

Boot Time Optimization Training On-line seminar

Title	Boot Time Optimization Training
Overview	Measuring boot time Reducing user space boot time Reducing kernel boot time Bootloader optimizations Advanced techniques and alternatives Practical demos with the ARM-based BeagleBone Black board (or with its Wireless variant).
Materials	Check that the course contents correspond to your needs: https://bootlin.com/doc/training/boot-time.
Duration	Four half days - 16 hours (4 hours per half day). 25% of lectures, 75% of practical demos.
Trainer	One of the engineers listed on https://bootlin.com/training/trainers/
Language	Oral lectures: English or French. Materials: English.
Audience	People developing embedded Linux systems. People supporting embedded Linux system developers.
Prerequisites	Knowledge and practice of UNIX or GNU/Linux commands People lacking experience on this topic should get trained by themselves, for example with our freely available on-line slides: https://bootlin.com/blog/command-line/ Knowledge and practice of embedded Linux system development
Required equipment	 Computer with the operating system of your choice, with the Google Chrome or Chromium browser for videoconferencing. Webcam and microphone (preferably from an audio headset) High speed access to the Internet
Materials	Electronic copies of presentations, demo instructions and data.

Hardware

The hardware platform used for the practical demos of this training session is the **BeagleBone Black** board, which features:

- An ARM AM335x processor from Texas Instruments (Cortex-A8 based), 3D acceleration, etc.
- 512 MB of RAM
- 2 GB of on-board eMMC storage (4 GB in Rev C)
- USB host and device
- HDMI output
- 2 x 46 pins headers, to access UARTs, SPI buses, I2C buses and more.

Demos

The practical demos of this training session use the following hardware peripherals:

- A USB webcam
- An LCD and touchscreen cape connected to the BeagleBone Black board, to display the video captured by the webcam.
- We will also use an Arduino board as a way to measure boot time with accurary, demonstrating a hardware boot time measurement technique.

Half day 1

Lecture - Principles	Demo - Preparing the system
 How to measure boot time Main ideas	 Downloading bootloader, kernel and Buildroot source code Board setup, setting up serial communication Configure Buildroot and build the system Configure and build the U-Boot bootloader. Prepare an SD card and boot the bootloader from it. Configure and build the kernel. Boot the system

Lecture - Measuring time

Demo - Measuring time - Software solution

- Generic software techniques
- Hardware techniques
- Specific solutions for each stage

- Modify the system to measure time at various steps
- Timing messages on the serial console
- Timing the launching of the application

Demo - Measuring time - Hardware solution

- Measure total boot time by toggling a GPIO
- Setting up an Arduino board
- Preparing a test circuit with a 7-segment display
- Modifying the DTS to configuring Bone Black pins as GPIOs
- Making the application drive the custom GPIOs

Half day 2

Lecture - Toolchain optimizations

- Introduction to toolchains
- C libraries
- Size information
- Measuring executable performance with time

Demo - Toolchain optimizations

- Measuring application execution time
- Switching to a Thumb2 toolchain
- Generate a Buildroot SDK to rebuild faster

Lecture - Application optimization	Demo - Application optimization
 Using strace Other profiling techniques 	 Finding unnecessary configuration options in applications Modifying configuration options through Buildroot Experiments with strace to trace program execution
Lecture - Optimizing system initialization	Demo - Optimizing system initialization
 Using Bootchart Optimizing init scripts Possibility to start your application directly 	 Using Buildroot to remove unnecessary scripts and commands Access-time based technique to identify unused files Simplifying BusyBox Starting the application as the init program

Half day 3

Lecture - Filesystem optimizations	Demo - Filesystem optimizations
 Available filesystems, performance and boot	 Trying and measuring two block filesystems:
time aspects Making UBIFS faster Tweaks for reducing boot time Booting on an initramfs Using static executables: licensing con-	ext4 and SquashFS. Trying and measuring the initramfs solution.
straints	Constraints due to this solution.

Lecture - Kernel optimizations

Demo - Kernel optimizations

- Using *Initcall debug* to generate a boot graph
- Compression and size features
- Reducing or suppressing console output
- Multiple tweaks to reduce boot time
- Generating and analyzing a boot graph for the kernel
- Find and eliminate unnecessary kernel features
- Find the best kernel compression solution for our system

Half day 4

Demo - Kernel optimizations

Continued from the previous session

- Compiling U-Boot with less features
- U-Boot configuration settings that impact boot time
- Optimizing kernel loading
- Skipping the bootloader How to modify U-Boot to enable its *Falcon mode*

Demo - Bootloader optimizations

- Using the above techniques to make the bootloader as quick as possible.
- Switching to faster storage
- Skip the bootloader with U-Boot's *Falcon mode*

Wrap-up

- Summary of results
- Questions and answers, experience sharing with the trainer