
Embedded Linux boot time optimization training

Embedded Linux boot time
optimization training

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Latest update: July 03, 2025.

Document updates and training details:
https://bootlin.com/training/boot-time

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@bootlin.com

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/169

https://bootlin.com/training/boot-time
mailto:feedback@bootlin.com

Embedded Linux boot time optimization training

▶ These slides are the training materials for Bootlin’s Embedded
Linux boot time optimization training course.

▶ If you are interested in following this course with an experienced
Bootlin trainer, we offer:

• Public online sessions, opened to individual registration. Dates
announced on our site, registration directly online.

• Dedicated online sessions, organized for a team of engineers
from the same company at a date/time chosen by our customer.

• Dedicated on-site sessions, organized for a team of engineers
from the same company, we send a Bootlin trainer on-site to
deliver the training.

▶ Details and registrations:
https://bootlin.com/training/boot-time

▶ Contact: training@bootlin.com

Icon by Eucalyp, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/169

https://bootlin.com/training/boot-time

About Bootlin

About Bootlin

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/169

Bootlin introduction

▶ Engineering company
• In business since 2004
• Before 2018: Free Electrons

▶ Team based in France and Italy
▶ Serving customers worldwide
▶ Highly focused and recognized expertise

• Embedded Linux
• Linux kernel
• Embedded Linux build systems

▶ Strong open-source contributor
▶ Activities

• Engineering services
• Training courses

▶ https://bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/169

https://bootlin.com

Bootlin engineering services

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/169

Bootlin training courses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/169

Bootlin, an open-source contributor

▶ Strong contributor to the Linux kernel
• In the top 30 of companies contributing to Linux worldwide
• Contributions in most areas related to hardware support
• Several engineers maintainers of subsystems/platforms
• 9000 patches contributed
• https://bootlin.com/community/contributions/kernel-contributions/

▶ Contributor to Yocto Project
• Maintainer of the official documentation
• Core participant to the QA effort

▶ Contributor to Buildroot
• Co-maintainer
• 6000 patches contributed

▶ Significant contributions to U-Boot, OP-TEE, Barebox, etc.
▶ Fully open-source training materials

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/169

https://bootlin.com/community/contributions/kernel-contributions/

Bootlin on-line resources

▶ Website with a technical blog:
https://bootlin.com

▶ Engineering services:
https://bootlin.com/engineering

▶ Training services:
https://bootlin.com/training

▶ LinkedIn:
https://www.linkedin.com/company/bootlin

▶ Elixir - browse Linux kernel sources on-line:
https://elixir.bootlin.com

Icon by Freepik, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/169

https://bootlin.com
https://bootlin.com/engineering
https://bootlin.com/training
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

Thanks

Special thanks to
▶ Zuehlke Engineering (Serbia)

• For funding a major update to these materials and further development (2 days now)
▶ Microchip (formerly Atmel Corporation)

• For funding the development of the first version of these materials (1 day course)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/169

Practical lab - Lab setup and downloading sources

Prepare your lab environment
▶ Download and extract the lab archive

Start cloning source trees right away
▶ U-Boot
▶ Linux kernel
▶ Buildroot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/169

Generic course information

Generic course
information

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/169

Supported hardware

BeagleBone Black or BeagleBone Black Wireless, from BeagleBoard.org
▶ Texas Instruments AM335x (ARM Cortex-A8 CPU)
▶ SoC with 3D acceleration, additional processors (PRUs) and lots of

peripherals.
▶ 512 MB of RAM
▶ 4 GB of on-board eMMC storage
▶ USB host and USB device, microSD, micro HDMI
▶ WiFi and Bluetooth (wireless version), otherwise Ethernet
▶ 2 x 46 pins headers, with access to many expansion buses (I2C, SPI, UART

and more)
▶ A huge number of expansion boards, called capes. See

https://elinux.org/Beagleboard:BeagleBone_Capes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/169

https://beagleboard.org
https://elinux.org/Beagleboard:BeagleBone_Capes

The full system

▶ Beagle Bone Black board (of course).
The Wireless variant should work fine
too.

▶ Beagle Bone Black 4.3” LCD cape
from 4D Systems (not the one shown
on this picture)
https://4dsystems.com.au/products/

4dcape-43/

▶ Standard USB webcam (supported
through the uvcvideo driver).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/169

https://4dsystems.com.au/products/4dcape-43/
https://4dsystems.com.au/products/4dcape-43/

Shopping list: hardware for this course

▶ BeagleBone Black or BeagleBone Black Wireless - Multiple
distributors:
See https://www.beagleboard.org/boards.

▶ 5V power supply, at least 2A, for the BeagleBone Black, with a 5.5
mm barrel jack connector. Needed to drive the LCD cape!
https://www.olimex.com/Products/Power/SY1005E/

▶ USB Serial Cable - 3.3 V - Female ends (for serial console):
https://www.olimex.com/Products/Components/Cables/USB-
Serial-Cable/USB-SERIAL-F/

▶ Beagle Bone Black LCD4.3 cape from 4D systems
https://4dsystems.com.au/products/4dcape-43/

▶ A standard micro SD card - 1 GB or more
▶ A faster micro SD card - 1 GB or more

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/169

https://www.beagleboard.org/boards
https://www.olimex.com/Products/Power/SY1005E/
https://www.olimex.com/Products/Components/Cables/USB-Serial-Cable/USB-SERIAL-F/
https://www.olimex.com/Products/Components/Cables/USB-Serial-Cable/USB-SERIAL-F/
https://4dsystems.com.au/products/4dcape-43/

Training quiz and certificate

▶ You have been given a quiz to test your knowledge on the topics covered by the
course. That’s not too late to take it if you haven’t done it yet!

▶ At the end of the course, we will submit this quiz to you again. That time, you
will see the correct answers.

▶ It allows Bootlin to assess your progress thanks to the course. That’s also a kind
of challenge, to look for clues throughout the lectures and labs / demos, as all the
answers are in the course!

▶ Another reason is that we only give training certificates to people who achieve at
least a 50% score in the final quiz and who attended all the sessions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/169

Participate!

During the lectures...
▶ Don’t hesitate to ask questions. Other people in the audience may have similar

questions too.
▶ Don’t hesitate to share your experience too, for example to compare Linux with

other operating systems you know.
▶ Your point of view is most valuable, because it can be similar to your colleagues’

and different from the trainer’s.
▶ In on-line sessions

• Please always keep your camera on!
• Also make sure your name is properly filled.
• You can also use the ”Raise your hand” button when you wish to ask a question but

don’t want to interrupt.
▶ All this helps the trainer to engage with participants, see when something needs

clarifying and make the session more interactive, enjoyable and useful for everyone.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/169

Collaborate!

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
▶ Use the dedicated Matrix channel for this session to add

questions.
▶ If your session offers practical labs, you can also report issues,

share screenshots and command output there.
▶ Don’t hesitate to share your own answers and to help others

especially when the trainer is unavailable.
▶ The Matrix channel is also a good place to ask questions outside

of training hours, and after the course is over.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/169

Practical lab - Board setup

Prepare your board
▶ Access the board through its serial line
▶ Check the stock bootloader
▶ Attach the 4.3” LCD cape

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/169

Principles

Principles

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/169

Set your goals

▶ Reducing boot time implies measuring boot time!
▶ You will have to choose reference events at which you start

and stop counting time.
▶ What you choose will depend on the goal you want to

achieve. Here are typical cases:
• Showing a splash screen or an animation, playing a sound to

indicate the board is booting
• Starting a listening service to handle a particular message
• Being fully functional as fast as possible

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/169

Boot time reduction methodology

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/169

Boot time components

1st stage
bootloader
(SPL)

ROM code

Critical
application

boot-
loader

Power up
sequence

Init
scripts

Linux
kernel

Mounting
the root
filesystem

Loading
kernel
image

Kernel
decompression

We are focusing on reducing cold boot time, from power on to the critical application.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/169

Booting on ARM TI OMAP2+ / AM33xx

▶ ROM Code: tries to find a valid bootstrap image from various
storage sources, and load it into SRAM. Size limited to <128 KB
(SRAM size on AM3358). No user interaction possible.

▶ X-Loader or U-Boot SPL: runs from SRAM. Initializes the
DRAM, the NAND or MMC controller, and loads the secondary
bootloader into DRAM and starts it. No user interaction possible.
File called MLO (Mmc LOader).

▶ U-Boot: runs from DRAM. Initializes some other hardware
devices (network, USB, etc.). Loads the kernel image from storage
or network to DRAM and starts it. Shell with commands
provided. File called u-boot.bin or u-boot.img.

▶ Linux Kernel: runs from DRAM. Takes over the system
completely (bootloaders no longer exists).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/169

What to optimize first

Start by optimizing the last steps of the boot process!
▶ Don’t start by optimizing things that will reduce your ability to make

measurements and implement other optimizations.
▶ Start by optimizing your applications and startup scripts first.
▶ You can then simplify BusyBox, reducing the number of available commands.
▶ The next thing to do is simplify and optimize the kernel. This will make you lose

debugging and development capabilities, but this is fine as user space has already
been simplified.

▶ The last thing to do is implement bootloader optimizations, when kernel
optimizations are over and when the kernel command line is frozen.

We will follow this order during the practical labs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/169

Worst things first and measurement methodology

Premature optimization is the root of all evil.
Donald Knuth
▶ Taking the time to measure time carefully is important.

• Advice to make at least 3 measures for each configuration you want to measure.
• Pay attention to variations between measures. Measures are only valuable when

there is a low jitter between them.
• Keep copies of all your logs. Always useful to double check or analyze measures

which are inconsistent with the others.
▶ Find the worst consumers of time and address them first.
▶ You can waste a lot of time if you start optimizing minor spots first.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/169

Build automation

▶ Build automation is a very important part of a successful project.
▶ So, through the build system, you should automate any remaining manual step

and all the new optimizations that you will implement to reduce boot time.
Without such automation, you may forget some optimizations, or introduce new
bugs when making further optimizations.

▶ Boot time optimization projects required countless rebuilds too, automating image
generation will save a lot of time too.

▶ Kernel and bootloader compiling and optimizations can also be taken care of by
the build system, though the need is less critical.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/169

Generic ideas

Some ideas to keep in mind while trying to reduce the boot time:
▶ The fastest code is code that is not executed
▶ A big part of booting is actually loading code and data from the storage to RAM.

Reading less means booting faster. I/O are expensive!
▶ The root filesystem may take longer to mount if it is bigger.
▶ So, even code that is not executed can make your boot time longer.
▶ Also, try to benchmark different types of storage. It has happened that booting

from SD card was actually faster than booting from NAND.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/169

Practical lab - Build and boot the system

Compile your system components and get your
system up and running
▶ Compile the root filesystem with Buildroot
▶ Compile, install and run the bootloader

(U-Boot)
▶ Compile and install the Linux kernel
▶ Get the full system up and running

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/169

Measuring

Measuring

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/169

Time measurement equipment: hardware

▶ The best equipment is an oscilloscope, if you can afford one
▶ Allows to time the ”Power on” event (connected to a power rail), or any event

(connected to a GPIO pin, for example), all this in a very accurate way.
▶ Easy to write to a GPIO at all the stages of system booting (we will explain how

to do it)
▶ Some oscilloscopes are getting affordable. Example: Bitscope Pocket Analyzer

(245 AUD, supported on Linux, https://www.bitscope.com/product/BS10/)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/169

https://www.bitscope.com/product/BS10/

Measuring with hardware: using an Arduino

https://arduino.cc

▶ If you don’t have an oscilloscope, an Arduino (or any general purpose
MCU or MPU board) is a good solution too.

▶ The main strength of Arduino is its great ease of use and
programming, plus all the hardware support libraries that are
available.

▶ You can easily connect board pins to the Arduino analog pins, and
watch their voltage.

▶ Arduino boards are Open Source Hardware. This project is definitely
worth supporting!

Arduino Nano

Image credits:
https://commons.

wikimedia.org/wiki/
File:Arduino_nano_

isometr.jpg

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/169

https://arduino.cc
https://commons.wikimedia.org/wiki/File:Arduino_nano_isometr.jpg
https://commons.wikimedia.org/wiki/File:Arduino_nano_isometr.jpg
https://commons.wikimedia.org/wiki/File:Arduino_nano_isometr.jpg
https://commons.wikimedia.org/wiki/File:Arduino_nano_isometr.jpg

Time measurement equipment: serial port

▶ Useful when you don’t have monitoring hardware, or don’t want
to make take any risk connecting wires to the hardware.

▶ Usually relies on software which times messages received from the
board’s serial port (serial port absolutely required). Such software
runs on a PC connected to the serial port.

▶ On the board, requires a real serial port (directly connected to the
CPU), immediately usable from the earliest parts of the boot
process. Attaching a USB-to-serial dongle to a USB host port on
the device won’t do: USB is available much later and messages go
through more complex software stacks (loss of time accuracy).

▶ Limitation: won’t be able to time the ”Power on” event in an
accurate way. But acceptable as you can assume that the time to
run the ROM code is constant.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/169

grabserial

https://elinux.org/Grabserial (by Tim Bird)
▶ A Python script to add timestamps to messages received on a serial console.
▶ Key advantage: starts counting very early (ROM code — if not silent, bootstrap

and bootloader)
▶ Another advantage: no overhead on the target, because run on the host machine.
▶ Drawbacks: may not be precise enough. Can’t measure power up time.
▶ Ubuntu package: grabserial

Otherwise available on https://github.com/tbird20d/grabserial/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/169

https://elinux.org/Grabserial
https://github.com/tbird20d/grabserial/

Using grabserial

Caution: grabserial shows the arrival time of the first character of a line. This doesn’t
mean that the entire line was received at that time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/169

grabserial tips

▶ You can interrupt grabserial manually (with [Ctrl][c]) when you have gone
far enough.

▶ The -m (match start pattern) and -q (quit pattern) options actually expect a
regular expression. A normal string may not match in the middle of a line.

▶ Example: you may have to replace -m "Starting kernel" by
-m ".*Starting kernel.*".

▶ You can store a copy of the output to a file using the -o option. No need to copy
/ paste or redirect the output to keep it.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/169

Dedicated measuring resources

Later, we will see specific resources for measuring time
▶ time for measuring application time
▶ strace for application tracing
▶ bootchartd for measuring and tracing the execution of system services.
▶ More specifically, systemd-analyze if your system is started with Systemd.
▶ CONFIG_PRINTK_TIME and initcall_debug for tracing and timestamping kernel

code and functions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PRINTK_TIME

Practical lab - Measuring time

Measuring time with software
▶ Setting up grabserial

▶ Modify the video player to log a notification
after the first frame is processed.

▶ Time the various components of boot time
through messages written to the serial console.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/169

Toolchain optimizations

Toolchain optimizations

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/169

Best toolchain for your project

Optimizing the cross-compiling toolchain is typically one of the first things to do:
▶ The benefits of a toolchain change will be more significant and easier to measure

if other optimizations haven’t been done yet.
▶ Here’s what you can change in a toolchain, with a potential impact on boot time,

performance and size:
• Components: versions of gcc and binutils

More recent versions can feature better optimization capabilities.
• C library: glibc, uClibc, musl

uClibc and musl libraries make a smaller root filesystem
• Instruction set variant: ARM or Thumb2 (on 32 bit only), Hard Float support or not.

Can have an impact on code performance and code size.
Thumb2, available only on ARM 32, encodes the same instructions as ARM but in a
more compact way, at least significantly reducing size.
ARM EABIhf, in addition to being more efficient, also reduces code size compared to
ARM EABI, but only on binaries doing floating point computation. For example,
libavcodec size is only reduced by 4K (-0.03%). That’s negligible.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/169

Choosing the C library

▶ The C library is hardcoded at toolchain creation time
▶ Available C libraries:

• glibc: most standard and featureful
• uClibc: smaller and configurable. Has been around for about 20 years.
• musl: an alternative to uClibc, developed more recently but mature too.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/169

glibc

▶ License: LGPL
▶ C library from the GNU project
▶ Designed for performance, standards compliance and

portability
▶ Found on all GNU / Linux host systems
▶ Of course, actively maintained
▶ By default, quite big for small embedded systems. On

armv7hf, version 2.31: libc: 1.5 MB, libm: 432 KB,
source: https://toolchains.bootlin.com

▶ https://www.gnu.org/software/libc/

Image: https://bit.ly/2EzHl6m

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/169

https://toolchains.bootlin.com
https://www.gnu.org/software/libc/
https://bit.ly/2EzHl6m

uClibc-ng

▶ https://uclibc-ng.org/

▶ A continuation of the old uClibc project, license: LGPL
▶ Lightweight C library for small embedded systems

• High configurability: many features can be enabled or disabled through a
menuconfig interface.

• Supports most embedded architectures, including MMU-less ones (ARM Cortex-M,
Blackfin, etc.). The only library supporting ARM noMMU.

• No guaranteed binary compatibility. May need to recompile applications when the
library configuration changes.

• Some features may be implemented later than on glibc (real-time, floating-point
operations...)

• Focus on size (RAM and storage) rather than performance
• Size on armv7hf, version 1.0.34: libc: 712 KB, source:

https://toolchains.bootlin.com

▶ Actively supported, supported by Buildroot but not by Yocto Project.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/169

https://uclibc-ng.org/
https://toolchains.bootlin.com

musl C library
https://www.musl-libc.org/

▶ A lightweight, fast and simple library for embedded systems
▶ Created while uClibc’s development was stalled
▶ In particular, great at making small static executables, which can run

anywhere, even on a system built from another C library.
▶ More permissive license (MIT), making it easier to release static

executables. We will talk about the requirements of the LGPL license
(glibc, uClibc) later.

▶ Supported by build systems such as Buildroot and Yocto Project.
▶ Used by the Alpine Linux lightweight distribution

(https://www.alpinelinux.org/)
▶ Size on armv7hf, version 1.2.0: libc: 748 KB, source:

https://toolchains.bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/169

https://www.musl-libc.org/
https://www.alpinelinux.org/
https://toolchains.bootlin.com

glibc vs uclibc-ng vs musl - small static executables

Let’s compile and strip a hello.c program statically and compare the size
▶ With musl 1.2.0:

9,084 bytes
▶ With uclibc-ng 1.0.34:

21,916 bytes.
▶ With glibc 2.31:

431,140 bytes
Tests run with gcc 10.0.2 toolchains for armv7-eabihf
(from https://toolchains.bootlin.com)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/169

https://toolchains.bootlin.com

glibc vs uclibc vs musl - more realistic example

Let’s compile and strip BusyBox 1.32.1 statically
(with the defconfig configuration) and compare the size
▶ With musl 1.2.0:

1,176,744 bytes
▶ With uclibc-ng 1.0.34:

1,251,080 bytes.
▶ With glibc 2.31:

1,852,912 bytes
Notes:
▶ Tests run with gcc 10.0.2 toolchains for armv7-eabihf
▶ BusyBox is automatically compiled with -Os and stripped.
▶ Compiling with shared libraries will mostly eliminate size differences

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/169

Other smaller C libraries

▶ Several other smaller C libraries have been developed, but none of them have the
goal of allowing the compilation of large existing applications

▶ They can run only relatively simple programs, typically to make very small static
executables and run in very small root filesystems.

▶ Choices:
• Newlib, https://sourceware.org/newlib/, maintained by Red Hat, used mostly in

Cygwin, in bare metal and in small POSIX RTOS.
• Klibc, https://en.wikipedia.org/wiki/Klibc, from the kernel community,

designed to implement small executables for use in an initramfs at boot time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/169

https://sourceware.org/newlib/
https://en.wikipedia.org/wiki/Klibc

Advice for choosing the C library

▶ Advice to start developing and debugging your applications with glibc, which is
the most standard solution, and is best supported by debugging tools (ltrace not
supported by musl in Buildroot, for example).

▶ Then, when everything works, if you have size constraints, try to compile your app
and then the entire filesystem with uClibc or musl.

▶ If you run into trouble, it could be because of missing features in the C library.
▶ In case you wish to make static executables, musl will be an easier choice in terms

of licensing constraints. The binaries will be smaller too. Note that static
executables built with a given C library can be used in a system with a different C
library.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/169

Time your commands using the time command

> time ffmpeg ...

real 0m 2.06s

user 0m 0.17s

sys 0m 0.26s

> time ffmpeg...

real 0m 0.66s

user 0m 0.17s

sys 0m 0.25s

real = user + sys + waiting time (at least on single core machines)

First run

Second run (program and libraries already in file cache)

Time in userspace (running the program and shared libs)

Time in kernel space (accessing files, accessing device data)

Total observed time

Your program cannot run faster than user + sys (unless you optimize the code)

Less waiting time!

This gives you the best time that can possibly be achieved (with the fastest storage).
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/169

Practical lab - Toolchain optimizations

▶ Measure filesystem and ffmpeg binary size.
Time the execution of the application.

▶ Re-compile the root filesystem using a Thumb2
toolchain

▶ Re-compile the root filesystem with the Musl C
library instead of uClibc

▶ Find the best toolchain in terms of size and
execution time.

▶ Have Buildroot generate an external toolchain
(SDK)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/169

Lessons from labs: ARM vs Thumb2 (32 bit only)

▶ Testcase: root filesystem with ffmpeg and associated libraries (from our training
labs), with uClibc

▶ Compiled with gcc 10.3, generating ARM code:
Total filesystem size: 17.9 MB
ffmpeg size: 239 KB

▶ Compiled with gcc 10.3, generating Thumb2 code:
Total filesystem size: 14.5 MB (-19 %)
ffmpeg size: 191 KB (-20 %)

▶ Performance aspect: performance apparently slightly improved with Thumb2
(about 2 %, but there are slight variations in measured execution time, for one
run to another).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/169

Lessons from labs: musl vs uClibc

Replacing uClibc by musl in our video player lab, keeping Thumb2. Here are data from
an earlier run of our labs:
▶ Total system size with uClibc: 14.3 MB
▶ Total system size with Musl: 14.4 MB
▶ uClibc saves 80 KB (useful), but otherwise no other significant change in

filesystem and code size. Not a surprise when the system is mostly filled with
binaries relying on shared libraries.

Switching to Musl as it is supposed to allow for smaller static binaries, which will be
useful in later labs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/169

Optimizing applications

Optimizing applications

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/169

Measuring: strace

▶ Allows to trace all the system calls made by an application and its children.
▶ Useful to:

• Understand how time is spent in user space
• For example, easy to find file open attempts (open()), file access (read(), write()),

and memory allocations (mmap2()). Can be done without any access to source code!
• Find the biggest time consumers (low hanging fruit)
• Find unnecessary work done in applications and scripts. Example: opening the same

file(s) multiple times, or trying to open files that do not exist.
▶ Limitation: you can’t trace the init process!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/169

strace

System call tracer - https://strace.io
▶ Available on all GNU/Linux systems

Can be built by your cross-compiling toolchain generator or by
your build system.

▶ Allows to see what any of your processes is doing: accessing files,
allocating memory... Often sufficient to find simple bugs.

▶ Usage:
strace <command> (starting a new process)
strace -f <command> (follow child processes too)
strace -p <pid> (tracing an existing process)
strace -c <command> (time statistics per system call)
strace -e <expr> <command> (use expression for advanced
filtering)

See the strace manual for details. Image credits: https://strace.io/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/169

https://strace.io
https://man7.org/linux/man-pages/man1/strace.1.html
https://strace.io/

strace example output
> strace cat Makefile
[...]
fstat64(3, {st_mode=S_IFREG|0644, st_size=111585, ...}) = 0
mmap2(NULL, 111585, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb7f69000
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
open("/lib/tls/i686/cmov/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\320h\1\0004\0\0\0\344"..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1442180, ...}) = 0
mmap2(NULL, 1451632, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb7e06000
mprotect(0xb7f62000, 4096, PROT_NONE) = 0
mmap2(0xb7f66000, 9840, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xb7f66000
close(3) = 0
[...]
openat(AT_FDCWD, "Makefile", O_RDONLY) = 3
newfstatat(3, "", {st_mode=S_IFREG|0644, st_size=173, ...}, AT_EMPTY_PATH) = 0
fadvise64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = 0
mmap(NULL, 139264, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f7290d28000
read(3, "ifneq ($(KERNELRELEASE),)\nobj-m "..., 131072) = 173
write(1, "ifneq ($(KERNELRELEASE),)\nobj-m "..., 173ifneq ($(KERNELRELEASE),)

Hint: follow the open file descriptors returned by open(). This tells you what files are
handled by further system calls.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/169

strace -c example output

> strace -c cheese
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 36.24 0.523807 19 27017 poll
 28.63 0.413833 5 75287 115 ioctl
 25.83 0.373267 6 63092 57321 recvmsg
 3.03 0.043807 8 5527 writev
 2.69 0.038865 10 3712 read
 2.14 0.030927 3 10807 getpid
 0.28 0.003977 1 3341 34 futex
 0.21 0.002991 3 1030 269 openat
 0.20 0.002889 2 1619 975 stat
 0.18 0.002534 4 568 mmap
 0.13 0.001851 5 356 mprotect
 0.10 0.001512 2 784 close
 0.08 0.001171 3 461 315 access
 0.07 0.001036 2 538 fstat
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/169

ltrace

A tool to trace shared library calls used by a program and all the signals it receives
▶ Very useful complement to strace, which shows only system calls.
▶ Of course, works even if you don’t have the sources
▶ Allows to filter library calls with regular expressions, or just by a list of function

names.
▶ With the -S option it shows system calls too!
▶ Also offers a summary with its -c option.
▶ Manual page: https://linux.die.net/man/1/ltrace

▶ Works better with glibc. ltrace used to be broken with uClibc (now fixed), and is
not supported with Musl (Buildroot 2022.11 status).

See https://en.wikipedia.org/wiki/Ltrace for details

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/169

https://linux.die.net/man/1/ltrace
https://en.wikipedia.org/wiki/Ltrace

ltrace example output

ltrace ffmpeg -f video4linux2 -video_size 544x288 -input_format mjpeg -i /dev
/video0 -pix_fmt rgb565le -f fbdev /dev/fb0
__libc_start_main(["ffmpeg", "-f", "video4linux2", "-video_size"...] <unfinished ...>
setvbuf(0xb6a0ec80, nil, 2, 0) = 0
av_log_set_flags(1, 0, 1, 0) = 1
strchr("f", ':') = nil
strlen("f") = 1
strncmp("f", "L", 1) = 26
strncmp("f", "h", 1) = -2
strncmp("f", "?", 1) = 39
strncmp("f", "help", 1) = -2
strncmp("f", "-help", 1) = 57
strncmp("f", "version", 1) = -16
strncmp("f", "buildconf", 1) = 4
strncmp("f", "formats", 1) = 0
strlen("formats") = 7
strncmp("f", "muxers", 1) = -7
strncmp("f", "demuxers", 1) = 2
strncmp("f", "devices", 1) = 2
strncmp("f", "codecs", 1) = 3
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/169

ltrace summary
Example summary at the end of the ltrace output (-c option)

% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
52.64 5.958660 5958660 1 __libc_start_main
20.64 2.336331 2336331 1 avformat_find_stream_info
14.87 1.682895 421 3995 strncmp
7.17 0.811210 811210 1 avformat_open_input
0.75 0.085290 584 146 av_freep
0.49 0.055150 434 127 strlen
0.29 0.033008 660 50 av_log
0.22 0.025090 464 54 strcmp
0.20 0.022836 22836 1 avformat_close_input
0.16 0.017788 635 28 av_dict_free
0.15 0.016819 646 26 av_dict_get
0.15 0.016753 440 38 strchr
0.13 0.014536 581 25 memset

...
------ ----------- ----------- --------- --------------------
100.00 11.318773 4762 total

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/169

Valgrind

https://valgrind.org/
▶ instrumentation framework for building dynamic analysis tools

• detect many memory management and threading bugs
• profile programs

▶ Supported architectures: x86, x86-64, ARMv7, ARMv8, mips32,
s390, ppc32 and ppc64

▶ Very popular tool especially for debugging memory issues
▶ Runs your program on a synthetic CPU → significant

performance impact (100 x slower on SAMA5D3!), but very
detailed instrumentation

▶ Runs on the target. Easy to build with Yocto Project or
Buildroot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/169

https://valgrind.org/

Valgrind tools

▶ Memcheck: detects memory-management problems
▶ Cachegrind: cache profiler, detailed simulation of the I1, D1 and L2 caches in your

CPU and so can accurately pinpoint the sources of cache misses in your code
▶ Callgrind: extension to Cachegrind, provides extra information about call graphs
▶ Massif: performs detailed heap profiling by taking regular snapshots of a

program’s heap
▶ Helgrind: thread debugger which finds data races in multithreaded programs.

Looks for memory locations accessed by multiple threads without locking.
▶ More at https://valgrind.org/info/tools.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/169

https://valgrind.org/info/tools.html

Valgrind examples

▶ Memcheck
$ valgrind --leak-check=yes <program>

==19182== Invalid write of size 4
==19182== at 0x804838F: f (example.c:6)
==19182== by 0x80483AB: main (example.c:11)
==19182== Address 0x1BA45050 is 0 bytes after a block of size 40 alloc'd
==19182== at 0x1B8FF5CD: malloc (vg_replace_malloc.c:130)
==19182== by 0x8048385: f (example.c:5)
==19182== by 0x80483AB: main (example.c:11)

▶ Callgrind
$ valgrind --tool=callgrind --dump-instr=yes --simulate-cache=yes --collect-jumps=yes <program>
$ ls callgrind.out.*
callgrind.out.1234
$ callgrind_annotate callgrind.out.1234

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/169

Kcachegrind - Visualizing Valgrind profiling data

https://github.com/KDE/kcachegrind

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/169

https://github.com/KDE/kcachegrind

perf

▶ Uses hardware performance counters, much faster than Valgrind!
▶ Need a kernel with CONFIG_PERF_EVENTS and CONFIG_HW_PERF_EVENTS

▶ User space tool: perf. It is part of the kernel sources so it is always in sync with
your kernel.

▶ Usage:

perf record /my/command

▶ Get the results with:

perf report

▶ Note: advice to run perf on a filesystem built with glibc. Didn’t manage to
compile perf on a Musl root filesystem (Buildroot 2021.02 status). Once again,
glibc is recommended for debugging.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PERF_EVENTS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_HW_PERF_EVENTS

perf report output

To display the perf.data header info, please use --header/--header-only options.
#
#
Total Lost Samples: 0
#
Samples: 5K of event 'cycles'
Event count (approx.): 1392529663
#
Overhead Command Shared Object Symbol
........
#

10.72% ffmpeg [kernel.kallsyms] [k] video_get_user
10.60% ffmpeg [kernel.kallsyms] [k] vector_swi
4.76% ffmpeg libc-2.31.so [.] ioctl
4.22% ffmpeg [kernel.kallsyms] [k] __se_sys_ioctl
3.81% ffmpeg [kernel.kallsyms] [k] __video_do_ioctl
3.42% ffmpeg libavformat.so.58.45.100 [.] avformat_find_stream_info
2.83% ffmpeg [kernel.kallsyms] [k] video_usercopy
2.70% ffmpeg libc-2.31.so [.] cfree
2.58% ffmpeg [kernel.kallsyms] [k] __fget_light
2.53% ffmpeg libpthread-2.31.so [.] __errno_location
2.40% ffmpeg [kernel.kallsyms] [k] arm_copy_from_user
2.26% ffmpeg [kernel.kallsyms] [k] memset
2.09% ffmpeg [kernel.kallsyms] [k] mutex_unlock
2.06% ffmpeg [kernel.kallsyms] [k] v4l2_ioctl
2.05% ffmpeg libavcodec.so.58.91.100 [.] av_init_packet
1.95% ffmpeg libc-2.31.so [.] memset

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/169

Practical lab - Optimizing the application

▶ Compile the video player with just the features
needed at run time.

▶ Trace and profile the video player with strace

▶ Observe size and time savings

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/169

Optimizing init scripts and system startup

Optimizing init scripts
and system startup

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/169

Methodology

There are multiple ways to reduce the time spent in init scripts before starting the
application:
▶ Start the application as soon as possible after only the strictly necessary

dependencies.
▶ Simplify shell scripts
▶ Even starting the application before init

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/169

Measuring - bootchart

▶ If you want to have a more detailed look at the userland boot
sequence than with grabserial.

▶ You can trace processes running at init time with bootchartd
from busybox (CONFIG_BOOTCHARTD=y)

▶ Boot your board passing init=/sbin/bootchartd on your kernel
command line

▶ Copy /var/log/bootlog.tgz to your host.
▶ Use Bootchart from

https://bootlin.com/pub/source/bootchart-0.9.tar.bz2
(Bootchart is no longer maintained), to generate a timechart:

cd bootchart-<version>
java -jar bootchart.jar bootlog.tgz

▶ This produces a bootlog.png image
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_BOOTCHARTD=y
https://bootlin.com/pub/source/bootchart-0.9.tar.bz2

Measuring - systemd

If you are using systemd as your init program, you can use systemd-analyze. See
https://www.freedesktop.org/software/systemd/man/systemd-analyze.html.
$ systemd-analyze critical-chain
multi-user.target @47.820s
��pmie.service @35.968s +548ms

��pmcd.service @33.715s +2.247s
��network-online.target @33.712s
��systemd-networkd-wait-online.service @12.804s +20.905s

��systemd-networkd.service @11.109s +1.690s
��systemd-udevd.service @9.201s +1.904s

��systemd-tmpfiles-setup-dev.service @7.306s +1.776s
��kmod-static-nodes.service @6.976s +177ms
��systemd-journald.socket
��system.slice
��-.slice

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/169

https://www.freedesktop.org/software/systemd/man/systemd-analyze.html

systemd-analyze plot

This command prints an SVG graphic detailing which system services
have been started at what time, highlighting the time they spent on
initialization.

$ systemd-analyze plot >bootup.svg
$ inkscape bootup.svg

Startup finished in 4.282s (kernel) + 22.658s (userspace) = 26.940s graphical.target reached after 15.007s in userspace

Ubuntu 20.04.3 LTS mike-laptop (Linux 5.4.0-89-generic #100-Ubuntu SMP Fri Sep 24 14:50:10 UTC 2021) x86-64

0.0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 7.0s 8.0s 9.0s 10.0s 11.0s 12.0s 13.0s 14.0s 15.0s 16.0s 17.0s 18.0s 19.0s 20.0s 21.0s 22.0s 23.0s 24.0s 25.0s 26.0s

kernel

systemd

system.slice

-.mount

-.slice

init.scope

machine.slice

system-modprobe.slice

system-openvpn.slice

system-systemd\x2dfsck.slice

user.slice

systemd-ask-password-wall.path

proc-sys-fs-binfmt_misc.automount

nss-user-lookup.target

slices.target

virt-guest-shutdown.target

dm-event.socket

lvm2-lvmpolld.socket

rpcbind.socket

syslog.socket

systemd-fsckd.socket

systemd-initctl.socket

systemd-journald-audit.socket

systemd-journald-dev-log.socket

systemd-journald.socket

systemd-udevd-control.socket

systemd-udevd-kernel.socket

dev-hugepages.mount (28ms)

dev-mqueue.mount (27ms)

proc-fs-nfsd.mount (60ms)

run-rpc_pipefs.mount (31ms)

sys-kernel-debug.mount (23ms)

sys-kernel-tracing.mount (21ms)

systemd-journald.service (148ms)

blk-availability.service (18ms)

keyboard-setup.service (178ms)

kmod-static-nodes.service (13ms)

lvm2-monitor.service (89ms)

systemd-modules-load.service (89ms)

systemd-remount-fs.service (33ms)

systemd-udev-trigger.service (157ms)

ufw.service (15ms)

dev-sda2.device (1.695s)

nfs-blkmap.service (10ms)

systemd-random-seed.service (36ms)

systemd-sysusers.service (57ms)

sys-fs-fuse-connections.mount (12ms)

sys-kernel-config.mount (10ms)

systemd-sysctl.service (16ms)

systemd-tmpfiles-setup-dev.service (15ms)

systemd-udevd.service (345ms)

systemd-journal-flush.service (352ms)

ifupdown-pre.service (9ms)

local-fs-pre.target

snap-bare-5.mount (115ms)

snap-chromium-1781.mount (113ms)

snap-code-77.mount (110ms)

snap-code-78.mount (143ms)

snap-core-11798.mount (142ms)

snap-core-11993.mount (2.092s)

snap-core18-2128.mount (231ms)

snap-core20-1081.mount (390ms)

snap-core20-1169.mount (2.193s)

snap-fractal-105.mount (1.413s)

snap-fractal-106.mount (2.271s)

snap-gnome\x2d3\x2d28\x2d1804-145.mount (1.113s)

snap-gnome\x2d3\x2d28\x2d1804-161.mount (1.985s)

snap-gnome\x2d3\x2d34\x2d1804-66.mount (2.446s)

snap-gnome\x2d3\x2d34\x2d1804-72.mount (371ms)

snap-gnome\x2d3\x2d38\x2d2004-70.mount (1.248s)

snap-gnome\x2d3\x2d38\x2d2004-76.mount (2.422s)

snap-gnome\x2dsystem\x2dmonitor-163.mount (663ms)

snap-gtk\x2dcommon\x2dthemes-1515.mount (362ms)

snap-gtk\x2dcommon\x2dthemes-1519.mount (840ms)

snap-inkscape-9090.mount (889ms)

snap-ripgrep-9.mount (1.407s)

snap-signal\x2ddesktop-373.mount (653ms)

snap-signal\x2ddesktop-374.mount (1.575s)

snap-snap\x2dstore-542.mount (1.716s)

snap-snap\x2dstore-547.mount (1.518s)

snap-snapd-13270.mount (1.375s)

snap-snapd-13640.mount (2.350s)

snap-spotify-52.mount (1.639s)

snap-spotify-53.mount (1.275s)

snap-youtube\x2ddl-4568.mount (1.886s)

snap-youtube\x2ddl-4572.mount (1.692s)

machines.target

dev-loop0.device (1.452s)

dev-loop2.device (1.564s)

dev-loop3.device (1.345s)

dev-loop4.device (1.488s)

dev-loop5.device (1.380s)

dev-loop6.device (1.474s)

dev-loop7.device (1.314s)

dev-loop9.device (1.962s)

dev-loop8.device (1.676s)

systemd-ask-password-plymouth.path

cryptsetup.target

sys-module-configfs.device

sys-module-fuse.device

dev-loop10.device (1.656s)

dev-loop12.device (1.659s)

dev-loop11.device (1.564s)

dev-loop16.device (1.404s)

sys-subsystem-net-devices-eno1.device

sys-devices-pci0000:00-0000:00:19.0-net-eno1.device

dev-loop15.device (1.076s)

dev-loop18.device (1.200s)

sys-devices-pci0000:00-0000:00:02.0-drm-card0-card0\x2deDP\x2d1-intel_backlight.device

system-systemd\x2dbacklight.slice

systemd-backlight@backlight:intel_backlight.service (9ms)

dev-ttyS12.device

sys-devices-platform-serial8250-tty-ttyS12.device

dev-ttyS10.device

sys-devices-platform-serial8250-tty-ttyS10.device

dev-ttyS11.device

sys-devices-platform-serial8250-tty-ttyS11.device

dev-ttyS14.device

sys-devices-platform-serial8250-tty-ttyS14.device

dev-ttyS16.device

sys-devices-platform-serial8250-tty-ttyS16.device

dev-ttyS1.device

sys-devices-platform-serial8250-tty-ttyS1.device

dev-ttyS13.device

sys-devices-platform-serial8250-tty-ttyS13.device

dev-ttyS17.device

sys-devices-platform-serial8250-tty-ttyS17.device

dev-ttyS19.device

sys-devices-platform-serial8250-tty-ttyS19.device

dev-ttyS18.device

sys-devices-platform-serial8250-tty-ttyS18.device

dev-ttyS15.device

sys-devices-platform-serial8250-tty-ttyS15.device

dev-ttyS0.device

sys-devices-platform-serial8250-tty-ttyS0.device

dev-ttyS20.device

sys-devices-platform-serial8250-tty-ttyS20.device

dev-ttyS2.device

sys-devices-platform-serial8250-tty-ttyS2.device

dev-ttyS21.device

sys-devices-platform-serial8250-tty-ttyS21.device

dev-ttyS22.device

sys-devices-platform-serial8250-tty-ttyS22.device

dev-ttyS28.device

sys-devices-platform-serial8250-tty-ttyS28.device

dev-ttyS26.device

sys-devices-platform-serial8250-tty-ttyS26.device

dev-ttyS29.device

sys-devices-platform-serial8250-tty-ttyS29.device

dev-ttyS25.device

sys-devices-platform-serial8250-tty-ttyS25.device

dev-ttyS24.device

sys-devices-platform-serial8250-tty-ttyS24.device

dev-ttyS30.device

sys-devices-platform-serial8250-tty-ttyS30.device

dev-ttyS31.device

sys-devices-platform-serial8250-tty-ttyS31.device

dev-ttyS27.device

sys-devices-platform-serial8250-tty-ttyS27.device

dev-ttyS4.device

sys-devices-platform-serial8250-tty-ttyS4.device

dev-ttyS3.device

sys-devices-platform-serial8250-tty-ttyS3.device

dev-ttyS6.device

sys-devices-platform-serial8250-tty-ttyS6.device

dev-ttyS7.device

sys-devices-platform-serial8250-tty-ttyS7.device

dev-ttyS8.device

sys-devices-platform-serial8250-tty-ttyS8.device

dev-ttyS5.device

sys-devices-platform-serial8250-tty-ttyS5.device

dev-ttyS23.device

sys-devices-platform-serial8250-tty-ttyS23.device

dev-ttyS9.device

sys-devices-platform-serial8250-tty-ttyS9.device

dev-loop19.device (1.175s)

dev-loop21.device (863ms)

dev-loop20.device (1.007s)

dev-loop17.device (999ms)

dev-disk-by\x2did-ata\x2dSAMSUNG_SSD_PM871_mSATA_256GB_S20ENXAGA27422.device

dev-disk-by\x2dpath-pci\x2d0000:00:1f.2\x2data\x2d2.device

dev-disk-by\x2did-wwn\x2d0x5002538d00000000.device

dev-sda.device

sys-devices-pci0000:00-0000:00:1f.2-ata2-host1-target1:0:0-1:0:0:0-block-sda.device

sys-devices-virtual-block-loop3.device

dev-rfkill.device

sys-devices-virtual-misc-rfkill.device

systemd-rfkill.socket

dev-disk-by\x2did-ata\x2dSAMSUNG_SSD_PM871_mSATA_256GB_S20ENXAGA27422\x2dpart1.device

dev-disk-by\x2dpath-pci\x2d0000:00:1f.2\x2data\x2d2\x2dpart1.device

dev-disk-by\x2dpartuuid-564e8014\x2d01.device

dev-disk-by\x2duuid-3e0a3b19\x2d6521\x2d4d86\x2d8e33\x2d9b4b817f959d.device

dev-disk-by\x2did-wwn\x2d0x5002538d00000000\x2dpart1.device

dev-sda1.device

sys-devices-pci0000:00-0000:00:1f.2-ata2-host1-target1:0:0-1:0:0:0-block-sda-sda1.device

dev-disk-by\x2duuid-3e0a3b19\x2d6521\x2d4d86\x2d8e33\x2d9b4b817f959d.swap (26ms)

sys-devices-virtual-block-loop0.device

sys-devices-virtual-block-loop5.device

dev-disk-by\x2dpartuuid-564e8014\x2d02.device

dev-disk-by\x2dpath-pci\x2d0000:00:1f.2\x2data\x2d2\x2dpart2.device

dev-disk-by\x2did-ata\x2dSAMSUNG_SSD_PM871_mSATA_256GB_S20ENXAGA27422\x2dpart2.device

dev-disk-by\x2did-wwn\x2d0x5002538d00000000\x2dpart2.device

dev-disk-by\x2duuid-ffb22361\x2d8949\x2d41d6\x2d8829\x2d601b99e1ce06.device

sys-devices-pci0000:00-0000:00:1f.2-ata2-host1-target1:0:0-1:0:0:0-block-sda-sda2.device

dev-disk-by\x2duuid-a3a26181\x2dcc41\x2d4098\x2dbe16\x2d5dc2084001c4.device

dev-disk-by\x2did-ata\x2dSAMSUNG_SSD_PM871_mSATA_256GB_S20ENXAGA27422\x2dpart3.device

dev-disk-by\x2dpartuuid-564e8014\x2d03.device

dev-disk-by\x2dpath-pci\x2d0000:00:1f.2\x2data\x2d2\x2dpart3.device

dev-disk-by\x2did-wwn\x2d0x5002538d00000000\x2dpart3.device

dev-sda3.device

sys-devices-pci0000:00-0000:00:1f.2-ata2-host1-target1:0:0-1:0:0:0-block-sda-sda3.device

systemd-fsck@dev-disk-by\x2duuid-a3a26181\x2dcc41\x2d4098\x2dbe16\x2d5dc2084001c4.service (31ms)

dev-disk-by\x2did-wwn\x2d0x5002538d00000000\x2dpart1.swap

dev-disk-by\x2did-ata\x2dSAMSUNG_SSD_PM871_mSATA_256GB_S20ENXAGA27422\x2dpart1.swap

dev-disk-by\x2dpartuuid-564e8014\x2d01.swap

dev-disk-by\x2dpath-pci\x2d0000:00:1f.2\x2data\x2d2\x2dpart1.swap

dev-sda1.swap

swap.target

dev-loop23.device (912ms)

systemd-fsckd.service

home.mount (134ms)

dev-ttyprintk.device

sys-devices-virtual-tty-ttyprintk.device

dev-loop24.device (897ms)

sys-devices-virtual-block-loop7.device

sys-devices-virtual-block-loop4.device

sys-devices-virtual-block-loop6.device

dev-loop22.device (722ms)

sys-devices-virtual-block-loop2.device

dev-loop25.device (779ms)

dev-loop26.device (737ms)

dev-loop27.device (623ms)

dev-loop28.device (703ms)

sys-devices-virtual-block-loop8.device

dev-loop29.device (502ms)

sys-devices-virtual-block-loop11.device

sys-devices-virtual-block-loop15.device

dev-loop31.device (467ms)

sys-devices-pci0000:00-0000:00:03.0-sound-card0.device

sys-devices-virtual-block-loop10.device

sys-devices-virtual-block-loop21.device

sys-devices-virtual-block-loop12.device

sys-devices-pci0000:00-0000:00:1b.0-sound-card1.device

system-gpsdctl.slice

plymouth-start.service (29ms)

dev-loop32.device (311ms)

sys-devices-virtual-block-loop16.device

sys-devices-virtual-block-loop9.device

sys-devices-virtual-block-loop18.device

sys-devices-platform-dell\x2dlaptop-leds-dell::kbd_backlight.device

systemd-backlight@leds:dell::kbd_backlight.service (15ms)

sys-devices-virtual-block-loop17.device

sys-devices-virtual-block-loop22.device

sys-devices-virtual-block-loop20.device

dev-loop33.device (291ms)

sys-devices-virtual-block-loop19.device

dev-loop34.device (292ms)

sys-devices-virtual-block-loop23.device

dev-loop35.device (345ms)

sys-devices-virtual-block-loop24.device

sys-subsystem-net-devices-wlp2s0.device

sys-devices-pci0000:00-0000:00:1c.3-0000:02:00.0-net-wlp2s0.device

sys-devices-virtual-block-loop25.device

local-fs.target

apparmor.service (195ms)

binfmt-support.service (86ms)

console-setup.service (23ms)

dns-clean.service (19ms)

nfs-config.service (14ms)

plymouth-read-write.service (17ms)

qemu-kvm.service (74ms)

systemd-tmpfiles-setup.service (57ms)

sys-devices-virtual-block-loop26.device

sys-devices-virtual-block-loop27.device

proc-sys-fs-binfmt_misc.mount (22ms)

nfs-idmapd.service (18ms)

resolvconf.service

network-pre.target

nfs-client.target

sys-devices-virtual-block-loop29.device

rpcbind.service (21ms)

systemd-resolved.service (258ms)

systemd-timesyncd.service (214ms)

systemd-update-utmp.service (20ms)

remote-fs-pre.target

remote-fs.target

rpcbind.target

sys-devices-virtual-block-loop32.device

sys-devices-virtual-block-loop31.device

sys-devices-virtual-block-loop33.device

sys-devices-virtual-block-loop28.device

networking.service (168ms)

snapd.apparmor.service (197ms)

sys-devices-virtual-block-loop34.device

time-set.target

time-sync.target

sys-devices-virtual-block-loop35.device

nss-lookup.target

sysinit.target

acpid.path

resolvconf-pull-resolved.path

anacron.timer

apt-daily.timer

apt-daily-upgrade.timer

e2scrub_all.timer

fstrim.timer

fwupd-refresh.timer

logrotate.timer

man-db.timer

motd-news.timer

systemd-tmpfiles-clean.timer

ua-messaging.timer

paths.target

timers.target

acpid.socket

avahi-daemon.socket

dbus.socket

docker.socket (8ms)

libvirtd.socket (3ms)

snapd.socket (1ms)

spice-vdagentd.socket

uuidd.socket

virtlockd.socket

virtlockd-admin.socket

virtlogd.socket

virtlogd-admin.socket

libvirtd-admin.socket

libvirtd-ro.socket

sockets.target

basic.target

accounts-daemon.service (588ms)

acpid.service

avahi-daemon.service (361ms)

bluetooth.service (357ms)

cron.service

cryptmount.service (112ms)

dbus.service

NetworkManager.service (400ms)

dmesg.service

dropbear.service (151ms)

e2scrub_reap.service (242ms)

getty.target

gpu-manager.service (211ms)

irqbalance.service

lm-sensors.service (120ms)

networkd-dispatcher.service (768ms)

ondemand.service

polkit.service (322ms)

pppd-dns.service (72ms)

rc.local.service (99ms)

rsyslog.service (158ms)

smartmontools.service (278ms)

snapd.service (2.511s)

switcheroo-control.service (299ms)

sysstat.service (38ms)

systemd-logind.service (668ms)

systemd-machined.service (241ms)

thermald.service (258ms)

udisks2.service (532ms)

wpa_supplicant.service (252ms)

grub-initrd-fallback.service (68ms)

colord.service (140ms)

ModemManager.service (309ms)

alsa-restore.service (28ms)

sound.target

network.target

NetworkManager-wait-online.service (4.929s)

containerd.service (493ms)

nfs-mountd.service (50ms)

openvpn.service (10ms)

ssh.service (99ms)

nfs-server.service (1.154s)

libvirtd.service (200ms)

unattended-upgrades.service

libvirt-guests.service (35ms)

snapd.seeded.service (446ms)

resolvconf-pull-resolved.service (41ms)

network-online.target

ddclient.service (54ms)

docker.service (2.982s)

hddtemp.service (58ms)

kerneloops.service (74ms)

openvpn@client-vmvpn.service (1.128s)

openvpn@client.service (1.126s)

tftpd-hpa.service (102ms)

ubuntu-fan.service (1.122s)

virtualbox.service (1.119s)

whoopsie.service

systemd-user-sessions.service (6ms)

gdm.service (41ms)

plymouth-quit-wait.service (5.102s)

var-lib-docker-btrfs.mount

sys-subsystem-net-devices-docker0.device

sys-devices-virtual-net-docker0.device

rtkit-daemon.service (6ms)

sys-subsystem-net-devices-tun0.device

sys-devices-virtual-net-tun0.device

sys-subsystem-net-devices-tun1.device

sys-devices-virtual-net-tun1.device

upower.service (866ms)

geoclue.service (214ms)

multi-user.target

graphical.target

setvtrgb.service (14ms)

systemd-update-utmp-runlevel.service (25ms)

system-getty.slice

Activating

Active

Deactivating

Setting up security module

Generators

Loading unit files

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/169

Init optimizations

Goal to start your application as soon as possible after all the dependencies are started:

▶ Depends on your init program. Here we are assuming BusyBox init scripts.
▶ init scripts run in alphanumeric order and start with a letter (K for stop (kill)

and S for start).
▶ You want to use the lowest number you can for your application.
▶ You can even replace init with your application!

However, that’s easier to keep a standard init, which also acts as a universal
parent to orphan processes (otherwise you get zombies), and also takes care of
implementing system shutdown.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/169

Optimizing init scripts
▶ Start all your services directly from a single startup script (e.g.

/etc/init.d/rcS). This eliminates multiple calls to /bin/sh.
▶ An easier to maintain solution allowing to keep subscripts: source them

(. command) if possible. This won’t spawn new shell processes. Buildroot’s
/etc/init.d/rcS file already does this with .sh files.

▶ You could mount your filesystems directly in the C code of your application:

#include <stdio.h>
#include <sys/mount.h>

int main (void)
{

int ret;
ret = mount("sysfs", "/tmp/test", "sysfs", 0, NULL);
if(ret < 0)

perror("Can't mount sysfs\n");
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/169

Reduce forking (1)

▶ fork/exec system calls are very expensive. Because of this, calls to executables
from shells are slow.

▶ Try to use shell built-ins whenever possible. For example in BusyBox, you can use
echo, test, printf and others as shell built-ins. At run time, use the type
command to check whether a command is a built-in. Example: type echo.

▶ BusyBox also has a exec prefer applets setting
(CONFIG_FEATURE_PREFER_APPLETS) trying to run the corresponding applet
(instead of making an exec call), typically in shells or in commands such as
find -exec.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/169

Reduce forking (2)

Pipes and back-quotes are also implemented by fork/exec. You can reduce their
usage in scripts. Example:

cat /proc/cpuinfo | grep model

Replace it with:

grep model /proc/cpuinfo

See https://elinux.org/Optimize_RC_Scripts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/169

https://elinux.org/Optimize_RC_Scripts

Reduce forking (3)

Replaced:

if [$(expr match "$(cat /proc/cmdline)" '.* debug.*')\
-ne 0 -o -f /root/debug]; then

DEBUG=1

By a much cheaper command running only one process:

res=`grep " debug" /proc/cmdline`
if ["$res" -o -f /root/debug]; then
DEBUG=1

This only optimization allowed to save 87 ms on an ARM AT91SAM9263 system (200
MHz)!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/169

Reduce size

▶ Strip your executables and libraries, removing ELF sections only needed for
development and debugging. The strip command is provided by your
cross-compiling toolchain. That’s done by default in Buildroot.

▶ superstrip:
https://muppetlabs.com/~breadbox/software/elfkickers.html. Goes
beyond strip and can strip out a few more bits that are not used by Linux to
start an executable. Buildroot stopped supporting it because it can break
executables. Try it only if saving a few bytes is critical.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/169

https://muppetlabs.com/~breadbox/software/elfkickers.html

Quick splashscreen display (1)

Often the first sign of life that you are showing!
▶ A good solution seems to be BusyBox fbsplash:

See miscutils/fbsplash.c in BusyBox sources.
▶ Alternative: fbv

http://s-tech.elsat.net.pl/fbv/

▶ However, fbv is slow:
878 ms on an Microchip AT91SAM9263 system!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/169

https://elixir.bootlin.com/busybox/latest/source/miscutils/fbsplash.c
http://s-tech.elsat.net.pl/fbv/

Quick splashscreen display (2)

▶ To do it faster, you can dump the framebuffer contents:
fbv -d 1 /root/logo.bmp
cp /dev/fb0 /root/logo.fb
lzop -9 /root/logo.fb

▶ And then copy it back as early as possible in an initramfs:
lzopcat /root/logo.fb.lzo > /dev/fb0

Results on an Microchip AT91SAM9263 system:
fbv plain copy (dd) lzopcat

Time 878 ms 54 ms 52.5 ms
https://bootlin.com/blog/super-fast-linux-splashscreen/

Note: LZO compression is the fastest in terms of decompression, and is supported by BusyBox.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/169

https://bootlin.com/blog/super-fast-linux-splashscreen/

Animated splashscreen

Still slow to read and write entire screens. Just draw useful pixels and even create an
animation!
▶ Create a simple C program that just animates pixels and simple geometric shapes

on the framebuffer!
▶ Example: https://bootlin.com/pub/code/fb/anim.c (Public Domain license).

On a 400 MHz ARM9 system: starts drawing in 10 ms
Size: 24 KB, compiled statically with Musl (2023 status).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/169

https://bootlin.com/pub/code/fb/anim.c

Practical lab - Reducing time in init-scripts

▶ Regenerate the root filesystem with Buildroot
▶ Use bootchartd to measure boot time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/169

Filesystem optimizations

Filesystem optimizations

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/169

Filesystem impact on performance

Tuning the filesystem is usually one of the first things we work on in boot time
projects.
▶ Different filesystems can have different initialization and mount times. In

particular, the type of filesystem for the root filesystem directly impacts boot time.
▶ Different filesystems can exhibit different read, write and access time performance,

according to the type of filesystem activity and to the type of files in the system.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/169

Different filesystem for different storage types

▶ Block storage (including memory cards, eMMC)
• ext2, ext4
• xfs, btrfs
• f2fs
• SquashFS, EROFS

▶ Raw flash storage
• JFFS2
• YAFFS2
• UBIFS
• ubiblock + (SquashFS or EROFS)

See our embedded Linux training materials for full details:
https://bootlin.com/doc/training/embedded-linux/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/169

https://bootlin.com/doc/training/embedded-linux/

Block filesystems

For block storage
▶ ext4: pretty good read and write performance.
▶ xfs: can be good in some read or write scenarii as well.
▶ btrfs, f2fs: can achieve good read and write performance, taking advantage of the

characteristics of flash-based block devices. However, btrfs is slow to initialize (see
benchmarks later).

▶ SquashFS: very good mount time and read performance, for read-only partitions.
Gives priority to compression rate vs performance.

▶ EROFS: newer read-only file system for block storage. Gives priority to read
performance vs compression rate.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/169

JFFS2

For raw flash storage
▶ Mount time depending on filesystem size: the kernel has to scan the whole

storage at mount time, to read which block belongs to each file.
▶ Need to use the CONFIG_JFFS2_SUMMARY kernel option to store such information

in flash. This dramatically reduces mount time.
▶ Benchmark on ARM:

from 16 s to 0.8 s for a 128 MB partition.
▶ Rather poor read and write performance,

compared to YAFFS2 and UBIFS.
▶ JFFS2 only makes sense on small storage space, where UBI would have too much

overhead.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_JFFS2_SUMMARY

YAFFS2

For raw flash storage
▶ Good mount time
▶ Good read and write performance
▶ Drawbacks: no compression, not in the mainline Linux kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/169

UBIFS

For raw flash storage, on top of the UBI layer
▶ Advantages:

• Good read and write performance (similar to YAFFS2)
• Other advantages: better for wear leveling (can operate on the whole UBI space, not

only within a single partition).
▶ Drawbacks:

• Not appropriate for small partitions (too much metadata overhead). Use JFFS2 or
YAFFS2 instead.

• Not so good mount time, because of the time needed to initialize UBI (UBI Attach:
at boot time or running ubi_attach in user space).

• Addressed by UBI Fastmap, introduced in Linux 3.7.
See next slides.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/169

How UBI Fastmap works

▶ UBI Attach: needs to read UBI metadata by scanning all erase blocks. Time
proportional to the storage size.

▶ UBI Fastmap stores such information in a few flash blocks (typically at UBI
detach time during system shutdown) and finds it there at boot time.

▶ This makes UBI Attach time constant.
▶ If Fastmap information is invalid (unclean system shutdown, for example), it falls

back to scanning (slower, but correct, and Fastmap will work again during the
next boot).

▶ Details: ELCE 2012 presentation from Thomas Gleixner:
https://elinux.org/images/a/ab/UBI_Fastmap.pdf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/169

https://elinux.org/images/a/ab/UBI_Fastmap.pdf

Using UBI Fastmap

▶ Compile your kernel with CONFIG_MTD_UBI_FASTMAP

▶ Boot your system at least once with the ubi.fm_autoconvert=1 kernel parameter.
▶ Reboot your system in a clean way
▶ You can now remove ubi.fm_autoconvert=1

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_MTD_UBI_FASTMAP

UBI Fastmap benchmark

▶ Measured on the Microchip SAMA5D3 Xplained board (ARM), Linux 3.10
▶ UBI space: 216 MB
▶ Root filesystem: 80 MB used (Yocto)
▶ Average results:

Attach time Diff Total time
Without UBI Fastmap 968 ms
With UBI Fastmap 238 ms -731 ms -665 ms

▶ Expect to save more with bigger UBI spaces!
Note: total boot time reduction a bit lower probably because of other kernel threads
executing during the attach process.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/169

ubiblock + (SquashFS or EROFS)

For raw flash storage
▶ ubiblock: read-only block device on top of UBI (CONFIG_MTD_UBI_BLOCK).
▶ Allows to put SquashFS or EROFS on a UBI volume.
▶ Expecting great boot time and read performance. Great for read-only root

filesystems.
▶ Benchmarks not available yet.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_MTD_UBI_BLOCK

Finding the best filesystem

▶ Raw flash storage: UBIFS with CONFIG_UBI_FASTMAP is probably the best solution.
▶ Block storage: SquashFS best solution for root filesystems which can be

read-only. Btrfs and f2fs probably the best solutions for read/write filesystems.
▶ Fortunately, changing filesystem types is quite cheap, and completely transparent

for applications. Just try several filesystem options, as see which one works best
for you!

▶ Do not focus only on boot time.
For systems in which read and write performance matters, we recommend to use
separate root filesystem (for quick boot time) and data partitions (for good
runtime performance).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_UBI_FASTMAP

Initramfs

An idea is to use a very small initramfs, just enough to start the critical application
and then switch to the final root filesystem.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/169

Root filesystem in memory: initramfs

It is also possible to boot the system with a filesystem in memory: initramfs
▶ Either from a compressed CPIO archive integrated into the kernel image
▶ Or from such an archive loaded by the bootloader into memory
▶ At boot time, this archive is extracted into the Linux file cache
▶ It is useful for two cases:

• Fast booting of very small root filesystems. As the filesystem is completely loaded at
boot time, application startup is very fast.

• As an intermediate step before switching to a real root filesystem, located on devices
for which drivers are not part of the kernel image (storage drivers, filesystem drivers,
network drivers). This is always used on the kernel of desktop/server distributions to
keep the kernel image size reasonable.

▶ Details (in kernel documentation):
filesystems/ramfs-rootfs-initramfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/169

https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html

External initramfs

▶ To create one, first create a compressed CPIO archive:
cd rootfs/
find . | cpio -H newc -o > ../initramfs.cpio
cd ..
gzip initramfs.cpio

▶ If you’re using U-Boot, you’ll need to include your archive in a U-Boot container:
mkimage -n 'Ramdisk Image' -A arm -O linux -T ramdisk -C gzip \

-d initramfs.cpio.gz uInitramfs

▶ Then, in the bootloader, load the kernel binary, DTB and uInitramfs in RAM
and boot the kernel as follows:
bootz kernel-addr initramfs-addr dtb-addr

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/169

Built-in initramfs

To have the kernel Makefile include an initramfs archive in the
kernel image: use the CONFIG_INITRAMFS_SOURCE option.
▶ It can be the path to a directory containing the root

filesystem contents
▶ It can be the path to a ready made cpio archive
▶ It can be a text file describing the contents of the initramfs

See the kernel documentation for details:
driver-api/early-userspace/early_userspace_support

WARNING: only binaries from GPLv2 compatible code are
allowed to be included in the kernel binary using this technique.
Otherwise, use an external initramfs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_INITRAMFS_SOURCE
https://www.kernel.org/doc/html/latest/driver-api/early-userspace/early_userspace_support.html

Overall booting process with initramfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/169

Initramfs for boot time reduction

Create the smallest initramfs possible, just enough to start the critical application and
then switch to the final root filesystem with switch_root:
▶ Use a light C library reduced to the minimum, uClibc or Musl if you are not yet

using it for your root filesystem
▶ Reduce BusyBox to the strict minimum. You could even do without it and

implement /init in C.
▶ Use statically linked applications (less CPU overhead, less libraries to load, smaller

initramfs if no libraries at all), BR2_STATIC_LIBS in Buildroot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/169

Statically linked executables: licensing constraints

▶ Statically linked executables are very useful to reduce size (especially in small
initramfs), and require less work to start.

▶ However, the LGPL license in the uClibc and glibc libraries requires to leave the
user the ability to relink the executable with a modified version of the library.

▶ Solution to keep static binaries:
• Either provide the executable source code (even proprietary), allowing to recompile it

with a modified version of the library. That’s what you do when you ship a static
BusyBox.

• Or also provide a dynamically linked version of the executable (in a separate way),
allowing to use another library version.

• Easiest solution: build your static executables with the musl library (MIT license: no
trouble)

▶ References:
https://gnu.org/licenses/gpl-faq.html#LGPLStaticVsDynamic

https://gnu.org/copyleft/lesser.html#section4

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/169

https://gnu.org/licenses/gpl-faq.html#LGPLStaticVsDynamic
https://gnu.org/copyleft/lesser.html#section4

Do not compress your initramfs

▶ If you ship your initramfs inside a compressed kernel image, don’t compress it
(enable CONFIG_INITRAMFS_COMPRESSION_NONE).

▶ Otherwise, by default, your initramfs data will be compressed twice, and the
kernel will be bigger and will take a little more time to load and uncompress.

▶ Example on Linux 5.1 with a 1.60 MB initramfs (tar archive size) on Beagle Bone
Black: this allowed to reduce the kernel size from 4.94 MB to 4.74 MB (-200 KB)
and save about 170 ms of boot time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_INITRAMFS_COMPRESSION_NONE

Practical lab - Filesystem optimizations

▶ Comparing the boot time performance of
various filesystems

▶ Tests with initramfs booting too

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/169

Filesystem optimizations - Results

Results on BeagleBone Black, Linux 5.11
FS image size Buildroot

image size
zImage size

diff Time to init Total
boot time

ffmpeg
exec time

ext2 (rev1) only 62,914,560 +19,544 8.489s 9.704s 0.498s
ext4 only 62,914,560 +241,472 8.645s 9.862s 0.484s
btrfs 114,294,784 +546,376 11.789s 12.918s 0.487s
f2fs 104,857,600 +167,640 8.670s 9.803s 0.488s
squashfs with lzo 724,992 +19,016 8.500s 9.721s 0.436s
erofs without compression 1,196,032 +28,072 8.510s 9.795s 0.491s
initramfs N/A +169,552 8.399s 9.660s 0.455s

Note: zImage kernel compressed with LZMA (best but slowest compressor), with a 1.162 MB
filesystem (size of the tar archive generated by Buildroot).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/169

Kernel optimizations

Kernel optimizations

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/169

Advice for kernel optimizations

▶ During these tests, you will make countless kernel updates, and will have to test them on
the hardware to make sure nothing is broken.

▶ During this phase, we recommend to switch to loading the kernel through the network
(tftp) if possible. This will save a lot of time compared to updating the kernel on the SD
card, and reduces the risk to damage your SD card reader.

▶ Loading the kernel through the network will introduce delays and jitter, but that won’t be
an issue:

• In the cases when what you measure is kernel size reduction, just making sure each
new kernel is still functional.

• If you want to measure the boot time impact of your changes, you can still start
counting time from the Starting kernel message.

▶ Make kernel configuration changes very progressively and keep manual snapshots of
each configuration. This will help when a change breaks a working kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/169

Measure - Kernel initialization functions

To find out which kernel initialization functions are the longest to execute, add
initcall_debug to the kernel command line. Here’s what you get on the kernel log:
...
[3.750000] calling ov2640_i2c_driver_init+0x0/0x10 @ 1
[3.760000] initcall ov2640_i2c_driver_init+0x0/0x10 returned 0 after 544 usecs
[3.760000] calling at91sam9x5_video_init+0x0/0x14 @ 1
[3.760000] at91sam9x5-video f0030340.lcdheo1: video device registered @ 0xe0d3e340, irq = 24
[3.770000] initcall at91sam9x5_video_init+0x0/0x14 returned 0 after 10388 usecs
[3.770000] calling gspca_init+0x0/0x18 @ 1
[3.770000] gspca_main: v2.14.0 registered
[3.770000] initcall gspca_init+0x0/0x18 returned 0 after 3966 usecs
...

You might need to increase the log buffer size with CONFIG_LOG_BUF_SHIFT in your
kernel configuration. You will also need CONFIG_PRINTK_TIME and CONFIG_KALLSYMS.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LOG_BUF_SHIFT
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PRINTK_TIME
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KALLSYMS

Kernel boot graph

With initcall_debug, you can generate a boot graph making it easy to see which
kernel initialization functions take most time to execute.
▶ Copy and paste the output of the dmesg command to a file (let’s call it boot.log)
▶ On your workstation, run the scripts/bootgraph.pl script in the kernel sources:

scripts/bootgraph.pl boot.log > boot.svg

▶ You can now open the boot graph with a vector graphics editor such as inkscape:

tra
ce
r_in

it_tra
ce
fs

ch
r_d

e
v
_in

it

p
o
p
u
la
te
_ro

o
tfs

sy
sc_in

it

se
ria

l8
2
5
0
_in

it

o
m
a
p
8
2
5
0
_p
la
tfo

rm
_d
riv

e
r_in

it

tilcd
c_d

rm
_in

it

m
td
o
o
p
s_in

it

fi
xe
d
_m

d
io
_b
u
s_in

it

cp
sw

_d
riv

e
r_in

it

a
m
3
3
5
x
_ch

ild
_in

it

i2
c_d

e
v
_in

it
u
v
c_in

it

le
d
trig

_cp
u
_in

it

o
p
ro
fi
le
_in

it
x
frm

_u
se
r_in

it
in
e
t6
_in

it

sit_in
it

p
a
cke

t_in
it

ip
se
c_p

fke
y
_in

it
in
it_d

n
s_re

so
lv
e
r

th
u
m
b
e
e
_in

it
sw

p
_e
m
u
la
tio

n
_in

it
__o

m
a
p
2
_co

m
m
o
n
_p
m
_la

te
_in

it

__sr_cla
ss3

_in
it

lo
a
d
_sy

ste
m
_ce

rtifi
ca
te
_list

clk_d
e
b
u
g
_in

it

d
e
fe
rre

d
_p
ro
b
e
_in

itca
ll

rtc_h
cto

sy
s

re
g
u
la
to
r_in

it_co
m
p
le
te

0
.2
3

0
.3
4

0
.4
6

0
.5
7

0
.6
9

0
.8

0
.9
2

1
.0
3

1
.1
5

1
.2
6

1
.3
8

1
.4
9

1
.6
1

1
.7
2

1
.8
4

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/169

Using the kernel boot graph (1)

Start working on the functions consuming most time first. For each function:
▶ Look for its definition in the kernel source code. You can use Elixir (for example

https://elixir.bootlin.com).
▶ Be careful: some function names don’t exist, the names correspond to

modulename_init. Then, look for initialization code in the corresponding module.
▶ Remove unnecessary functionality:

• Find which kernel configuration parameter compiles the code, by looking at the
Makefile in the corresponding source directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/169

https://elixir.bootlin.com

Using the kernel boot graph (2)

▶ Postpone:
• Find which module (if any) the function belongs to. Load this module later if

possible.
▶ Optimize necessary functionality:

• Look for parameters which could be used to reduce probe time, looking for the
module_param macro.

• Look for delay loops and calls to functions containing delay in their name, which
could take more time than needed. You could reduce such delays, and see whether
the code still works or not.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/169

Reduce kernel size

First, we focus on reducing the size without removing features
▶ The main mechanism is to use kernel modules
▶ Compile everything that is not needed at boot time as a module
▶ Two benefits: the kernel will be smaller and load faster, and less initialization code

will get executed
▶ Remove features that are not used by userland: CONFIG_KALLSYMS,

CONFIG_DEBUG_FS, CONFIG_BUG
▶ Use features designed for embedded systems: CONFIG_EMBEDDED,

CONFIG_SLUB_TINY (reducing memory footprint for systems with less than 16MB
of RAM, but not scaling well).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KALLSYMS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_BUG
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EMBEDDED
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_SLUB_TINY

Reduce kernel size - Detect the biggest symbols

▶ Use this command to find the biggest
symbols in the compiled kernel:
nm --size -r vmlinux

▶ For those which could be unnecessary, look
for them in the code

▶ Then study the corresponding Makefile to
see how not to compile them, if possible.

▶ See https://elinux.org/System_Size

$ nm --size -r vmlinux
00003f00 b serial8250_ports
000039c0 D v4l2_dv_timings_presets
000038b8 T hidinput_connect
00003790 d edid_cea_modes_1
00002680 d drm_dmt_modes
00002000 b page_address_maps
00002000 d crc32table_le
00002000 d crc32table_be
00002000 d crc32ctable_le
00002000 d blake2s_testvecs
00001b90 b fb_display
00001b0a T v4l2_ctrl_get_name
00001ae8 t usbdev_ioctl
00001ac0 t v4l_enum_fmt
000019e0 t do_con_write
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/169

https://elinux.org/System_Size

Kernel Compression
Depending on the balance between your storage reading speed and your CPU power to
decompress the kernel, you will need to benchmark different compression algorithms.
Also recommended to experiment with compression options at the end of the kernel
optimization process, as the results may vary according to the kernel size.

Default mode Good balance between compression and speed

Very good compression rate but slow

Best compression rate but slow

Poor compression rate but fast decompression

Poorest compression rate but fastest decompression

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/169

Kernel compression options

Results on TI AM335x (ARM), 1 GHz, Linux 5.1
Timestamp gzip lzma xz lzo lz4
Size 2350336 1777000 1720120 2533872 2716752
Copy 0.208 s 0.158 s 0.154 s 0.224 s 0.241 s
Time to userspace 1.451 s 2.167 s 1.999s 1.416 s 1.462 s

Gzip is close. It’s time to try with faster storage (SanDisk Extreme Class A1)
Timestamp gzip lzma xz lzo lz4
Size 2350336 1777000 1720120 2533872 2716752
Copy 0.150 s 0.114 s 0.111 s 0.161 s 0.173 s
Time to userspace 1.403 s 2.132 s 1.965 s 1.363 s 1.404 s

Lzo and Gzip seem the best solutions. Always benchmark as the results depend on
storage and CPU performance.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/169

Compressing the kernel with Zstandard
▶ Zstandard is a relatively recent compression scheme, implemented by Yann Collet.
▶ Unfortunately, not available on ARM yet.

Only on x86, mips and s390 (Linux 6.4 status).
▶ Compressing better than gzip and decompressing as fast as LZO, it could be the

best option.
▶ See https://en.wikipedia.org/wiki/Zstandard

config KERNEL_ZSTD
bool "ZSTD"
depends on HAVE_KERNEL_ZSTD
help
ZSTD is a compression algorithm targeting intermediate compression
with fast decompression speed. It will compress better than GZIP and
decompress around the same speed as LZO, but slower than LZ4. You
will need at least 192 KB RAM or more for booting. The zstd command
line tool is required for compression.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/169

https://en.wikipedia.org/wiki/Zstandard

Booting an uncompressed kernel

▶ It is also possible to boot an uncompressed kernel:
arch/<arch>/boot/Image

▶ This could be a worthy solution if you have a slow CPU and fast I/O, or if you’re
booting Linux in an emulated machine (hardware or software emulator).

▶ On U-Boot on ARM, you won’t be able to boot with the bootz command. You
will need to use bootm and a uImage file.

See https://bootlin.com/blog/uncompressed-linux-kernel-on-arm/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/169

https://bootlin.com/blog/uncompressed-linux-kernel-on-arm/

Optimize kernel for size (1)

▶ CONFIG_CC_OPTIMIZE_FOR_SIZE: possibility to compile the kernel with gcc -Os
instead of gcc -O2.

▶ Such optimizations give priority to code size at the expense of code speed. -Os
enables all -O2 optimizations except those that often increase code size.

▶ Results: loading and decompressing the kernel is faster (smaller size), but then
the kernel boots and runs slower.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CC_OPTIMIZE_FOR_SIZE

Optimize kernel for size (2)

Results on BeagleBone Black, Linux 5.11, lzo compression
O2 Os Diff

Size 7372432 6594440 -10.5 %
Copy time 0.489 s 0.437s s -52 ms
Decompression time 1.490 s 1.558 s -68 ms
Time to userspace 1.303 s 1.462 s +159 ms
Total boot time 5.739 s 5.796s +57 ms

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/169

Deferring drivers and initcalls

▶ If you can’t compile a feature as a module (e.g. networking or block subsystem),
you can try to defer its execution.

▶ Your kernel will not shrink but some initializations will be postponed.
▶ Typically, you would modify probe() functions to return -EPROBE_DEFER until

they are ready to be run.
▶ See https://lwn.net/Articles/485194/ for details about the infrastructure

supporting this.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/169

https://elixir.bootlin.com/linux/latest/ident/EPROBE_DEFER
https://lwn.net/Articles/485194/

Turning off console output

▶ Console output is actually taking a lot of time (very slow device). Probably not
needed in production. Disable it by passing the quiet argument on the kernel
command line.

▶ You will still be able to use dmesg to get the kernel messages.
▶ Time between starting the kernel and starting the init program, on Microchip

SAMA5D3 Xplained (ARM), Linux 3.10:

Time Diff
Without quiet 2.352 s
With quiet 1.285 s -1.067 s

▶ Less time will be saved on a reduced kernel, of course.
▶ Don’t do it too early if you’re using grabserial

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/169

Preset loops per jiffy

▶ At each boot, the Linux kernel calibrates a delay loop (for the udelay()
function). This measures a number of loops per jiffy (lpj) value. You just need to
measure this once! Find the lpj value in the kernel boot messages:

Calibrating delay loop... 996.14 BogoMIPS (lpj=4980736)

▶ Now, you can add lpj=<value> to the kernel command line:

Calibrating delay loop (skipped) preset value.. 996.14 BogoMIPS (lpj=4980736)

▶ Tests on BeagleBone Black (ARM), Linux 6.1: -83 ms

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/169

https://elixir.bootlin.com/linux/latest/ident/udelay

Multiprocessing support (CONFIG_SMP)

▶ SMP is quite slow to initialize
▶ It is usually enabled in default configurations, even if you have a single core CPU

(default configurations should support multiple systems).
▶ So make sure you disable it if you only have one CPU core.
▶ Results on BeagleBone Black:

Compressed kernel size: -188 KB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/169

Kernel: last milliseconds (1)

To shave off the last milliseconds, you will probably want to remove unnecessary
features:
▶ CONFIG_PRINTK=n will have the same effect as the quiet command line argument

but you won’t have any access to kernel messages. You will have a significantly
smaller kernel though.

▶ Compile your kernel in Thumb2 mode (on ARM 32 bit): CONFIG_THUMB2_KERNEL
(any ARM toolchain can do that).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PRINTK
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_THUMB2_KERNEL

Kernel last milliseconds (2)

More features you could remove:
▶ Module loading/unloading
▶ Block layer
▶ Network stack
▶ USB stack
▶ Power management features
▶ CONFIG_SYSFS_DEPRECATED

▶ Input: keyboards / mice / touchscreens

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/169

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_SYSFS_DEPRECATED

Practical lab - Reduce kernel boot time

▶ Use initcall_debug to find the biggest time
consumers

▶ Optimize existing functionality
▶ Remove unused features and drivers
▶ Select the best kernel compression method

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/169

Bootloader optimizations

Bootloader
optimizations

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/169

Bootloader optimizations

Generic bootloader optimizations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/169

Bootloader

▶ Remove unnecessary functionality.
Usually, bootloaders include many features needed only for development. Compile
your bootloader with fewer features.

▶ Optimize required functionality.
Tune your bootloader for fastest performance.
Skip the bootloader and load the kernel right away.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/169

U-Boot - Remove unnecessary functionality

Recompile U-Boot to remove features not needed in production
▶ Disable as many features as possible through the menuconfig interface and

through include/configs/<soc>-<board>.h

▶ Examples: MMC, USB, Ethernet, dhcp, ping, command line edition, command
completion...

▶ A smaller and simpler U-Boot is faster to load and faster to initialize.
However, in this presentation, we will give the easiest optimizations in U-Boot, but
won’t be exhaustive, because the best way to save time is to skip U-Boot, using its
Falcon Mode (covered in the next section).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/169

U-Boot - Remove the boot delay

▶ Remove the boot delay:
setenv bootdelay 0

▶ This usually saves several seconds!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/169

U-Boot - Simplify scripts
Some boards have over-complicated scripts:

bootcmd=run bootf0
bootf0=run ${args0}; setenv bootargs ${bootargs} \
maximasp.kernel=maximasp_nand.0:kernel0; nboot 0x70007fc0 kernel0

Running nested scripts

Let’s replace this by:

setenv bootargs 'mem=128M console=tty0 consoleblank=0
console=ttyS0,57600 \
mtdparts=maximasp_nand.0:2M(u-boot)ro,512k(env0)ro,512k(env1)ro,\
4M(kernel0),4M(kernel1),5M(kernel2),100M(root0),100M(root1),-(other)\
rw ubi.mtd=root0 root=ubi0:rootfs rootfstype=ubifs earlyprintk debug \
user_debug=28 maximasp.board=EEKv1.3.x \
maximasp.kernel=maximasp_nand.0:kernel0'
setenv bootcmd 'nboot 0x70007fc0 kernel0'

This saved 56 ms on this ARM9 system (400 MHz)!
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/169

Bootloader: copy the exact kernel size

▶ When copying the kernel from raw flash or MMC to RAM, we still see many
systems that copy too many bytes, not taking the exact kernel size into account.

▶ A solution is to store the exact size of the kernel in an environment variable, and
use it a kernel loading time.

▶ Of course, that’s not needed when the kernel is loaded from a filesystem, which
knows how big the file is.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/169

Bootloader: watch the compressed kernel load address
On ARM32, the uncompressed kernel is usually started at offset 0x8000 from the start
of RAM. Load the compressed kernel at a far enough address!

Source: https://people.kernel.org/linusw/how-the-arm32-linux-kernel-decompresses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/169

https://people.kernel.org/linusw/how-the-arm32-linux-kernel-decompresses

Bootloader: load the compressed kernel far enough

On ARM32, a usual kernel load address is at offset 0x01000000 (16 MB)

Tests on STM32MP157A (650 MHz): an overlap increases boot time by 107 ms.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/169

Bootloader optimizations

U-Boot Falcon Mode

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/169

Goal: boot faster!

U-Boot Falcon Mode is about
reducing the time spent in the
bootloader.

Falcons are the fastest animals on Earth!
Image credits: https://openclipart.org/detail/287044/falcon-2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/169

https://openclipart.org/detail/287044/falcon-2

Example: booting on Microchip SAMA5D36

You first need to understand how your SoC boots:

Source: Microchip SAMA5D36 datasheet
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet_B.pdf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/169

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet_B.pdf

Normal and Falcon boot on Microchip SAMA5D3

Boot process with U-Boot

▶ RomBoot: tries to find a valid bootstrap image from various
storage sources, and load it into SRAM (DRAM not initialized
yet). Size limited to the SRAM size (here 64 KB).

▶ U-Boot SPL (Secondary Program Loader): runs from SRAM
(inside the SoC). Initializes the DRAM controller plus storage
devices (MMC, NAND), loads the secondary bootloader into
DRAM and starts it. Much bigger size limits!

▶ U-Boot: runs from DRAM. Initializes other hardware devices
(network, USB, etc.). Loads the kernel image from storage or
network to DRAM and starts it.
This is the part that can be skipped

▶ Linux Kernel: runs from DRAM. Takes over the system
completely (the bootloader no longer exists).

This scheme applies to all modern SoCs. Boot process without U-Boot
(Falcon mode)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/169

Falcon mode advantages and drawbacks

▶ Main advantage: since Linux and U-Boot are both loaded to RAM,
U-Boot’s Falcon Mode mainly saves time by directly loading Linux from the SPL
instead of loading and executing the full U-Boot first.

▶ Drawback: you lose the flexibility brought by the full U-Boot. You have to follow
a special procedure to update the kernel binary, DTB and kernel command line
parameters.

▶ Advantage: the interactivity offered by the full U-Boot is not necessary on a
production device. Falcon boot works in the same way on all SoCs on which
U-Boot SPL is supported. This makes it easier to apply this technique on all your
projects!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/169

What U-Boot does (1)

U-Boot has multiple ways of preparing the kernel boot:
▶ ATAGS - The old way (before Device Tree)

U-Boot prepares the Linux kernel command line (bootargs), the machine ID and
other information for Linux in a tagged list, and passes its address to Linux
through a register.

▶ Flattened Device Tree - The standard way
• U-Boot checks the device tree loaded in RAM or directly provides its own.
• U-Boot checks the specifics of the hardware (amount and location of RAM, MAC

address, present devices...), possibly loads corresponding Device Tree overlays, and
modifies (fixes-up) the Device Tree accordingly.

• U-Boot stores the Linux kernel command line (bootargs) in the chosen section in
the Device Tree.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/169

What U-Boot does (2)

▶ FIT Image - The new way
• U-Boot loads the kernel(s), device tree(s), initramfs image(s), signature(s) from a

single file (FIT Image)
• That’s used for secure booting, for booting recovery images, etc.
• U-Boot also implements Device Tree fix-ups, of course.

Using the spl export command in U-Boot, you can do such preparation work ahead
of time.
▶ In this presentation, we just cover standard Device Tree booting.
▶ U-Boot also has support for FIT Image loading in the SPL, but that may still be a

bit experimental, and such code must fit within your maximum allowable size for
the SPL.
See arch/arm/cpu/armv8/fsl-layerscape/doc/README.falcon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/169

https://elixir.bootlin.com/u-boot/latest/source/arch/arm/cpu/armv8/fsl-layerscape/doc/README.falcon

Falcon mode usage overview (1)

Here are the generic steps you need to go through:
▶ Recompile U-Boot with support for Falcon Mode (CONFIG_SPL_OS_BOOT), with

support for spl export (CONFIG_CMD_SPL), and for the way you want to boot.
▶ Also make sure that CONFIG_SPL_SIZE_LIMIT is set (find the SRAM size for your

CPU, 0x10000 for SAMA5D36), otherwise, U-Boot won’t complain when the SPL
is bigger.

▶ Build the kernel legacy uImage file from zImage (see next slides)
▶ Set the kernel command line (bootargs environment variable)
▶ Load the uImage, initramfs (if any) and Device Tree images to RAM as usual.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/169

https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_OS_BOOT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_CMD_SPL
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_SIZE_LIMIT

Falcon mode usage overview (2)

Continued...
▶ Have U-Boot execute the preprocessing before booting Linux, but stop right

before doing it:
spl export fdt <kernel-addr> <initramfs-addr> <dtb-addr>

▶ Save the exported data (ARGS) from RAM to storage, in Flattened Device Tree
form, so that the SPL can load it and directly pass it to the Linux kernel. The
below environment variables will help:

• fdtargsaddr: location of ARGS in RAM
• fdtargslen: size of ARGS in RAM

▶ If supported by your board (code explanations given later), set your boot_os
environment variable to yes/Yes/true/True/1 to enable direct OS booting.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/169

spl export example output

=> fatload mmc 0:1 0x21000000 uImage
5483584 bytes read in 530 ms (9.9 MiB/s)
=> fatload mmc 0:1 0x22000000 dtb
27795 bytes read in 7 ms (3.8 MiB/s)
=> setenv bootargs console=ttyS0,115200
=> spl export fdt 0x21000000 - 0x22000000
Booting kernel from Legacy Image at 21000000 ...

Image Name: Linux-5.12.6
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 5483520 Bytes = 5.2 MiB
Load Address: 20008000
Entry Point: 20008000
Verifying Checksum ... OK

Flattened Device Tree blob at 22000000
Booting using the fdt blob at 0x22000000
Loading Kernel Image
Loading Device Tree to 2fb2c000, end 2fb35c92 ... OK

subcommand not supported
subcommand not supported

Loading Device Tree to 2fb1f000, end 2fb2bc92 ... OK
Argument image is now in RAM: 0x2fb1f000

Image credits:
https://openclipart.org/detail/292953/horus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/169

https://openclipart.org/detail/292953/horus

How to create the uImage file

Microchip SAMA5D3 Xplained board example
▶ Need to know the loading address that should be used for your board. Usually on

ARM32, it’s the starting physical address of RAM plus 0x8000.
▶ Either generate it from the Linux build system:

make LOADADDR=0x20008000 uImage

▶ Or generate it using U-Boot’s mkimage command:

mkimage -A arm -O linux -C none -T kernel \
-a 0x20008000 -e 0x20008000 \
-n "Linux-5.12.6" \
-d arch/arm/boot/zImage arch/arm/boot/uImage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/169

U-Boot code changes to support a new board (1)
Your board/<vendor>/<board>/<board>.c file must at least
implement the spl_start_uboot() function.
Here’s the most typical example:

#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void)
{

if (CONFIG_IS_ENABLED(SPL_SERIAL_SUPPORT) && serial_tstc() && serial_getc() == 'c')
/* break into full u-boot on 'c' */
return 1;

if (CONFIG_IS_ENABLED(SPL_ENV_SUPPORT)) {
env_init();
env_load();
if (env_get_yesno("boot_os") != 1)

return 1;
}
return 0;

}
#endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/169

https://elixir.bootlin.com/u-boot/latest/ident/spl_start_uboot

U-Boot code changes to support a new board (2)

If you cannot fit support for an environment in the SPL,
the spl_start_uboot() function can be simpler:

#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void)
{

if (CONFIG_IS_ENABLED(SPL_SERIAL_SUPPORT) && serial_tstc() && serial_getc() == 'c')
/* break into full u-boot on 'c' */
return 1;

return 0;
}
#endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/169

https://elixir.bootlin.com/u-boot/latest/ident/spl_start_uboot

U-Boot code changes to support a new board (3)

Or even, if reading characters from the serial line doesn’t work:

#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void)
{

return 0;
}
#endif

You may also need extra defines to be set, but you will find which ones are missing at
compile time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/169

How to fall back to U-Boot

▶ If supported by your board, hit the specified key on the
serial console and back in U-Boot, disable the boot_os
environment variable. That’s it.

▶ Otherwise, try to cause OS loading to fail. The easiest
way is to erase the kernel binary and if needed the
spl export output.

▶ If this doesn’t work, re-compile and update the SPL
without Falcon mode support, or temporarily modify
the spl_start_uboot() function to always return 1.
This way, you don’t lose your configuration.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/169

https://elixir.bootlin.com/u-boot/latest/ident/spl_start_uboot

Booting from raw MMC - Proposed storage layout

For use on Microchip SAMA5D3 Xplained

Offset
(512 b sector)

Offset
(bytes)

Contents

0x0 0 MBR
(Master Boot Record)

0x100 128 KiB SPL ARGS
0x200 256 KiB u-boot.img

0x1000 2 MiB uImage
0x4000 16 MiB Start of FAT partition

▶ A FAT partition is required to store
the SPL file (boot.bin). SAMA5D36
doesn’t support an SPL file on raw
MMC (unlike i.MX6).

▶ Caution: partition offsets should be a
multiple of the segment size, as
indicated by the device’s
preferred_erase_size attribute
under /sys/bus/mmc/devices/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/169

Booting from raw MMC - Configuration

U-Boot configuration (starting from sama5d3_xplained_mmc_defconfig):
CONFIG_SPL_OS_BOOT=y
CONFIG_SPL_SIZE_LIMIT=0x10000
CONFIG_SPL_LEGACY_IMAGE_FORMAT=y
CONFIG_SPL_MMC=y
CONFIG_CMD_SPL=y
CONFIG_CMD_SPL_WRITE_SIZE=0x7000
CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR=0x200
CONFIG_SPL_FS_FAT is not set

include/configs/sama5d3_xplained.h
#define CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTOR 0x100 /* 256 KiB */
#define CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTORS (CONFIG_CMD_SPL_WRITE_SIZE / 512)
#define CONFIG_SYS_MMCSD_RAW_MODE_KERNEL_SECTOR 0x1000 /* 2 MiB */
#define CONFIG_SYS_SPL_ARGS_ADDR 0x22000000

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/169

https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_OS_BOOT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_SIZE_LIMIT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_LEGACY_IMAGE_FORMAT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_MMC
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_CMD_SPL
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_CMD_SPL_WRITE_SIZE
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_FS_FAT

Booting from Raw MMC - Writing to raw storage

On your GNU/Linux host:
▶ Write U-Boot (using the same block size as

sector size, to get the same offsets):
sudo dd if=u-boot.img of=/dev/sdc bs=512
seek=512 conv=sync

▶ Write uImage:
sudo dd if=uImage of=/dev/sdc bs=512 seek=
4096 conv=sync

▶ Reminder: in our case (SAMA5D36), the SPL is
copied to boot.bin in a FAT partition.

On your U-Boot target,
after spl export:

▶ Select the right MMC
device for mmc write:
=> mmc list
Atmel mci: 0 (SD)
Atmel mci: 1

=> mmc dev 0
switch to partitions #0, OK
mmc0 is current device

▶ Check the size of ARGS
=> printenv fdtargslen

▶ Divide it by the sector size (512), and convert it
to hexadecimal (round it up), and use the value
to save the ARGS to raw MMC:
=> mmc write ${fdtargsaddr} 0x100 0x67

▶ Caution: the last argument of mmc write is a
number of sectors. If you pass a number of
bytes, you’ll erase your FAT partition!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/169

Booting from Raw MMC - Results and notes

Reference test
▶ Loading zImage and dtb from FAT through

fatload and using a zero bootdelay:
setenv bootdelay 0
setenv bootcmd 'fatload mmc 0:
1 0x21000000 zImage; fatload mmc 0:
1 0x22000000; bootz 0x21000000 - 0x22000000'

▶ Not completely fair because we have the
filesystem overhead, but that’s the standard /
easiest way on MMC. We could have loaded
images from raw MMC, but that’s very
inconvenient.

▶ Best result (using grabserial):
[3.452681 0.000099] Please press Enter to
activate this console.

Falcon boot test
▶ Best result:

[3.191228 0.000134] Please press Enter to
activate this console.

▶ We saved 261 ms, but that’s disappointing.
▶ Adding instrumentation to the SPL allowed us to

understand why:
• Time to load the kernel from U-Boot /

FAT: 530 ms
• Time to load the kernel from SPL / raw

MMC: 1.010 ms
▶ Here the specific MMC driver in SPL has poor

performance (lack of DMA?)
▶ We had much better results on different

hardware, such as saving 1.2s on i.MX6, and
1.05s on TI AM3358 (Beagle Bone Black, loading
from FAT with U-Boot SPL 2022.04).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/169

Booting from raw NAND - Configuration
Proposed NAND layout
For use on Microchip SAMA5D3 Xplained

Offset Size Contents
0x0 256 KiB SPL (spl/u-boot-spl.bin)
0x40000 1 MiB U-Boot (u-boot.bin)
0x140000 128 KiB U-Boot redundant environment
0x160000 128 KiB U-Boot environment
0x180000 128 KiB Original DTB or CMD
0x1a0000 6.375 MiB uImage
0x800000 Other partitions

Notes:
▶ Only the SPL offset is hardcoded
▶ All others can be configured differently
▶ Offsets must be a multiple of the erase block

size (128 KiB)

U-Boot configuration
CONFIG_SPL_OS_BOOT=y
CONFIG_SPL_SIZE_LIMIT=0x10000
CONFIG_ENV_OFFSET=0x160000
CONFIG_ENV_OFFSET_REDUND=0x140000
CONFIG_SPL_LEGACY_IMAGE_FORMAT=y
CONFIG_SPL_NAND_SUPPORT=y
CONFIG_SPL_NAND_DRIVERS=y
CONFIG_SPL_NAND_BASE=y
CONFIG_CMD_SPL_WRITE_SIZE=0x7000
CONFIG_CMD_SPL_NAND_OFS=0x180000
(starting from
sama5d3_xplained_nandflash_defconfig)

include/configs/sama5d3_xplained.h
/* Generic settings */
#define CONFIG_SYS_NAND_U_BOOT_OFFS 0x40000

/* Falcon boot support on raw NAND */
#define CONFIG_SYS_NAND_SPL_KERNEL_OFFS 0x1a0000

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/169

https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_OS_BOOT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_SIZE_LIMIT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_ENV_OFFSET
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_ENV_OFFSET_REDUND
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_LEGACY_IMAGE_FORMAT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_NAND_SUPPORT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_NAND_DRIVERS
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_NAND_BASE
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_CMD_SPL_WRITE_SIZE
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_CMD_SPL_NAND_OFS

Booting from raw NAND - Results and notes

▶ Reference test
• To be fair, using a zero bootdelay and the exact zImage and dtb size:

setenv bootdelay 0
setenv bootcmd 'nand read 0x21000000 0x1a0000 0x53ac00; nand read
0x22000000 0x180000 0x6c93; bootz 0x21000000 - 0x22000000'

• Best result (using grabserial):
[4.320618 0.000470] Please press Enter to activate this console.

▶ Falcon boot test
• Best result (using grabserial):

[3.768543 0.000125] Please press Enter to activate this console.
• We saved 552 ms!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/169

U-Boot code and debugging Falcon Mode

▶ Depending on how you boot, read the corresponding
code:

• common/spl/spl_mmc.c
• common/spl/spl_nand.c
• Other files in common/spl/

▶ If booting doesn’t work, the easiest way is to add
puts(); lines to trace strategic functions and check
return values. You’ll get the messages in the serial
console.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/169

https://elixir.bootlin.com/u-boot/latest/source/common/spl/spl_mmc.c
https://elixir.bootlin.com/u-boot/latest/source/common/spl/spl_nand.c
https://elixir.bootlin.com/u-boot/latest/source/common/spl/

Issues and lessons learned (1)

▶ SPL storage driver performance: not on all platforms,
but at least here on Microchip SAMA5.

▶ Features limited by space: what can be done with Falcon booting is not limited by
U-Boot features, but by how much code can fit in the limited SRAM.
This is why I couldn’t show Falcon booting from a FAT partition, because adding
support for this filesystem and disk partitions to the SPL doesn’t fit in the
maximum size possible on the particular platform chosen for the demo.

▶ U-Boot initializations: in addition to the FDT fixups without which the Linux
kernel may not boot, the Linux kernel may also rely on some initializations
performed by U-Boot. Before such dependencies can be removed by updating
kernel drivers, you may need to hardcode such initializations in the SPL, provided
you have enough space!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/169

Issues and lessons learned (2)

▶ Limited automation: while the uImage file can be updated automatically in the
storage image, any change in the kernel command line or Device Tree must go
through the spl export command on the board. The FDT fixups done by
U-Boot are not trivial to reproduce. This makes it difficult to prepare production
images without a manual step in U-Boot.

▶ No decompression: U-Boot currently doesn’t seem to support decompression in
the SPL. If your architecture doesn’t support kernel self-decompression and relies
on the bootloader (e.g. arm64 or riscv), Falcon mode won’t be available if you are
using a compressed kernel.

▶ Falcon mode severely complicates the implementation of A/B updates, as all the
logic to switch between versions should be implemented in the SPL.

▶ Side note: Found that U-Boot’s bootm was noticeably slower than bootz (+170
ms)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/169

Further work

▶ Improve raw MMC read performance in the SPL on
Microchip SAMA5

▶ Didn’t try with what U-Boot calls the Raw kernel
images yet, supported with
CONFIG_SPL_RAW_IMAGE_SUPPORT. Assuming this
corresponds to the arch/arm/boot/Image

▶ Didn’t try FIT Image support in SPL yet. Will try on an
SoC with more space for SPL (i.MX)

Image credits:
https://openclipart.org/detail/224913/
clip-is-a-brick-star-wars-millenium-

falcon-set-4488

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/169

https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_RAW_IMAGE_SUPPORT
https://openclipart.org/detail/224913/clip-is-a-brick-star-wars-millenium-falcon-set-4488
https://openclipart.org/detail/224913/clip-is-a-brick-star-wars-millenium-falcon-set-4488
https://openclipart.org/detail/224913/clip-is-a-brick-star-wars-millenium-falcon-set-4488

References

▶ Bootlin’s commit to support Falcon boot on SAMA5D3 Xplained in mainline
U-Boot: https://source.denx.de/u-boot/u-boot/-/commit/ea83ea5afd18

▶ U-Boot’s doc/README.falcon file
▶ Linus Walleij: How the ARM32 kernel decompresses:

https://people.kernel.org/linusw/how-the-arm32-linux-kernel-decompresses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/169

https://source.denx.de/u-boot/u-boot/-/commit/ea83ea5afd18
https://elixir.bootlin.com/u-boot/latest/source/doc/README.falcon
https://people.kernel.org/linusw/how-the-arm32-linux-kernel-decompresses

Practical lab - Reduce bootloader time

▶ Experiment with faster storage
▶ Skipping U-Boot through the Falcon Mode,

directly booting Linux from U-Boot SPL.
▶ Measuring the final boot time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/169

Hardware initialization

Hardware initialization

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/169

Hardware initialization

The hardware needs time to initialize
▶ Voltage regulation, crystal stabilization
▶ Can be up to 200 ms
▶ As a software developer, you can’t do anything about

this part.
▶ All you can do is measure this time with an oscilloscope

and ask the hardware board designers whether the can
do anything about this. However, there are delays in
the CPU which may not be possible to reduce (see the
CPU datasheet).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/169

Conclusions

Conclusions

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/169

Most successful techniques in our project

Thumb2 toochain
-18 % code size

uClibc instead of musl
-16 % library size

Apps with less options
- 350 ms

- 78 % system size

Rootfs simplification
-34 % system size

Static executables
- 20 ms

- 22 % system size

Uncompressed initramfs
- 170 ms

- 200 KB kernel size

Initramfs
- 20 ms

Disable tracing
- 550 ms

- 217 KB kernel size

Delay loop calibration
-83 ms

Disable SMP
- 126 ms

-4.6 % kernel size

Disable modules
- 20 ms

- 82 KB kernel size

Silent kernel
-767 ms

- 11% kernel size

Non standard kernel (EXPERT/EMBEDDED)
- 34 ms

- 51 KB kernel size

Kernel compression
-35 ms with LZO

Disable sysfs

- 35 ms
- 22 KB kernel size

Disable proc
- 48 KB kernel size Concat kernel and DTB

- 22 ms

U-Boot Falcon Mode
-1052 ms

Note: "kernel size" is actually "compressed kernel size" with initramfs inside

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/169

References

References

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/169

Conference presentations

▶ Andrew Murray - The Right Approach to Minimal Boot Time (2010, video, slides)
Great talk about the methodology.

▶ Chris Simmonds - A Pragmatic Guide to Boot-Time Optimization (2017, video, slides)
▶ Jan Altenberg - How to Boot Linux in One Second (2015, slides)
▶ Michael Opdenacker - U-Boot Falcon Mode and Adding Support for New Boards (2021)

Video: https://youtu.be/okY9fBEuaoM - Corresponding to the Falcon Mode section in
this document.

▶ Elinux.org - Boot-time resources
https://elinux.org/Boot_Time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/169

https://bootlin.com/pub/video/2010/elce/elce2010-murray-boot-time.webm
https://elinux.org/images/f/f7/RightApproachMinimalBootTimes.pdf
https://youtu.be/gIK1he6Ocpg
https://elinux.org/images/6/64/Chris-simmonds-boot-time-elce-2017_0.pdf
https://www.elinux.org/images/9/97/Boot_one_second_altenberg.pdf
https://youtu.be/okY9fBEuaoM
https://elinux.org/Boot_Time

Last slides

Last slides

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/169

Last slide

Thank you!
And may the Source be with you

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/169

Rights to copy

© Copyright 2004-2025, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of this work.
▶ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/169

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

	About Bootlin
	Generic course information
	Principles
	Measuring
	Toolchain optimizations
	Optimizing applications
	Optimizing init scripts and system startup
	Filesystem optimizations
	Kernel optimizations
	Bootloader optimizations
	Generic bootloader optimizations
	U-Boot Falcon Mode

	Hardware initialization
	Conclusions
	References
	Last slides

