
Onsite
training

Audience
Companies and engineers interested in debugging, profiling and tracing
Linux systems and applications, to analyze and address performance or
latency problems.

Training objectives
• Be able to understand the main concepts of Linux that are relevant for perfor-

mance analysis: process, threads, memory management, virtual memory, execution
contexts, etc.

• Be able to analyze why a system is loaded and what are the elements that contributes
to this load using common Linux observability tools.

• Be able to debug an userspace application using gdb, either live or after a crash,
and analyze the contents of ELF binaries.

• Be able to trace and profile a complete userspace application and its interactions
with the Linux kernel in order to fix bugs using strace, ltrace, perf or Callgrind.

• Be able to understand classical memory issues and analyze them using valgrind,
libefence or Massif.

• Be able to trace and profile the entire Linux system, using perf, ftrace, kprobes,
eBPF tools, kernelshark or LTTng

• Be able to debug Linux kernel issues: debug kernel crashes live or post-mortem,
analyze memory issues at the kernel level, analyze locking issues, use kernel-level
debuggers.

Prerequisites
• Knowledge and practice of UNIX or GNU/Linux commands: participants must

be familiar with the Linux command line. Participants lacking experience on this
topic should get trained by themselves, for example with our freely available on-line
slides.

• Minimal experience in embedded Linux development: participants should have
a minimal understanding of the architecture of embedded Linux systems: role of
the Linux kernel vs. user-space, development of Linux user-space applications in C.
Following Bootlin’s Embedded Linux course allows to fulfill this pre-requisite.

• Minimal English language level: B1, according to the Common European Frame-
work of References for Languages, for our sessions in English. See the CEFR grid
for self-evaluation.

Pedagogics
• Lectures delivered by the trainer: 40% of the duration
• Practical labs done by participants: 60% of the duration
• Electronic copies of presentations, lab instructions and data files. They are freely

available here.

Certificate
Only the participants who have attended all training sessions, and who have scored over
50% of correct answers at the final evaluation will receive a training certificate from
Bootlin.

Disabilities
Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

1

Linux debugging,
profiling, tracing and
performance analysis

training

Course duration
U 3 days – 24 hours

Language

Materials English

Oral Lecture English
French
Italian

Trainer
One of the following engineers

• Alexis Lothoré
• Luca Ceresoli

Contact
@ training@bootlin.com
T +33 484 258 097

bootlin.com

https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/debugging
mailto:training@bootlin.com
mailto:training@bootlin.com
https://bootlin.com/company/staff/alexis-lothore/
https://bootlin.com/company/staff/luca-ceresoli/
mailto:training@bootlin.com
https://bootlin.com


Required equipement
For on-site session delivered at our customer location, our customer must provide:

• Video projector
• One PC computer on each desk (for one or two persons) with at least 16 GB of RAM, and Ubuntu Linux 24.04 installed in

a free partition of at least 30 GB
• Distributions other than Ubuntu Linux 24.04 are not supported, and using Linux in a virtual machine is not supported.
• Unfiltered and fast connection to Internet: at least 50 Mbit/s of download bandwidth, and no filtering of web sites or

protocols.
• PC computers with valuable data must be backed up before being used in our sessions.

For on-site sessions organized at Bootlin premises, Bootlin provides all the necessary equipment.

Hardware platform for practical labs

STM32MP1 Discovery Kit
One of these Discovery Kits from STMi-
croelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-
DK2 or STM32MP157F-DK2

• STM32MP157, dual Cortex-A7 processor
from STMicroelectronics

• USB powered
• 512 MB DDR3L RAM
• Gigabit Ethernet port
• 4 USB 2.0 host ports
• 1 USB-C OTG port
• 1 Micro SD slot
• On-board ST-LINK/V2-1 debugger
• Arduino compatible headers
• Audio codec, buttons, LEDs
• LCD touchscreen (DK2 kits only)

2



Training Schedule

Day 1 - Morning
Lecture Linux application stack • Global picture: understanding the general architecture of a Linux sys-

tem, overview of the major components.
• What is the difference between a process and a thread, how applica-

tions run concurrently.
• ELF files and associated analysis tools.
• Userspace application memory layout (heap, stack, shared libraries

mappings, etc).
• MMU and memory management: physical/virtual address spaces.
• Kernel context switching and scheduling
• Kernel execution contexts: kernel threads, workqueues, interrupt,

threaded interrupts, softirq

Lecture Common analysis & observability
tools

• Analyzing an ELF file with GNU binary utilities (objdump, addr2line).
• Tools to monitor a Linux system: processes, memory usage and map-

ping, resources.
• Using vmstat, iostat, ps, top, iotop, free and understanding the met-

rics they provide.
• Pseudo filesystems: procfs, sysfs and debugfs.

Day 1 - Afternoon
Lab Check what is running on a system

and its load
• Observe running processes using ps and top.
• Check memory allocation and mapping with procfs and pmap.
• Monitor other resources usage using iostat, vmstat and netstat.

Lecture Debugging an application • Using gdb on a live process.
• Understanding compiler optimizations impact on debuggability.
• Postmortem diagnostic using core files.
• Remote debugging with gdbserver.
• Extending gdb capabilities using python scripting

Lab Solving an application crash • Analysis of compiled C code with compiler-explorer to understand
optimizations.

• Managing gdb from the command line, then from an IDE.
• Using gdb Python scripting capabilities.
• Debugging a crashed application using a coredump with gdb.

Day 2 - Morning
Lecture Tracing an application • Tracing system calls with strace.

• Tracing library calls with ltrace.
• Overloading library functions using LD_PRELOAD.

Lab Debugging application issues • Analyze dynamic library calls from an application using ltrace.
• Overloading library functions using LD_PRELOAD.
• Analyzing an application system calls using strace.

Lecture Memory issues • Usual memory issues: buffer overflow, segmentation fault, memory
leaks, heap-stack collision.

• Memory corruption tooling, valgrind, libefence, etc.
• Heap profiling using Massif and heaptrack

Lab Debugging memory issues • Memory leak and misbehavior detection with valgrind and vgdb.
• Visualizing application heap using Massif.

3



Day 2 - Afternoon
Lecture Application profiling • Performances issues.

• Gathering profiling data with perf.
• Analyzing an application callgraph using Callgrind and KCachegrind.
• Interpreting the data recorded by perf.

Lab Application profiling • Profiling an application with Callgrind/KCachegrind.
• Analyzing application performance with perf.
• Generating a flamegraph using FlameGraph.

Day 3 - Morning
Lecture System wide profiling and tracing • System wide profiling using perf.

• Using kprobes to hook on kernel code without recompiling.
• Application and kernel tracing and visualization using ftrace, ker-

nelshark or LTTng
• Tracing with eBPF: core principles, usage with BCC and with libbpf

Lab System wide profiling and tracing • System profiling with perf.
• System wide latencies debugging using ftrace and kernelshark.

Lab Tracing tool with eBPF • Python scripting with bcc.
• Custom tool development with libbpf.

Day 3 - Afternoon
Lecture Kernel debugging • Kernel compilation results (vmlinux, System.map).

• Understanding and configuring kernel oops behavior.
• Post mortem analysis using kernel crash dump with crash.
• Memory issues (KASAN, UBSAN, Kmemleak).
• Debugging the kernel using KGDB and KDB.
• Kernel locking debug configuration options (lockdep).
• Other kernel configuration options that are useful for debug.

Lab Kernel debugging • Analyzing an oops after using a faulty module with obdjump and
addr2line.

• Debugging a deadlock problem using PROVE_LOCKING options.
• Detecting undefined behavior with UBSAN in kernel code.
• Find a module memory leak using kmemleak.
• Debugging a module with KGDB.

4


