
Embedded Linux boot time optimization training
On-site training, 3 days
Latest update: March 11, 2024

Title Embedded Linux boot time optimization training

Training objectives
• Be able to use various tools and techniques to measure the boot time
of an embedded Linux system.

• Be able to reduce the boot time spent during the user-space initializa-
tion.

• Be able to reduce the boot time spent during the kernel initialization.
• Be able to reduce the boot time spent during the bootloader initializa-
tion.

• Be able to use advanced and alternatives techniques of boot time op-
timization.

Duration Three days - 24 hours (8 hours per day)

Pedagogics • Lectures delivered by the trainer: 40% of the duration
• Practical labs done by participants: 60% of the duration
• Electronic copies of presentations, lab instructions and data files.
They are freely available at https://bootlin.com/doc/training/boot-
time.

Trainer One of the engineers listed on:
https://bootlin.com/training/trainers/

Language Oral lectures: English, French.
Materials: English.

Audience People developing embedded Linux systems.
People supporting embedded Linux system developers.

https://bootlin.com/doc/training/boot-time
https://bootlin.com/doc/training/boot-time
https://bootlin.com/training/trainers/


Prerequisites
• Knowledge and practice of UNIX or GNU/Linux commands:
participants must be familiar with the Linux command line. Par-
ticipants lacking experience on this topic should get trained by
themselves, for example with our freely available on-line slides at
bootlin.com/blog/command-line/.

• Minimal experience in embedded Linux development: participants
should have a minimal understanding of the architecture of embedded
Linux systems: role of the Linux kernel vs. user-space, development
of Linux user-space applications in C. Following Bootlin’s Embedded
Linux course at bootlin.com/training/embedded-linux/ allows to fulfill
this pre-requisite.

• Minimal English language level: B1, according to the Common
European Framework of References for Languages, for our ses-
sions in English. See bootlin.com/pub/training/cefr-grid.pdf for self-
evaluation.

Required equipment
• Video projector
• One PC computer on each desk (for one or two persons) with at least
8 GB of RAM, and Ubuntu Linux 22.04 installed in a free partition
of at least 30 GB

• Distributions other than Ubuntu Linux 22.04 are not supported, and
using Linux in a virtual machine is not supported.

• Unfiltered and fast connection to Internet: at least 50 Mbit/s of
download bandwidth, and no filtering of web sites or protocols.

• PC computers with valuable data must be backed up before being
used in our sessions.

Certificate Only the participants who have attended all training sessions, and who have
scored over 50% of correct answers at the final evaluation will receive a
training certificate from Bootlin.

Disabilities Participants with disabilities who have special needs are invited to contact
us at training@bootlin.com to discuss adaptations to the training course.

https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf


Hardware

The hardware platform used for the practical labs
of this training session is the BeagleBone Black
board, which features:

• An ARM AM335x processor from Texas
Instruments (Cortex-A8 based), 3D accel-
eration, etc.

• 512 MB of RAM
• 2 GB of on-board eMMC storage
(4 GB in Rev C)

• USB host and device
• HDMI output
• 2 x 46 pins headers, to access UARTs, SPI
buses, I2C buses and more.

Practical labs

The practical labs of this training session use the following hardware peripherals:
• A USB webcam
• An LCD and touchscreen cape connected to the BeagleBone Black board, to display the video cap-
tured by the webcam.



Day 1 - Morning

Lecture - Principles Lab - Preparing the system

• How to measure boot time
• Main ideas

• Downloading bootloader, kernel and Build-
root source code

• Board setup, setting up serial communica-
tion

• Configure Buildroot and build the system
• Configure and build the U-Boot bootloader.
Prepare an SD card and boot the bootloader
from it.

• Configure and build the kernel. Boot the
system

Day 1 - Afternoon

Lecture - Measuring time Lab - Measuring time - Software solution

• Generic software techniques
• Hardware techniques
• Specific solutions for each stage

• Modify the system to measure time at vari-
ous steps

• Timing messages on the serial console
• Timing the execution of the application

Lecture - Toolchain optimizations Lab - Toolchain optimizations

• Introduction to toolchains
• C libraries
• Size information
• Measuring executable performance with
time

• Measuring application execution time
• Switching to a Thumb2 toolchain
• Generate a Buildroot SDK to rebuild faster



Day 2- Morning

Lecture - Application optimization Lab - Application optimization

• Using strace and ltrace
• Other profiling techniques

• Finding unnecessary configuration options
in applications

• Modifying configuration options through
Buildroot

• Experiments with strace to trace pro-
gram execution

Lecture - Optimizing system initialization Lab - Optimizing system initialization

• Using BusyBox bootchartd
• Optimizing init scripts
• Possibility to start your application directly

• Using Buildroot to remove unnecessary
scripts and commands

• Access-time based technique to identify un-
used files

• Simplifying BusyBox
• Starting the application as the init program

Day 2 - Afternoon

Lecture - Filesystem optimizations Lab - Filesystem optimizations

• Available filesystems, performance and
boot time aspects

• Making UBIFS faster
• Tweaks for reducing boot time
• Booting on an initramfs
• Using static executables: licensing con-
straints

• Trying and measuring two block filesys-
tems: ext4 and SquashFS.

• Trying and measuring the initramfs solu-
tion. Constraints due to this solution.



Lecture - Kernel optimizations Lab - Kernel optimizations

• Using Initcall debug to generate a boot
graph

• Compression and size features
• Reducing or suppressing console output
• Multiple tweaks to reduce boot time

• Generating and analyzing a boot graph for
the kernel

• Find and eliminate unnecessary kernel fea-
tures

• Find the best kernel compression solution
for our system

Day 3 - Morning

Lab - Kernel optimizations

• Continued from Day 2

Day 3 - Afternoon

Lecture - Bootloader optimizations Lecture - U-Boot Falcon mode

• Generic tips for reducing U-Boot’s size and
boot time

• Optimizing U-Boot scripts and kernel load-
ing

• Skipping the bootloader - How tomodifyU-
Boot to enable its Falcon mode

• Principles and goals
• The Device Tree preparation work that U-
Boot does to prepare Linux kernel booting

• Using the spl export command to do
this work in advance

• Modifying U-Boot’s source code and con-
figuring it for directly booting Linux and
skipping the U-Boot second stage.

• Example instructions and setups for booting
from MMC and NAND flash

• How to debug Falcon mode
• How to fall back to U-Boot
• Limitations



Lab - Bootloader optimizations

• Using the above techniques to make the bootloader as quick as possible.
• Switching to faster storage
• Configuring U-Boot for Falcon mode booting, skipping U-Boot’s second stage.

Wrap-up - Achieved results

• Sharing and comparing results achieved by the various groups
• Questions and answers, experience sharing with the trainer


