maps, links, etc) remain valid while there is at least one
program holding a valid file descriptor to it. Those are automatically cleaned once
there are no user left.

▶ For more details, see man 2 bpf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 247/340

https://elixir.bootlin.com/linux/latest/ident/BPF_PROG_LOAD
https://elixir.bootlin.com/linux/latest/ident/BPF_MAP_CREATE
https://elixir.bootlin.com/linux/latest/ident/BPF_MAP_LOOKUP_ELEM
https://elixir.bootlin.com/linux/latest/ident/BPF_MAP_UPDATE_ELEM
https://man7.org/linux/man-pages/man2/bpf.2.html

Writing eBPF programs

▶ eBPF programs can either be written directly in raw eBPF assembly or in higher
level languages (e.g: C or rust), and are compiled using the clang compiler.

▶ The kernel provides some helpers that can be called from an eBPF program:
• bpf_trace_printk Emits a log to the trace buffer
• bpf_map_{lookup,update,delete}_elem Manipulates maps
• bpf_probe_{read,write}[_user] Safely read/write data from/to kernel or

userspace
• bpf_get_current_pid_tgid Returns current Process ID and Thread group ID
• bpf_get_current_uid_gid Returns current User ID and Group ID
• bpf_get_current_comm Returns the name of the executable running in the current

task
• bpf_get_current_task Returns the current struct task_struct
• Many other helpers are available, see man 7 bpf-helpers

▶ Kernel also exposes kfuncs (see bpf/kfuncs), but contrary to bpf-helpers, those
do not belong to the kernel stable interface.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 248/340

https://elixir.bootlin.com/linux/latest/ident/task_struct
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://www.kernel.org/doc/html/latest/bpf/kfuncs.html

Manipulating eBPF program

▶ There are different ways to build, load and manipulate eBPF programs:
• One way is to write an eBPF program, build it with clang, and then load it, attach it

and read data from it with bare bpf() calls in a custom userspace program
• One can also use bpftool on the built ebpf program to manipulate it (load, attach,

read maps, etc), without writing any userspace tool
• Or we can write our own eBPF tool thanks to some intermediate libraries which

handle most of the hard work, like libbpf
• We can also use specialized frameworks like BCC or bpftrace to really get all

operations (bpf program build included) handled

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 249/340

BCC

▶ BPF Compiler Collection (BCC) is (as its name suggests) a
collection of BPF based tools.

▶ BCC provides a large number of ready-to-use tools written
in BPF.

▶ Also provides an interface to write, load and hook BPF
programs more easily than using ”raw” BPF language.

▶ Available on a large number of architectures and
distributions (but not packaged in Buildroot)

• On debian, when installed, all tools are named
<tool>-bpfcc.

▶ BCC requires a kernel version >= 4.1.
▶ BCC evolves quickly, many distributions have old versions:

you may need to compile from the latest sources

Image credits:
https://github.com/iovisor/bcc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 250/340

https://github.com/iovisor/bcc

BCC tools

Image credits: https://www.brendangregg.com/ebpf.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 251/340

https://www.brendangregg.com/ebpf.html

BCC Tools example

▶ profile.py is a CPU profiler allowing to capture stack traces of current
execution. Its output can be used for flamegraph generation:

$ git clone https://github.com/brendangregg/FlameGraph.git
$ profile.py -df -F 99 10 | ./FlameGraph/flamegraph.pl > flamegraph.svg

▶ tcpconnect.py script displays all new TCP connection live

$ tcpconnect
PID COMM IP SADDR DADDR DPORT
220321 ssh 6 ::1 ::1 22
220321 ssh 4 127.0.0.1 127.0.0.1 22
17676 Chrome_Child 6 2a01:cb15:81e4:8100:37cf:d45b:d87d:d97d 2606:50c0:8003::154 443
[...]

▶ And much more to discover at https://github.com/iovisor/bcc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 252/340

https://github.com/iovisor/bcc

Using BCC with python

▶ BCC exposes a bcc module, and especially a BPF class
▶ eBPF programs are written in C and stored either in external files or directly in a

python string.
▶ When an instance of the BPF class is created and fed with the program (either as

string or file), it automatically builds, loads, and possibly attaches the program
▶ There are multiple ways to attach a program:

• By using a proper program name prefix, depending on the targeted attach point
(and so the attach step is performed automatically)

• By explicitly calling the relevant attach method on the BPF instance created earlier

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 253/340

Using BCC with python
▶ Hook with a kprobe on the clone() system call and display "Hello, World!"

each time it is called

#!/usr/bin/env python3

from bcc import BPF

define BPF program
prog = """
int hello(void *ctx) {

bpf_trace_printk("Hello, World!\\n");
return 0;

}
"""
load BPF program
b = BPF(text=prog)
b.attach_kprobe(event=b.get_syscall_fnname("clone"), fn_name="hello")

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 254/340

Practical lab - Custom eBPF tool with BCC

▶ Creating custom tracing tools with BCC
framework

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/340

libbpf

▶ Instead of using a high level framework like BCC, one can use libbpf to build
custom tools with a finer control on every aspect of the program.

▶ libbpf is a C-based library that aims to ease eBPF programming thanks to the
following features:

• userspace APIs to handle open/load/attach/teardown of bpf programs
• userspace APIs to interact with attached programs
• eBPF APIs to ease eBPF program writing

▶ Packaged in many distributions and build systems (e.g.: Buildroot)
▶ Learn more at https://libbpf.readthedocs.io/en/latest/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 256/340

https://libbpf.readthedocs.io/en/latest/

eBPF programming with libbpf (1/2)
my_prog.bpf.c

#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>

#define TASK_COMM_LEN 16
struct {

__uint(type, BPF_MAP_TYPE_ARRAY);
__type(key, __u32);
__type(value, __u64);
__uint(max_entries, 1);

} counter_map SEC(".maps");

struct sched_switch_args {
unsigned long long pad;
char prev_comm[TASK_COMM_LEN];
int prev_pid;
int prev_prio;
long long prev_state;
char next_comm[TASK_COMM_LEN];
int next_pid;
int next_prio;

};

▶ The fields to define in the *_args structure are obtained from the event
description in /sys/kernel/tracing/events (see this example)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 257/340

https://elixir.bootlin.com/linux/v6.12/source/tools/testing/selftests/bpf/progs/test_stacktrace_map.c#L41

eBPF programming with libbpf (2/2)

my_prog.bpf.c

SEC("tracepoint/sched/sched_switch")
int sched_tracer(struct sched_switch_args *ctx)
{

__u32 key = 0;
__u64 *counter;
char *file;

char fmt[] = "Old task was %s, new task is %s\n";
bpf_trace_printk(fmt, sizeof(fmt), ctx->prev_comm, ctx->next_comm);

counter = bpf_map_lookup_elem(&counter_map, &key);
if(counter) {

*counter += 1;
bpf_map_update_elem(&counter_map, &key, counter, 0);

}

return 0;
}

char LICENSE[] SEC("license") = "Dual BSD/GPL";

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/340

Building eBPF programs

▶ An eBPF program written in C can be built into a loadable object thanks to clang:

$ clang -target bpf -O2 -g -c my_prog.bpf.c -o my_prog.bpf.o

• The -g option allows to add debug information as well as BTF information
▶ GCC can be used too with recent versions

• the toolchain can be installed with the gcc-bpf package in Debian/Ubuntu
• it exposes the bpf-unknown-none target

▶ To easily manipulate this program with a userspace program based on libbpf, we
need ”skeleton” APIs, which can be generated with to bpftool

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 259/340

bpftool

▶ bpftool is a command line tool allowing to interact with bpf object files and the
kernel to manipulate bpf programs:

• Load programs into the kernel
• List loaded programs
• Dump program instructions, either as BPF code or JIT code
• List loaded maps
• Dump map content
• Attach programs to hooks (so they can run)
• etc

▶ You may need to mount the bpf filesystem to be able to pin a program (needed to
keep a program loaded after bpftool has finished running):

$ mount -t bpf none /sys/fs/bpf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/340

bpftool

▶ List loaded programs

$ bpftool prog
348: tracepoint name sched_tracer tag 3051de4551f07909 gpl
loaded_at 2024-08-06T15:43:11+0200 uid 0
xlated 376B jited 215B memlock 4096B map_ids 146,148
btf_id 545

▶ Load and attach a program

$ mkdir /sys/fs/bpf/myprog
$ bpftool prog loadall trace_execve.bpf.o /sys/fs/bpf/myprog autoattach

▶ Unload a program

$ rm -rf /sys/fs/bpf/myprog

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 261/340

bpftool
▶ Dump a loaded program

$ bpftool prog dump xlated id 348
int sched_tracer(struct sched_switch_args * ctx):
; int sched_tracer(struct sched_switch_args *ctx)

0: (bf) r4 = r1
1: (b7) r1 = 0

; __u32 key = 0;
2: (63) *(u32 *)(r10 -4) = r1

; char fmt[] = "Old task was %s, new task is %s\n";
3: (73) *(u8 *)(r10 -8) = r1
4: (18) r1 = 0xa7325207369206b
6: (7b) *(u64 *)(r10 -16) = r1
7: (18) r1 = 0x7361742077656e20

[...]

▶ Dump eBPF program logs

$ bpftool prog tracelog
kworker/u80:0-11 [013] d..41 1796.003605: bpf_trace_printk: Old task was kworker/u80:0, new task is swapper/13
<idle>-0 [013] d..41 1796.003609: bpf_trace_printk: Old task was swapper/13, new task is kworker/u80:0
sudo-18640 [010] d..41 1796.003613: bpf_trace_printk: Old task was sudo, new task is swapper/10
<idle>-0 [010] d..41 1796.003617: bpf_trace_printk: Old task was swapper/10, new task is sudo
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 262/340

bpftool
▶ List created maps

$ bpftool map
80: array name counter_map flags 0x0

key 4B value 8B max_entries 1 memlock 256B
btf_id 421

82: array name .rodata.str1.1 flags 0x80
key 4B value 33B max_entries 1 memlock 288B
frozen

96: array name libbpf_global flags 0x0
key 4B value 32B max_entries 1 memlock 280B

[...]

▶ Show a map content

$ sudo bpftool map dump id 80
[{

"key": 0,
"value": 4877514
}

]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 263/340

bpftool

▶ Generate libbpf APIs to manipulate a program

$ bpftool gen skeleton trace_sched_switch.bpf.o name trace_sched_switch \
> trace_sched_switch.skel.h

▶ We can then write our userspace program and benefit from high level APIs to
manipulate our eBPF program:

• instantiation of a global context object which will have references to all of our
programs, maps, links, etc

• loading/attaching/unloading of our programs
• eBPF program directly embedded in the generated header as a byte array

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 264/340

Userspace code with libbpf

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include "trace_sched_switch.skel.h"

int main(int argc, char *argv[])
{

struct trace_sched_switch *skel;
int key = 0;
long counter = 0;

skel = trace_sched_switch__open_and_load();
if(!skel)

exit(EXIT_FAILURE);
if (trace_sched_switch__attach(skel)) {

trace_sched_switch__destroy(skel);
exit(EXIT_FAILURE);

}

while(true) {
bpf_map__lookup_elem(skel->maps.counter_map, &key, sizeof(key), &counter, sizeof(counter), 0);
fprintf(stderr, "Scheduling switch count: %d\n", counter);
sleep(1);

}

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/340

eBPF programs portability (1/2)
▶ Kernel internals, contrary to userspace APIs, do not expose stable APIs. This

means that an eBPF program manipulating some kernel data may not work with
another kernel version

▶ The CO-RE (Compile Once - Run Everywhere) approach aims to solve this issue
and make programs portable between kernel versions. It relies on the following
features:

• your kernel must be built with CONFIG_DEBUG_INFO_BTF=y to have BTF data
embedded. BTF is a format similar to dwarf which encodes data layout and
functions signatures in an efficient way.

• your eBPF compiler must be able to emit BTF relocations (both clang and GCC are
capable of this on recent versions, with the -g argument)

• you need a BPF loader capable of processing BPF programs based on BTF data and
adjust accordingly data accesses: libbpf is the de-facto standard bpf loader

• you then need eBPF APIs to read/write to CO-RE relocatable variables. libbpf
provides such helpers, like bpf_core_read

▶ To learn more, take a look at Andrii Nakryiko’s CO-RE guide
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 266/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_INFO_BTF
https://nakryiko.com/posts/bpf-core-reference-guide/

eBPF programs portability (2/2)

▶ Despite CO-RE, you may still face different constraints on different kernel
versions, because of major features introduction or change, since the eBPF
subsystem keeps receiving frequent updates:

• eBPF tail calls (which allow a program to call a function) have been added in
version 4.2, and allow to call another program only since version 5.10

• eBPF spin locks have been added in version 5.1 to prevent concurrent accesses to
maps shared between CPUs.

• Different attach types keep being added, but possibly on different kernel versions
when it depends on the architecture: fentry/fexit attach points have been added in
kernel 5.5 for x86 but in 6.0 for arm32.

• Any kind of loop (even bounded) was forbidden until version 5.3
• CAP_BPF capability, allowing a process to perform eBPF tasks, has been added in

version 5.8

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 267/340

eBPF for tracing/profiling

▶ eBPF is a very powerful framework to spy on kernel internals: thanks to the wide
variety of attach point, you can expose almost any kernel code path and data.

▶ In the mean time, eBPF programs remain isolated from kernel code, which makes
it safe (compared to kernel development) and easy to use.

▶ Thanks to the in-kernel interpreter and optimizations like JIT compilation, eBPF
is very well suited for tracing or profiling with low overhead, even in production
environments, while being very flexible.

▶ This is why eBPF adoption level keeps growing for debugging, tracing and
profiling in the Linux ecosystem. As a few examples, we find eBPF usage in:

• tracing frameworks like BCC and bpftrace
• network infrastructure components, like Cilium or Calico
• network packet tracers, like pwru or dropwatch
• And many more, check ebpf.io for more examples

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 268/340

https://github.com/iovisor/bcc
https://github.com/bpftrace/bpftrace
https://github.com/cilium/cilium
https://github.com/projectcalico/calico
https://github.com/cilium/pwru
https://github.com/feiskyer/dropwatch
https://ebpf.io/applications/

eBPF: resources

▶ libbpf-bootstrap: https://github.com/libbpf/libbpf-bootstrap
▶ A Beginner’s Guide to eBPF Programming - Liz Rice, 2020

• Video: https://www.youtube.com/watch?v=lrSExTfS-iQ
• Resources: https://github.com/lizrice/ebpf-beginners

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 269/340

https://github.com/libbpf/libbpf-bootstrap
https://www.youtube.com/watch?v=lrSExTfS-iQ
https://github.com/lizrice/ebpf-beginners

Practical lab - Advanced eBPF development

Porting our custom tracing tool for embedded use
case
▶ Converting a BCC script to libbpf
▶ Bringing advanced features to the tool

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/340

System-wide Profiling & Tracing

Choosing the right tool

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 271/340

Choosing the right tool

▶ Before starting to profile or trace, one should know which type of tool to use.
▶ This choice is guided by the level of profiling
▶ Often start by analyzing/optimizing the application level using application

tracing/profiling tools (valgrind, perf, etc).
▶ Then analyze user space + kernel performance
▶ Finally, trace or profile the whole system if the performance problems happens

only when running under a loaded system.
• For ”constant” load problems, snapshot tools works fine.
• For sporadic problems, record traces and analyze them.

▶ If you happen to have a complex setup that you often have to bring up, it is likely
a sign that you want to ease this setup with some custom tooling: scripting,
custom traces, eBPF, etc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 272/340

Kernel Debugging

Kernel Debugging

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 273/340

Kernel Debugging

Preventing bugs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 274/340

Static code analysis

▶ Static analysis can be run with the sparse tool
▶ sparse works with annotation and can detect various errors at compile time

• Locking issues (unbalanced locking)
• Address space issues, such as accessing user space pointer directly

▶ Analysis can be run using make C=2 to run only on files that are recompiled
▶ Or with make C=1 to run on all files
▶ Example of an unbalanced locking scheme:

rzn1_a5psw.c:81:13: warning: context imbalance in 'a5psw_reg_rmw' - wrong count
at exit

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 275/340

Good practices in kernel development (1/2)

▶ When writing driver code, never expect the user to provide correct values. Always
check these values.

▶ Use the WARN_ON() macro if you want to display a stacktrace when a specific
condition did happen.

• dump_stack() can also be used during debugging to show the current call stack.

static bool check_flags(u32 flags)
{
if (WARN_ON(flags & STATE_INVALID))

return -EINVAL;
return 0;

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 276/340

https://elixir.bootlin.com/linux/latest/ident/WARN_ON
https://elixir.bootlin.com/linux/latest/ident/dump_stack

Good practices in kernel development (2/2)

▶ If the values can be checked at compile time (configuration input, sizeof,
structure fields), use the BUILD_BUG_ON() macro to ensure the condition is true.

BUILD_BUG_ON(sizeof(ctx->__reserved) != sizeof(reserved));

▶ If during compilation you have some warnings about unused variables/parameters,
they must be fixed.

▶ Apply checkpatch.pl --strict when possible which might find some potential
problems in your code.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 277/340

https://elixir.bootlin.com/linux/latest/ident/BUILD_BUG_ON

Kernel Debugging

Linux Kernel Debugging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 278/340

Linux Kernel Debugging

▶ The Linux Kernel features multiple tools to ease kernel debugging:
• A dedicated logging framework
• A standard way to dump low level crash messages
• Multiple runtime checkers to check for different kind of issues: memory issues,

locking mistakes, undefined behaviors, etc.
• Interactive or post-mortem debugging

▶ Many of those features need to be explicitely enabled in the kernel menuconfig,
those are grouped in the Kernel hacking -> Kernel debugging menuconfig
entry.

• CONFIG_DEBUG_KERNEL should be set to ”y” to enable other debug options.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 279/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_KERNEL

Kernel Debugging

Debugging using messages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 280/340

Debugging using messages (1/3)

Three APIs are available
▶ The old printk(), no longer recommended for new debugging messages
▶ The pr_*() family of functions: pr_emerg(), pr_alert(), pr_crit(), pr_err(),

pr_warn(), pr_notice(), pr_info(), pr_cont()
and the special pr_debug() (see next pages)

• Defined in include/linux/printk.h
• They take a classic format string with arguments
• Example:

pr_info("Booting CPU %d\n", cpu);
• Here’s what you get in the kernel log:

[202.350064] Booting CPU 1

▶ print_hex_dump_debug(): useful to dump a buffer with hexdump like display

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 281/340

https://elixir.bootlin.com/linux/latest/ident/printk
https://elixir.bootlin.com/linux/latest/ident/pr_emerg
https://elixir.bootlin.com/linux/latest/ident/pr_alert
https://elixir.bootlin.com/linux/latest/ident/pr_crit
https://elixir.bootlin.com/linux/latest/ident/pr_err
https://elixir.bootlin.com/linux/latest/ident/pr_warn
https://elixir.bootlin.com/linux/latest/ident/pr_notice
https://elixir.bootlin.com/linux/latest/ident/pr_info
https://elixir.bootlin.com/linux/latest/ident/pr_cont
https://elixir.bootlin.com/linux/latest/ident/pr_debug
https://elixir.bootlin.com/linux/latest/source/include/linux/printk.h
https://elixir.bootlin.com/linux/latest/ident/print_hex_dump_debug

Debugging using messages (2/3)

▶ The dev_*() family of functions: dev_emerg(), dev_alert(), dev_crit(),
dev_err(), dev_warn(), dev_notice(), dev_info()
and the special dev_dbg() (see next page)

• They take a pointer to struct device as first argument, and then a format string
with arguments

• Defined in include/linux/dev_printk.h
• To be used in drivers integrated with the Linux device model
• Example:

dev_info(&pdev->dev, "in probe\n");
• Here’s what you get in the kernel log:

[25.878382] serial 48024000.serial: in probe
[25.884873] serial 481a8000.serial: in probe

▶ *_ratelimited() version exists which limits the amount of print if called too
much based on /proc/sys/kernel/printk_ratelimit{_burst} values

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 282/340

https://elixir.bootlin.com/linux/latest/ident/dev_emerg
https://elixir.bootlin.com/linux/latest/ident/dev_alert
https://elixir.bootlin.com/linux/latest/ident/dev_crit
https://elixir.bootlin.com/linux/latest/ident/dev_err
https://elixir.bootlin.com/linux/latest/ident/dev_warn
https://elixir.bootlin.com/linux/latest/ident/dev_notice
https://elixir.bootlin.com/linux/latest/ident/dev_info
https://elixir.bootlin.com/linux/latest/ident/dev_dbg
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/source/include/linux/dev_printk.h

Debugging using messages (3/3)

▶ The kernel defines many more format specifiers than the standard printf()
existing ones.

• %p: Display the hashed value of pointer by default.
• %px: Always display the address of a pointer (use carefully on non-sensitive

addresses).
• %pK: Display hashed pointer value, zeros or the pointer address depending on

kptr_restrict sysctl value.
• %pOF: Device-tree node format specifier.
• %pr: Resource structure format specifier.
• %pa: Physical address display (work on all architectures 32/64 bits)
• %pe: Error pointer (displays the string corresponding to the error number)

▶ /proc/sys/kernel/kptr_restrict should be set to 1 in order to display pointers
using %pK

▶ See core-api/printk-formats for an exhaustive list of supported format
specifiers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 283/340

https://www.kernel.org/doc/html/latest/core-api/printk-formats.html

pr_debug() and dev_dbg()

▶ When the driver is compiled with DEBUG defined, all these messages are compiled
and printed at the debug level. DEBUG can be defined by #define DEBUG at the
beginning of the driver, or using ccflags-$(CONFIG_DRIVER) += -DDEBUG in the
Makefile

▶ When the kernel is compiled with CONFIG_DYNAMIC_DEBUG, then these messages
can dynamically be enabled on a per-file, per-module or per-message basis, by
writing commands to /proc/dynamic_debug/control. Note that messages are
not enabled by default.

• Details in admin-guide/dynamic-debug-howto
• Very powerful feature to only get the debug messages you’re interested in.

▶ When neither DEBUG nor CONFIG_DYNAMIC_DEBUG are used, these messages are not
compiled in.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 284/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DYNAMIC_DEBUG
https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DYNAMIC_DEBUG

pr_debug() and dev_dbg() usage

▶ Debug prints can be enabled using the /proc/dynamic_debug/control file.
• cat /proc/dynamic_debug/control will display all lines that can be enabled in the

kernel
• Example: init/main.c:1427 [main]run_init_process =p " \%s\012"

▶ A syntax allows to enable individual print using lines, files or modules
• echo "file drivers/pinctrl/core.c +p" > /proc/dynamic_debug/control will

enable all debug prints in drivers/pinctrl/core.c
• echo "module pciehp +p" > /proc/dynamic_debug/control will enable the

debug print located in the pciehp module
• echo "file init/main.c line 1427 +p" > /proc/dynamic_debug/control will

enable the debug print located at line 1247 of file init/main.c
• Replace +p with -p to disable the debug print

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 285/340

Debug logs troubleshooting
▶ When using dynamic debug, make sure that your debug call is enabled: it must be

visible in control file in debugfs and be activated (=p)
▶ Is your log output only in the kernel log buffer?

• You can see it thanks to dmesg
• You can lower the loglevel to output it to the console directly
• You can also set ignore_loglevel in the kernel command line to force all kernel

logs to console
▶ If you are working on an out-of-tree module, you may prefer to define DEBUG in

your module source or Makefile instead of using dynamic debug
▶ If configuration is done through the kernel command line, is it properly

interpreted?
• Starting from 5.14, kernel will let you know about faulty command line:

Unknown kernel command line parameters laglevel, will be passed to
user space.

• You may need to take care of special characters escaping (e.g: quotes)
▶ Be aware that a few subsystems bring their own logging infrastructure, with

specific configuration/controls, eg: drm.debug=0x1ff
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 286/340

Kernel early debug

▶ When booting, the kernel sometimes crashes even before displaying the system
messages

▶ On ARM, if your kernel doesn’t boot or hangs without any message, you can
activate early debugging options

• CONFIG_DEBUG_LL=y to enable ARM early serial output capabilities
• CONFIG_EARLYPRINTK=y will allow printk to output the prints earlier

▶ earlyprintk command line parameter should be given to enable early printk
output

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 287/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_LL
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EARLYPRINTK

Kernel Debugging

Kernel crashes and oops

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 288/340

Kernel crashes

▶ The kernel is not immune to crash, many errors can be done and lead to crashes
• Memory access error (NULL pointer, out of bounds access, etc)
• Voluntarily panicking on error detection (using panic())
• Kernel incorrect execution mode (sleeping in atomic context)
• Deadlocks detected by the kernel (Soft lockup/locking problem)

▶ On error, the kernel will display a message on the console that is called a ”Kernel
oops”

Icon by Peter van Driel, TheNounProject.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 289/340

https://elixir.bootlin.com/linux/latest/ident/panic

Kernel oops (1/2)

▶ The content of this message depends on the architecture that is used.
▶ Almost all architectures display at least the following information:

• CPU state when the oops happened
• Registers content with potential interpretation
• Backtrace of function calls that led to the crash
• Stack content (last X bytes)

▶ Depending on the architecture, the crash location can be identified using the
content of the PC registers (sometimes named IP, EIP, etc).

▶ To have a meaningful backtrace with symbol names use CONFIG_KALLSYMS=y
which will embed the symbol names in the kernel image.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 290/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KALLSYMS

Kernel oops (2/2)

▶ Symbols are displayed in the backtrace using the following format:
• <symbol_name>+<hex_offset>/<symbol_size>

▶ If the oops is not critical (taken in process context), then the kernel will kill
process and continue its execution

• The kernel stability might be compromised!
▶ Tasks that are taking too much time to execute and that are hung can also

generate an oops (CONFIG_DETECT_HUNG_TASK)
▶ If KGDB support is present and configured, on oops, the kernel will switch to

KGDB mode.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 291/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DETECT_HUNG_TASK

Oops example (1/2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 292/340

Oops example (2/2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 293/340

Kernel oops debugging: addr2line

▶ In order to convert addresses/symbol name from this display to source code lines,
one can use addr2line

• addr2line -e vmlinux <address>

▶ GNU binutils >= 2.39 takes the symbol+offset notation too:
• addr2line -e vmlinux <symbol_name>+<off>

▶ The symbol+offset notation can be used with older binutils versions via the
faddr2line script in the kernel sources:

• scripts/faddr2line vmlinux <symbol_name>+<off>

▶ The kernel must have been compiled with CONFIG_DEBUG_INFO=y to embed the
debugging information into the vmlinux file.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 294/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_INFO

Kernel oops debugging: decode_stacktrace.sh

▶ addr2line decoding of oopses can be automated using decode_stacktrace.sh
script which is provided in the kernel sources.

▶ This script will translate all symbol names/addresses to the matching file/lines
and will display the assembly code where the crash did trigger.

▶ ./scripts/decode_stacktrace.sh vmlinux [linux_source_path/] \
< oops_report.txt > decoded_oops.txt

▶ NOTE: CROSS_COMPILE and ARCH env var should be set to obtain the correct
disassembly dump.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 295/340

Panic and oops behavior configuration

▶ Sometimes, crash might be so bad that the kernel will panic and halt its execution
entirely by stopping scheduling application and staying in a busy loop.

▶ Automatic reboot on panic can be enabled via CONFIG_PANIC_TIMEOUT
• 0: never reboots
• Negative value: reboot immediately
• Positive value: seconds to wait before rebooting

▶ OOPS can be configured to always panic:
• at boot time, adding oops=panic to the command line
• at build time, setting CONFIG_PANIC_ON_OOPS=y

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 296/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PANIC_TIMEOUT
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PANIC_ON_OOPS

Kernel Debugging

Built-in kernel self tests

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 297/340

Kernel memory issue debugging

▶ The same kind of memory issues that can happen in user space can be triggered
while writing kernel code

• Out of bounds accesses
• Use-after-free errors (dereferencing a pointer after kfree())
• Out of memory due to missing kfree()

▶ Various tools are present in the kernel to catch these issues
• KASAN to find use-after-free and out-of-bound memory accesses
• KFENCE to find use-after-free and out-of-bound in production systems
• Kmemleak to find memory leak due to missing free of memory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 298/340

KASAN

▶ Kernel Address Space Sanitizer
▶ Allows to find use-after-free and out-of-bounds memory accesses
▶ Uses GCC to instrument the kernel at compile-time
▶ Supported by almost all architectures (ARM, ARM64, PowerPC, RISC-V, S390,

Xtensa and X86)
▶ Needs to be enabled at kernel configuration with CONFIG_KASAN
▶ Can then be enabled for files by modifying Makefile

• KASAN_SANITIZE_file.o := y for a specific file
• KASAN_SANITIZE := y for all files in the Makefile folder

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 299/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KASAN

Kmemleak

▶ Kmemleak allows to find memory leaks for dynamically allocated objects with
kmalloc()

• Works by scanning the memory to detect if allocated address are not referenced
anymore anywhere (large overhead).

▶ Once enabled with CONFIG_DEBUG_KMEMLEAK, kmemleak control files will be visible
in debugfs

▶ Memory leaks is scanned every 10 minutes
• can be disabled via CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN

▶ An immediate scan can be triggered using
• # echo scan > /sys/kernel/debug/kmemleak

▶ Results are displayed in debugfs
• # cat /sys/kernel/debug/kmemleak

▶ See dev-tools/kmemleak for more information

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 300/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_KMEMLEAK
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html

Kmemleak report

cat /sys/kernel/debug/kmemleak
unreferenced object 0x82d43100 (size 64):
comm "insmod", pid 140, jiffies 4294943424 (age 270.420s)
hex dump (first 32 bytes):

b4 bb e1 8f c8 a4 e1 8f 8c ce e1 8f 88 c6 e1 8f
10 a5 e1 8f 18 e2 e1 8f ac c6 e1 8f 0c c1 e1 8f

backtrace:
[<c31f5b59>] slab_post_alloc_hook+0xa8/0x1b8
[<c8200adb>] kmem_cache_alloc_trace+0xb8/0x104
[<1836406b>] 0x7f005038
[<89fff56d>] do_one_initcall+0x80/0x1a8
[<31d908e3>] do_init_module+0x50/0x210
[<2658dd55>] load_module+0x208c/0x211c
[<e1d48f15>] sys_finit_module+0xe4/0xf4
[<1de12529>] ret_fast_syscall+0x0/0x54
[<7ee81f34>] 0x7eca8c80

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/340

UBSAN

▶ UBSAN is a runtime checker for code with undefined behavior
• Shifting with a value larger than the type
• Overflow of integers (signed and unsigned)
• Misaligned pointer access
• Out of bound access to static arrays
• https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

▶ It uses compile-time instrumentation to insert checks that will be executed at
runtime

▶ Must be enabled using CONFIG_UBSAN=y
▶ Then, can be enabled for specific files by modifying Makefile

• UBSAN_SANITIZE_file.o := y for a specific file
• UBSAN_SANITIZE := y for all files in the Makefile folder

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 302/340

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_UBSAN

UBSAN: report example

▶ Report for an undefined behavior due to a shift with a value > 32.

UBSAN: Undefined behaviour in mm/page_alloc.c:3117:19
shift exponent 51 is too large for 32-bit type 'int'
CPU: 0 PID: 6520 Comm: syz-executor1 Not tainted 4.19.0-rc2 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0xd2/0x148 lib/dump_stack.c:113
ubsan_epilogue+0x12/0x94 lib/ubsan.c:159
__ubsan_handle_shift_out_of_bounds+0x2b6/0x30b lib/ubsan.c:425
...
RIP: 0033:0x4497b9
Code: e8 8c 9f 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48
89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d
01 f0 ff ff 0f 83 9b 6b fc ff c3 66 2e 0f 1f 84 00 00 00 00
RSP: 002b:00007fb5ef0e2c68 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fb5ef0e36cc RCX: 00000000004497b9
RDX: 0000000020000040 RSI: 0000000000000258 RDI: 0000000000000014
RBP: 000000000071bea0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00000000ffffffff
R13: 0000000000005490 R14: 00000000006ed530 R15: 00007fb5ef0e3700

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 303/340

Debugging locking

▶ Lock debugging: prove locking correctness
• CONFIG_PROVE_LOCKING
• Adds instrumentation to kernel locking code
• Detect violations of locking rules during system life, such as:

Locks acquired in different order (keeps track of locking sequences and compares
them).
Spinlocks acquired in interrupt handlers and also in process context when interrupts
are enabled.

• Not suitable for production systems but acceptable overhead in development.
• See locking/lockdep-design for details

▶ CONFIG_DEBUG_ATOMIC_SLEEP allows to detect code that incorrectly sleeps in
atomic section (while holding lock typically).

• Warning displayed in dmesg in case of such violation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 304/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PROVE_LOCKING
https://www.kernel.org/doc/html/latest/locking/lockdep-design.html
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_ATOMIC_SLEEP

Concurrency issues

▶ Kernel Concurrency SANitizer framework
▶ CONFIG_KCSAN, introduced in Linux 5.8.
▶ Dynamic race detector relying on compile time instrumentation.
▶ Can find concurrency issues (mainly data races) in your system.
▶ See dev-tools/kcsan and https://lwn.net/Articles/816850/ for details.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 305/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KCSAN
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://lwn.net/Articles/816850/

Practical lab - Kernel debugging

Debugging kernel programming mistakes with
integrated frameworks
▶ Debug locking issues using lockdep
▶ Spot function calls in invalid context
▶ Use kmemleak to detect memory leaks on the

system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 306/340

Kernel Debugging

The Magic SysRq

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 307/340

The Magic SysRq
Functionality provided by serial drivers
▶ Allows to run multiple debug/rescue commands even when the kernel seems to be

in deep trouble
• On embedded: in the console, send a break character

(Picocom: press [Ctrl] + a followed by [Ctrl] + \), then press <character>
• By echoing <character> in /proc/sysrq-trigger

▶ Example commands:
• h: show available commands
• s: sync all mounted filesystems
• b: reboot the system
• w: shows the kernel stack of all sleeping processes
• t: shows the kernel stack of all running processes
• g: enter kgdb mode
• z: flush trace buffer
• c: triggers a crash (kernel panic)
• You can even register your own!

▶ Detailed in admin-guide/sysrq
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 308/340

https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html

Kernel Debugging

KGDB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 309/340

kgdb - A kernel debugger

▶ CONFIG_KGDB in Kernel hacking.
▶ The execution of the kernel is fully controlled by gdb from another machine,

connected through a serial line.
▶ Can do almost everything, including inserting breakpoints in interrupt handlers.
▶ Feature supported for the most popular CPU architectures
▶ CONFIG_GDB_SCRIPTS allows to build GDB python scripts that are provided by the

kernel.
• See dev-tools/gdb-kernel-debugging for more information

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 310/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KGDB
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_GDB_SCRIPTS
https://www.kernel.org/doc/html/next/dev-tools/kgdb.html

kgdb kernel config

▶ CONFIG_DEBUG_KERNEL=y to make KGDB support visible
▶ CONFIG_KGDB=y to enable KGDB support
▶ CONFIG_DEBUG_INFO=y to compile the kernel with debug info (-g)
▶ CONFIG_FRAME_POINTER=y to have more reliable stacktraces
▶ CONFIG_KGDB_SERIAL_CONSOLE=y to enable KGDB support over serial
▶ CONFIG_GDB_SCRIPTS=y to enable kernel GDB python scripts
▶ CONFIG_RANDOMIZE_BASE=n to disable KASLR
▶ CONFIG_WATCHDOG=n to disable watchdog
▶ CONFIG_MAGIC_SYSRQ=y to enable Magic SysReq support
▶ CONFIG_STRICT_KERNEL_RWX=n to disable memory protection on code section,

thus allowing to put breakpoints

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 311/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_KERNEL
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KGDB
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_INFO
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_FRAME_POINTER
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KGDB_SERIAL_CONSOLE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_GDB_SCRIPTS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_RANDOMIZE_BASE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_WATCHDOG
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_MAGIC_SYSRQ
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_STRICT_KERNEL_RWX

kgdb pitfalls

▶ KASLR should be disabled to avoid confusing gdb with randomized kernel
addresses

• Disable kaslr mode using nokaslr command line parameter if enabled in your kernel.
▶ Disable the platform watchdog to avoid rebooting while debugging.

• When interrupted by KGDB, all interrupts are disabled thus, the watchdog is not
serviced.

• Sometimes, watchdog is enabled by upper boot levels. Make sure to disable the
watchdog there too.

▶ Can not interrupt kernel execution from gdb using interrupt command or
Ctrl + C.

▶ Not possible to break everywhere (see CONFIG_KGDB_HONOUR_BLOCKLIST).
▶ Need a console driver with polling support.
▶ Some architecture lacks functionalities (No watchpoints on arm32 for instance)

and some instabilities might happen!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 312/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KGDB_HONOUR_BLOCKLIST

Using kgdb (1/2)

▶ Details available in the kernel documentation: dev-tools/kgdb
▶ You must include a kgdb I/O driver. One of them is kgdb over serial console

(kgdboc: kgdb over console, enabled by CONFIG_KGDB_SERIAL_CONSOLE)
▶ Configure kgdboc at boot time by passing to the kernel:

• kgdboc=<tty-device>,<bauds>.
• For example: kgdboc=ttyS0,115200

▶ Or at runtime using sysfs:
• echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc
• If the console does not have polling support, this command will yield an error.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 313/340

https://www.kernel.org/doc/html/latest/dev-tools/kgdb.html
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KGDB_SERIAL_CONSOLE

Using kgdb (2/2)

▶ Then also pass kgdbwait to the kernel: it makes kgdb wait for a debugger
connection.

▶ Boot your kernel, and when the console is initialized, interrupt the kernel with a
break character and then g in the serial console (see our Magic SysRq
explanations).

▶ On your workstation, start gdb as follows:
• arm-linux-gdb ./vmlinux
• (gdb) set remotebaud 115200
• (gdb) target remote /dev/ttyS0

▶ Once connected, you can debug a kernel the way you would debug an application
program.

▶ On GDB side, the first threads represent the CPU context (ShadowCPU<x>),
then all the other threads represents a task.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 314/340

Kernel GDB scripts

▶ CONFIG_GDB_SCRIPTS allows to build a set of python script which ease the kernel
debugging by adding new commands and functions.

▶ When using gdb vmlinux, the scripts present in vmlinux-gdb.py file at the root of
build dir will be loaded automatically.

• lx-symbols: (Re)load symbols for vmlinux and modules
• lx-dmesg: display kernel dmesg
• lx-lsmod: display loaded modules
• lx-device-{bus|class|tree}: display device bus, classes and tree
• lx-ps: ps like view of tasks
• $lx_current() contains the current task_struct
• $lx_per_cpu(var, cpu) returns a per-cpu variable
• apropos lx To display all available functions.

▶ dev-tools/gdb-kernel-debugging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 315/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_GDB_SCRIPTS
https://www.kernel.org/doc/html/next/dev-tools/gdb-kernel-debugging.html

KDB

▶ CONFIG_KGDB_KDB includes a kgdb frontend name ”KDB”
▶ This frontend exposes a debug prompt on the serial console which allows

debugging the kernel without the need for an external gdb.
▶ KDB can be entered using the same mechanism used for entering kgdb mode.
▶ KDB and KGDB can coexist and be used at the same time.

• Use the kgdb command in KDB to enter kgdb mode.
• Send a maintenance packet from gdb using maintenance packet 3 to switch from

kgdb to KDB mode.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KGDB_KDB

KDB commands

▶ KDB does not consume gdb commands but a set of dedicated KDB commands:
• go: Continue execution
• bt: Display backtrace
• env: Show environment variables
• ps: List all tasks
• pid: Switch to another task
• md/mm: Read/write memory
• lsmod: List loaded modules

▶ To check all available commands, you can refer to the help command output, or
check maintab in kernel source code

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 317/340

https://elixir.bootlin.com/linux/latest/ident/maintab

kdmx

▶ When the system has only a single serial port, it is not possible to use both KGDB
and the serial line as an output terminal since only one program can access that
port.

▶ Fortunately, the kdmx tool allows to use both KGDB and serial output by splitting
GDB messages and standard console from a single port to 2 slave pty
(/dev/pts/x)

▶ https://git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git
• Located in the subdirectory kdmx

$ kdmx -n -d -p/dev/ttyACM0 -b115200
serial port: /dev/ttyACM0
Initalizing the serial port to 115200 8n1
/dev/pts/6 is slave pty for terminal emulator
/dev/pts/7 is slave pty for gdb

Use <ctrl>C to terminate program

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 318/340

Going further with KGDB

▶ Good presentation from Doug Anderson with a lot of demos and explanations
• Video: https://www.youtube.com/watch?v=HBOwoSyRmys
• Slides: https://elinux.org/images/1/1b/ELC19_Serial_kdb_kgdb.pdf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 319/340

https://www.youtube.com/watch?v=HBOwoSyRmys
https://elinux.org/images/1/1b/ELC19_Serial_kdb_kgdb.pdf

Kernel Debugging

crash

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 320/340

crash

▶ crash is a CLI tool allowing to investigate kernel (dead or alive!)
• Uses /dev/mem or /proc/kcore on live systems
• Requires CONFIG_STRICT_DEVMEM=n

▶ Can use a coredump generated using kdump, kvmdump, etc.
▶ Based on gdb and provides many specific commands to inspect the kernel state.

• Stack traces, dmesg (log), memory maps of the processes, irqs, virtual memory
areas, etc.

▶ Allows examining all the tasks that are running on the system.
▶ Hosted at https://github.com/crash-utility/crash

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 321/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_STRICT_DEVMEM
https://github.com/crash-utility/crash

crash example

$ crash vmlinux vmcore
[...]

TASKS: 75
NODENAME: buildroot

RELEASE: 5.13.0
VERSION: #1 SMP PREEMPT Tue Nov 15 14:42:25 CET 2022
MACHINE: armv7l (unknown Mhz)
MEMORY: 512 MB

PANIC: "Unable to handle kernel NULL pointer dereference at virtual address 00000070"
PID: 127

COMMAND: "watchdog"
TASK: c3f163c0 [THREAD_INFO: c3f00000]
CPU: 1

STATE: TASK_RUNNING (PANIC)

crash> mach
MACHINE TYPE: armv7l
MEMORY SIZE: 512 MB

CPUS: 1
PROCESSOR SPEED: (unknown)

HZ: 100
PAGE SIZE: 4096

KERNEL VIRTUAL BASE: c0000000
KERNEL MODULES BASE: bf000000
KERNEL VMALLOC BASE: e0000000
KERNEL STACK SIZE: 8192

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 322/340

Practical lab - Kernel debugging

Debugging kernel crashes on a live kernel
▶ Analyze an OOPS message
▶ Debug a crash with KGDB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 323/340

Kernel Debugging

Post-mortem analysis

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 324/340

Kernel crash post-mortem analysis

▶ Sometimes, accessing the crashed system is not possible or the system can’t stay
offline while waiting to be debugged

▶ Kernel can generate crash dumps (a vmcore file) to a remote location, allowing to
quickly restart the system while still be able to perform post-mortem analysis with
GDB.

▶ This feature relies on kexec and kdump which will boot another kernel as soon as
the crash occurs right after dumping the vmcore file.

• The vmcore file can be saved on local storage, via SSH, FTP etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 325/340

kexec & kdump (1/2)

▶ On panic, the kernel kexec support will execute a ”dump-capture kernel” directly
from the kernel that crashed

• Most of the time, a specific dump-capture kernel is compiled for that task (minimal
config with specific initramfs/initrd)

▶ kexec system works by saving some RAM for the kdump kernel execution at
startup

• crashkernel parameter should be set to specify the crash kernel dedicated physical
memory region

▶ kexec-tools are then used to load dump-capture kernel into this memory zone
using the kexec command

• Internally uses the kexec_load system call man 2 kexec_load

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 326/340

https://man7.org/linux/man-pages/man2/kexec_load.2.html

kexec & kdump (2/2)

▶ Finally, on panic, the kernel will reboot into the ”dump-capture” kernel allowing
the user to dump the kernel coredump (/proc/vmcore) onto whatever media

▶ Additional command line options depends on the architecture
▶ See admin-guide/kdump/kdump for more comprehensive explanations on how to

setup the kdump kernel with kexec.
▶ Additional user-space services and tools allow to automatically collect and dump

the vmcore file to a remote location.
• See kdump systemd service and the makedumpfile tool which can also compress the

vmcore file into a smaller file (Only for x86, PPC, IA64, S390).
• https://github.com/makedumpfile/makedumpfile

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 327/340

https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html
https://github.com/makedumpfile/makedumpfile

kdump

Image credits: Wikipedia

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 328/340

kexec config and setup

▶ On the standard kernel:
• CONFIG_KEXEC=y to enable KEXEC support
• kexec-tools to provide the kexec command
• A kernel and a DTB accessible by kexec

▶ On the dump-capture kernel:
• CONFIG_CRASH_DUMP=y to enable dumping a crashed kernel
• CONFIG_PROC_VMCORE=y to enable /proc/vmcore support
• CONFIG_AUTO_ZRELADDR=y on ARM32 platforms

▶ Set the correct crashkernel command line option:
• crashkernel=size[KMG][@offset[KMG]]

▶ Load a dump-capture kernel on the first kernel with kexec:
• kexec --type zImage -p my_zImage --dtb=my_dtb.dtb --

initrd=my_initrd --append="command line option"

▶ Then simply wait for a crash to happen!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 329/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KEXEC
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CRASH_DUMP
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PROC_VMCORE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_AUTO_ZRELADDR

Going further with kexec & kdump

▶ Presentation from Steven Rostedt about using kexec, kdump and ftrace with lot
of tips and tricks about using kexec/kdump

• Video: https://www.youtube.com/watch?v=aUGNDJPpUUg
• Slides: https://static.sched.com/hosted_files/ossna2022/c0/Postmortem_

%20Kexec%2C%20Kdump%20and%20Ftrace.pdf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 330/340

https://www.youtube.com/watch?v=aUGNDJPpUUg
https://static.sched.com/hosted_files/ossna2022/c0/Postmortem_%20Kexec%2C%20Kdump%20and%20Ftrace.pdf
https://static.sched.com/hosted_files/ossna2022/c0/Postmortem_%20Kexec%2C%20Kdump%20and%20Ftrace.pdf

pstore (1/2)

▶ Linux provides a filesystem interface for Persistent Storage (pstore) to save data
across system resets: kernel logs, oopses, ftrace records, user messages...

▶ The platform needs to provide a persistent area to pstore (a block device, reserved
RAM which is not reset on reboot, etc). Then you can enable a pstore frontend.

▶ ramoops is a common frontend for pstore: it will log any panic/oops to a
pstore-managed ram buffer, which will be accessible on next boot

▶ Saved logs can be retrieved on next boot thanks to the pstore filesystem
▶ Some earlier software components in the boot chain (eg: U-Boot), if properly

configured, may be able to access pstore data as well

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 331/340

https://www.kernel.org/doc/html/latest/admin-guide/ramoops.html
https://docs.u-boot.org/en/v2021.01/usage/pstore.html

pstore (2/2)
▶ Kernel configuration:

• CONFIG_PSTORE=y
• CONFIG_PSTORE_RAM=y

▶ Platform configuration: reserve some memory for pstore and configure it
• Either through kernel command line:

mem=<usable_memory_size> ramoops.mem_address=0x8000000 ramoops.ecc=1
• Or through device tree:

reserved-memory {
[...]
ramoops@8f000000 {

compatible = "ramoops";
reg = <0 0x8f000000 0 0x100000>;
record-size = <0x4000>;
console-size = <0x4000>;

};
};

▶ After a crash, the collected logs/traces will be available in the pstore filesystem:

mount -t pstore pstore /sys/fs/pstore

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 332/340

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PSTORE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PSTORE_RAM

Practical lab - Kernel debugging

Post-mortem debugging of a kernel crash
▶ Setup kexec, kdump and extract a kernel

coredump

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 333/340

Going further

Going further

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 334/340

Debugging resources

▶ Brendan Gregg Systems performance book
▶ Brendan Gregg Linux Performance page
▶ Tools and Techniques to Debug an Embedded Linux System, talk from Sergio

Prado, video, slides
▶ Tracing with Ftrace: Critical Tooling for Linux Development, talk from Steven

Rostedt, video
▶ Tutorial: Debugging Embedded Devices using GDB, tutorial from Chris

Simmonds, video

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 335/340

https://www.brendangregg.com/systems-performance-2nd-edition-book.html
https://www.brendangregg.com/linuxperf.html
https://www.youtube.com/watch?v=dgPkZnGuIMg
https://elinux.org/images/c/cf/Slides-debugging.pdf
https://www.youtube.com/watch?v=mlxqpNvfvEQ
https://www.youtube.com/watch?v=JGhAgd2a_Ck

Going further (Tracing & Profiling)

▶ Great book from Brendan Gregg, an expert in
tracing and profiling

▶ https://www.brendangregg.com/blog/2020-07-
15/systems-performance-2nd-edition.html

▶ Covers concepts, strategy, tools, and tuning for
Linux kernel and applications.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 336/340

https://www.brendangregg.com/blog/2020-07-15/systems-performance-2nd-edition.html
https://www.brendangregg.com/blog/2020-07-15/systems-performance-2nd-edition.html

Going further (BPF)

▶ Still from Brendan Gregg!
▶ Covers more than 150 tools that use BPF.
▶ Explains how to analyze the results from these tools

to optimize your system.
▶ https://www.brendangregg.com/bpf-

performance-tools-book.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 337/340

https://www.brendangregg.com/bpf-performance-tools-book.html
https://www.brendangregg.com/bpf-performance-tools-book.html

Last slides

Last slides

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 338/340

Last slide

Thank you!
And may the Source be with you

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 339/340

Rights to copy

© Copyright 2004-2025, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of this work.
▶ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 340/340

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

	About Bootlin
	Generic course information
	Debugging, Tracing, Profiling
	Linux Application Stack
	User/Kernel mode
	Introduction to Processes and Threads
	MMU and memory management
	The process context
	Scheduling
	Context switching
	Kernel execution contexts

	Linux Common Analysis & Observability Tools
	Pseudo Filesystems
	ELF file analysis
	Monitoring tools
	Process and CPU monitoring tools
	Memory monitoring tools
	I/O monitoring tools
	Networking observability tools

	Application Debugging
	Good practices
	Building with debug information
	Instrumenting code crashes
	The ptrace system call
	GDB

	Application Tracing
	strace
	ltrace
	LD_PRELOAD
	uprobes and perf

	Memory Issues
	Valgrind memcheck
	Electric Fence

	Application Profiling
	Memory profiling
	Execution profiling

	System-wide Profiling & Tracing
	kprobes
	perf
	ftrace and trace-cmd
	LTTng
	eBPF
	Choosing the right tool

	Kernel Debugging
	Preventing bugs
	Linux Kernel Debugging
	Debugging using messages
	Kernel crashes and oops
	Built-in kernel self tests
	The Magic SysRq
	KGDB
	crash
	Post-mortem analysis

	Going further
	Last slides

