
Autotools training

Autotools training

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Latest update: August 22, 2025.

Document updates and training details:
https://bootlin.com/training/autotools

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@bootlin.com

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/124

https://bootlin.com/training/autotools
mailto:feedback@bootlin.com

Autotools training

▶ These slides are the training materials for Bootlin’s Autotools
training course.

▶ If you are interested in following this course with an experienced
Bootlin trainer, we offer:

• Public online sessions, opened to individual registration. Dates
announced on our site, registration directly online.

• Dedicated online sessions, organized for a team of engineers
from the same company at a date/time chosen by our customer.

• Dedicated on-site sessions, organized for a team of engineers
from the same company, we send a Bootlin trainer on-site to
deliver the training.

▶ Details and registrations:
https://bootlin.com/training/autotools

▶ Contact: training@bootlin.com

Icon by Eucalyp, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/124

https://bootlin.com/training/autotools

About Bootlin

About Bootlin

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/124

Bootlin introduction

▶ Engineering company
• In business since 2004
• Before 2018: Free Electrons

▶ Team based in France and Italy
▶ Serving customers worldwide
▶ Highly focused and recognized expertise

• Embedded Linux
• Linux kernel
• Embedded Linux build systems

▶ Strong open-source contributor
▶ Activities

• Engineering services
• Training courses

▶ https://bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/124

https://bootlin.com

Bootlin engineering services

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/124

Bootlin training courses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/124

Bootlin, an open-source contributor

▶ Strong contributor to the Linux kernel
• In the top 30 of companies contributing to Linux worldwide
• Contributions in most areas related to hardware support
• Several engineers maintainers of subsystems/platforms
• 9000 patches contributed
• https://bootlin.com/community/contributions/kernel-contributions/

▶ Contributor to Yocto Project
• Maintainer of the official documentation
• Core participant to the QA effort

▶ Contributor to Buildroot
• Co-maintainer
• 6000 patches contributed

▶ Significant contributions to U-Boot, OP-TEE, Barebox, etc.
▶ Fully open-source training materials

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/124

https://bootlin.com/community/contributions/kernel-contributions/

Bootlin on-line resources

▶ Website with a technical blog:
https://bootlin.com

▶ Engineering services:
https://bootlin.com/engineering

▶ Training services:
https://bootlin.com/training

▶ LinkedIn:
https://www.linkedin.com/company/bootlin

▶ Elixir - browse Linux kernel sources on-line:
https://elixir.bootlin.com

Icon by Freepik, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/124

https://bootlin.com
https://bootlin.com/engineering
https://bootlin.com/training
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

Generic course information

Generic course
information

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/124

Training quiz and certificate

▶ You have been given a quiz to test your knowledge on the topics covered by the
course. That’s not too late to take it if you haven’t done it yet!

▶ At the end of the course, we will submit this quiz to you again. That time, you
will see the correct answers.

▶ It allows Bootlin to assess your progress thanks to the course. That’s also a kind
of challenge, to look for clues throughout the lectures and labs / demos, as all the
answers are in the course!

▶ Another reason is that we only give training certificates to people who achieve at
least a 50% score in the final quiz and who attended all the sessions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/124

Participate!

During the lectures...
▶ Don’t hesitate to ask questions. Other people in the audience may have similar

questions too.
▶ Don’t hesitate to share your experience too, for example to compare Linux with

other operating systems you know.
▶ Your point of view is most valuable, because it can be similar to your colleagues’

and different from the trainer’s.
▶ In on-line sessions

• Please always keep your camera on!
• Also make sure your name is properly filled.
• You can also use the ”Raise your hand” button when you wish to ask a question but

don’t want to interrupt.
▶ All this helps the trainer to engage with participants, see when something needs

clarifying and make the session more interactive, enjoyable and useful for everyone.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/124

Collaborate!

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
▶ Use the dedicated Matrix channel for this session to add

questions.
▶ If your session offers practical labs, you can also report issues,

share screenshots and command output there.
▶ Don’t hesitate to share your own answers and to help others

especially when the trainer is unavailable.
▶ The Matrix channel is also a good place to ask questions outside

of training hours, and after the course is over.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/124

Practical lab - Training Setup

Prepare your lab environment
▶ Download and extract the lab archive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/124

Autotools usage

Autotools usage

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/124

Why do we need autotools?

▶ Portability accross UNIX systems, architectures, Linux distributions
• Some C functions do not exist everywhere, or have different names or prototypes,

can behave differently
• Header files can be organized differently
• All libraries may not be available everywhere

▶ Standardized build procedure
• Standard options
• Standard environment variables
• Standard behavior

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/124

Alternatives to autotools

▶ Regular Makefiles
• Not very portable
• No configuration tests, or options
• Hard to take into account all dependencies (e.g. dependencies on header files)
• No standardized behavior

▶ CMake
• A more modern build system
• One language, instead of several for autotools
• More straightforward to use and understand
• Much less widely used than autotools, but growing in popularity
• Also generates Makefiles, like autotools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/124

Using autotools based packages

▶ The basic steps to build an autotools based software component are:
1. Configuration

./configure
Will look at the available build environment, verify required dependencies, generate
Makefiles and a config.h

2. Compilation
make
Actually builds the software component, using the generated Makefiles.

3. Installation
make install
Installs what has been built.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/124

What is configure doing?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/124

Standard Makefile targets

▶ all, builds everything. The default target.
▶ install, installs everything that should be installed.
▶ install-strip, same as install, but then strips debugging symbols
▶ uninstall

▶ clean, remove what was built
▶ distclean, same as clean, but also removes the generated autotools files
▶ check, run the test suite
▶ installcheck, check the installation
▶ dist, create a tarball

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/124

Standard filesystem hierarchy

▶ prefix, defaults to /usr/local
• exec-prefix, defaults to prefix

bindir, for programs, defaults to exec-prefix/bin
libdir, for libraries, defaults to exec-prefix/lib

▶ includedir, for headers, defaults to prefix/include
▶ datarootdir, defaults to prefix/share

• datadir, defaults to datarootdir
• mandir, for man pages, defaults to datarootdir/man
• infodir, for info documents, defaults to datarootdir/info

▶ sysconfdir, for configuration files, defaults to prefix/etc
▶ --<option> available for each of them

• E.g: ./configure --prefix=~/sys/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/124

Standard configuration variables

▶ CC, C compiler command
▶ CFLAGS, C compiler flags
▶ CXX, C++ compiler command
▶ CXXFLAGS, C++ compiler flags
▶ LDFLAGS, linker flags
▶ CPPFLAGS, C/C++ preprocessor flags
▶ and many more, see ./configure --help

▶ E.g: ./configure CC=arm-linux-gcc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/124

System types: build, host, target

▶ autotools identify three system types:
• build, which is the system where the build takes place
• host, which is the system where the execution of the compiled code will take place
• target, which is the system for which the program will generate code. This is only

used for compilers, assemblers, linkers, etc.
▶ Corresponding --build, --host and --target configure options.

• They are all automatically guessed to the current machine by default
• --build, generally does not need to be changed
• --host, must be overridden to do cross-compilation
• --target, needs to be overridden if needed (to generate a cross-compiler, for

example)
▶ Arguments to these options are configuration names, also called system tuples

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/124

System type: configuration names

▶ A string identifying a combination of architecture, operating system, ABI and C
library

▶ General format: <arch>-<vendor>-<kernel>-<operating_system>
• <arch> is the type of processor, i.e. arm, i686, etc.
• <vendor> is a free form string, which can be omitted
• <kernel> is always linux when working with Linux systems, or none for bare metal

systems
• <operating_system> generally identifies the C library and ABI, i.e. gnu, gnueabi,

eabi, gnueabihf, uclibcgnueabihf
▶ Also often used as the prefix for cross-compilation tools.
▶ Examples

• x86_64-amd-linux-gnu
• powerpc-mentor-linux-gnu
• armeb-linux-gnueabihf
• i486-linux-musl

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/124

System type: native compilation example

$./configure
[...]
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking for gcc... gcc
[...]
checking how to run the C preprocessor... gcc -E
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/124

Cross-compilation

▶ By default, autotools will guess the host machine as being the current machine
▶ To cross-compile, it must be overridden by passing the --host option with the

appropriate configuration name
▶ By default, autotools will try to use the cross-compilation tools that use the

configuration name as their prefix.
▶ If not, the variables CC, CXX, LD, AR, etc. can be used to point to the

cross-compilation tools.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/124

System type: cross compilation example

$ which arm-linux-gnueabihf-gcc
/usr/bin/arm-linux-gnueabihf-gcc
$./configure --host=arm-linux-gnueabihf
[...]
checking build system type... x86_64-unknown-linux-gnu
checking host system type... arm-unknown-linux-gnueabihf
checking for arm-linux-gnueabihf-gcc... arm-linux-gnueabihf-gcc
[...]
checking how to run the C preprocessor... arm-linux-gnueabihf-gcc -E
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/124

Out of tree build

▶ autotools support out of tree compilation by default
▶ Consists in doing the build in a directory separate from the source directory
▶ Allows to:

• Build different configurations without having to rebuild from scratch each time.
• Not clutter the source directory with build related files

▶ To use out of tree compilation, simply run the configure script from another
empty directory

• This directory will become the build directory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/124

Out of tree build: example

strace-4.9 $ ls
configure configure.ac Makefile.am system.c NEWS
AUTHORS COPYING file.c ioprio.c config.h
strace-4.9 $ mkdir ../strace-build-x86 ../strace-build-arm
strace-4.9 $ cd ../strace-build-x86
strace-build-x86 $../strace-4.9/configure
[...]
strace-build-x86 $ make
[...]
strace-build-x86 $ cd ../strace-build-arm
strace-build-arm $../strace-4.9/configure --host=arm-linux-gnueabihf
[...]
strace-build-arm $ make
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/124

Diverted installation with DESTDIR

▶ By default, make install installs to the directories given in --prefix and related
options.

▶ In some situations, it is useful to divert the installation to another directory
• Cross-compilation, where the build machine is not the machine where applications

will be executed.
• Packaging, where the installation needs to be done in a temporary directory.

▶ Achieved using the DESTDIR variable.

strace-4.9 $ make DESTDIR=/tmp/test install
[...]
strace-4.9 $ find /tmp/test/ -type f
/tmp/test/usr/local/share/man/man1/strace.1
/tmp/test/usr/local/bin/strace-log-merge
/tmp/test/usr/local/bin/strace-graph
/tmp/test/usr/local/bin/strace

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/124

--prefix or DESTDIR?

▶ --prefix and DESTDIR are often misunderstood
▶ --prefix is the location where the programs/libraries will be placed when

executed on the host machine
▶ DESTDIR is a way of temporarily diverting the installation to a different location.
▶ For example, if you use --prefix=/home/<foo>/sys/usr, then binaries/libraries

will look for icons in /home/<foo>/sys/usr/share/icons
• Good for native installation in /home/<foo>/sys
• Bad for cross-compilation where the binaries will ultimately be in /usr

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/124

--prefix or DESTDIR use cases

▶ Native compilation, install system-wide in /usr

$./configure --prefix=/usr
$ make
$ sudo make install

▶ Native compilation, install in a user-specific directory:
$./configure --prefix=/home/<foo>/sys/
$ make
$ make install

▶ Cross-compilation, install in /usr, diverted to a temporary directory where the
system for the target is built

$./configure --prefix=/usr
$ make
$ make DESTDIR=/home/<foo>/target-rootfs/ install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/124

Analyzing issues

▶ autoconf keeps a log of all the tests it runs in a file called config.log

▶ Very useful for analysis of autoconf issues
▶ It contains several sections: Platform, Core tests, Running config.status, Cache

variables, Output variables, confdefs.h
▶ The end of the Core tests section is usually the most interesting part

• This is where you would get more details about the reason of the configure script
failure

▶ At the beginning of config.log you can also see the ./configure line that was
used, with all options and environment variables.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/124

config.log example
$./configure ...
[...]
checking for TIFFFlushData in -ltiff34... no
configure: WARNING: *** TIFF loader will not be built (TIFF library not found) ***
configure: error:
*** Checks for TIFF loader failed. You can build without it by passing
*** --without-libtiff to configure but some programs using GTK+ may
*** not work properly

$ cat config.log
[...]
configure:18177: .../usr/bin/x86_64-linux-gcc -std=gnu99 -o conftest -D_LARGEFILE_SOURCE

-D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -Os -static -Wall -D_LARGEFILE_SOURCE
-D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -DG_DISABLE_SINGLE_INCLUDES -static
conftest.c -ltiff34 -ljpeg -lz -lm >&5

.../host/opt/ext-toolchain/bin/../lib/gcc/x86_64-buildroot-linux-uclibc/4.8.4/../../../../
x86_64-buildroot-linux-uclibc/bin/ld: cannot find -ltiff34

.../host/opt/ext-toolchain/bin/../lib/gcc/x86_64-buildroot-linux-uclibc/4.8.4/../../../../
x86_64-buildroot-linux-uclibc/bin/ld: cannot find -ljpeg

collect2: error: ld returned 1 exit status
configure:18177: $? = 1
configure: failed program was:
[...]
configure:18186: result: no
configure:18199: WARNING: *** TIFF loader will not be built (TIFF library not found) ***
configure:18210: error:
*** Checks for TIFF loader failed. You can build without it by passing
*** --without-libtiff to configure but some programs using GTK+ may
*** not work properly

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/124

autotools: autoconf and automake

▶ The configure script is a shell script generated from configure.ac by a program
called autoconf

• configure.ac used to be named configure.in but this name is now deprecated
• written in shell script, augmented with numerous m4 macros

▶ The Makefile.in are generated from Makefile.am files by a program called
automake

• Uses special make variables that are expanded in standard make constructs
▶ Some auxiliary tools like autoheader or aclocal are also used

• autoheader is responsible for generating the configuration header template,
config.h.in

▶ Generated files (configure, Makefile.in, Makefile) should not be modified.
• Reading them is also very difficult. Read the real source instead!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/124

Cache variables

▶ Each test done by a configure.ac script is associated with a cache variable
▶ The list of such variables and their values is visible in config.log:

Cache variables.

ac_cv_build=x86_64-unknown-linux-gnu
ac_cv_c_compiler_gnu=yes
[...]
ac_cv_path_SED=/bin/sed

▶ If the autodetected value is not correct for some reason, you can override any of
these variables in the environment:

$ ac_cv_path_SED=/path/to/sed ./configure

▶ This is sometimes useful when cross-compiling, since some tests are not always
cross-compilation friendly.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/124

Distribution

▶ In general:
• When a software is published as a tarball, the configure script and Makefile.in

files are already generated and part of the tarball.
• When a software is published through version control system, only the real sources

configure.ac and Makefile.am are available.
▶ There are some exceptions (like tarballs not having pre-generated

configure/Makefile.in)
▶ Do not version control generated files!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/124

Regenerating autotools files: autoreconf

▶ To generate all the files used by autotools, you could call automake, autoconf,
aclocal, autoheader, etc. manually.

• But it is not very easy and efficient.
▶ A tool called autoreconf automates this process

• Useful option: -i or --install, to ask autoreconf to copy missing auxiliary files
▶ Always use autoreconf!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/124

autoreconf example

$ find . -type f
./src/main.c
./Makefile.am
./configure.ac

$ autoreconf -i
configure.ac:4: installing './compile'
configure.ac:3: installing './install-sh'
configure.ac:3: installing './missing'
Makefile.am: installing './depcomp'

$ find . -type f
./install-sh
./src/main.c
./config.h.in
./configure
./missing
./depcomp
./aclocal.m4
./Makefile.am
./autom4te.cache/traces.0
./autom4te.cache/output.1
./autom4te.cache/output.0
./autom4te.cache/requests
./autom4te.cache/traces.1
./compile
./Makefile.in
./configure.ac

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/124

Overall organization

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/124

Practical lab - Usage of existing autotools projects

▶ First build of an autotools package
▶ Out of tree build and cross-compilation
▶ Overriding cache variables
▶ Using autoreconf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/124

Autotools basics

Autotools basics

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/124

configure.ac language

▶ Really a shell script
▶ Processed through the m4 preprocessor
▶ Shell script augmented with special constructs for portability:

• AS_IF instead of shell if ... then .. fi
• AS_CASE instead of shell case ... esac
• etc.

▶ autoconf provides a large set of m4 macros to perform most of the usual tests
▶ Make sure to quote macro arguments with []

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/124

Minimal configure.ac

configure.ac

AC_INIT([hello], [1.0])
AC_OUTPUT

▶ AC_INIT
• Every configure script must call AC_INIT before doing anything else that produces

output.
• Process any command-line arguments and perform initialization and verification.
• Prototype:

AC_INIT (package, version, [bug-report], [tarname], [url])

▶ AC_OUTPUT
• Every configure.ac, should finish by calling AC_OUTPUT.
• Generates and runs config.status, which in turn creates the makefiles and any other

files resulting from configuration.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/124

Minimal configure.ac example

$ cat configure.ac
AC_INIT([hello], [1.0])
AC_OUTPUT
$ ls
configure.ac
$ autoreconf -i
$ ls
autom4te.cache configure configure.ac
$./configure
configure: creating ./config.status
$ ls
autom4te.cache config.log config.status
configure configure.ac
$ wc -l configure
2390 configure

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/124

Additional basic macros

▶ AC_PREREQ
• Verifies that a recent enough version of autoconf is used
• AC_PREREQ([2.68])

▶ AC_CONFIG_SRCDIR
• Gives the path to one source file in your project
• Allows autoconf to check that it is really where it should be
• AC_CONFIG_SRCDIR([hello.c])

▶ AC_CONFIG_AUX_DIR
• Tells autoconf to put the auxiliary build tools it requires in a different directory,

rather than the one of configure.ac
• Useful to keep cleaner build directory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/124

Checking for basic programs

▶ AC_PROG_CC, makes sure a C compiler is available
▶ AC_PROG_CXX, makes sure a C++ compiler is available
▶ AC_PROG_AWK, AC_PROG_GREP, AC_PROG_LEX, AC_PROG_YACC, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/124

Checking for basic programs: example

configure.ac

AC_INIT([hello], [1.0])
AC_PROG_CC
AC_OUTPUT

$./configure
checking for gcc... gcc
checking whether the C compiler works... yes
checking for C compiler default output file name... a.out
checking for suffix of executables...
checking whether we are cross compiling... no
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ISO C89... none needed
configure: creating ./config.status

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/124

AC_CONFIG_FILES

▶ AC_CONFIG_FILES (file..., [cmds], [init-cmds])

▶ Make AC_OUTPUT create each file by copying an input file (by default file.in),
substituting the output variable values.

▶ Typically used to turn the Makefile templates Makefile.in files into final
Makefile.

▶ Example:
AC_CONFIG_FILES([Makefile src/Makefile])

▶ cmds and init-cmds are rarely used, see the autoconf documentation for details.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/124

Output variables

▶ autoconf will replace @variable@ constructs by the appropriate values in files
listed in AC_CONFIG_FILES

▶ Long list of standard variables replaced by autoconf
▶ Additional shell variables declared in configure.ac can be replaced using

AC_SUBST

▶ The following three examples are equivalent:

AC_SUBST([FOO], [42])

FOO=42
AC_SUBST([FOO])

AC_SUBST([FOO])
FOO=42

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/124

AC_CONFIG_FILES example (1/2)

configure.ac

AC_INIT([hello], [1.0])
AC_PROG_CC
FOO=42
AC_SUBST([FOO])
AC_CONFIG_FILES([testfile])
AC_OUTPUT

testfile.in

abs_builddir = @abs_builddir@
CC = @CC@
FOO = @FOO@

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/124

AC_CONFIG_FILES example (2/2)

Executing ./configure

/tmp/foo$./configure
checking for gcc... gcc
checking whether the C compiler works... yes
checking for C compiler default output file name... a.out
checking for suffix of executables...
checking whether we are cross compiling... no
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ISO C89... none needed
configure: creating ./config.status
config.status: creating testfile

Generated testfile

abs_builddir = /tmp/foo
CC = gcc
FOO = 42

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/124

configure.ac: a shell script

▶ It is possible to include normal shell constructs in configure.ac

▶ Beware to not use bashisms: use only POSIX compatible constructs

configure.ac
AC_INIT([hello], [1.0])
echo "The value of CC is $CC"
AC_PROG_CC
echo "The value of CC is now $CC"
FOO=42
AC_SUBST([FOO])
if test $FOO -eq 42 ; then

echo "The value of FOO is correct!"
fi
AC_CONFIG_FILES([testfile])
AC_OUTPUT

Running ./configure

The value of CC is
checking for gcc... gcc
checking whether the C compiler works... yes
checking for C compiler default output file name... a.out
checking for suffix of executables...
checking whether we are cross compiling... no
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ISO C89... none needed
The value of CC is now gcc
The value of FOO is correct!
configure: creating ./config.status
config.status: creating testfile

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/124

Writing Makefile.in?

▶ At this point, we have seen the very basics of autoconf to perform the
configuration side of our software

▶ We could use AC_CONFIG_FILES to generate Makefile from Makefile.in
▶ However, writing a Makefile.in properly is not easy, especially if you want to:

• be portable
• automatically handle dependencies
• support conditional compilation

▶ For these reasons, Makefile.in are typically not written manually, but generated
by automake from a Makefile.am file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/124

Makefile.am language

▶ Really just a Makefile
• You can include regular make code

▶ Augmented with automake specific constructs that are expanded into regular
make code

▶ For most situations, the automake constructs are sufficient to express what needs
to be built

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/124

Makefile.am minimal example

▶ The minimal example of Makefile.am to build just one C file into a program is
only two lines:

Makefile.am

bin_PROGRAMS = hello
hello_SOURCES = main.c

▶ Will compile main.c to main.o

▶ And link hello.o into the hello executable
▶ Which will be installed in $prefix/bin

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/124

Enabling automake in configure.ac

▶ To enable automake usage in configure.ac, you need:
• A call to AM_INIT_AUTOMAKE
• Generate the Makefile using AC_CONFIG_FILES

▶ automake will generate the Makefile.in at autoreconf time, and configure will
generate the final Makefile

configure.ac

AC_INIT([hello], [1.0])
AM_INIT_AUTOMAKE([foreign 1.13])
AC_PROG_CC
AC_CONFIG_FILES([Makefile])
AC_OUTPUT

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/124

AM_INIT_AUTOMAKE

▶ AM_INIT_AUTOMAKE([OPTIONS])
▶ Interesting options:

• foreign, tells automake to not require all the GNU Coding Style files such as NEWS,
README, AUTHORS, etc.

• dist-bzip2, dist-xz, etc. tell automake which tarball format should be generated
by make dist

• subdir-objects tells automake that the objects are placed into the subdirectory of
the build directory corresponding to the subdirectory of the source file

• version, e.g 1.14.1, tells the minimal automake version that is expected

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/124

Makefile.am syntax

▶ An automake parsable Makefile.am is composed of product list variables:

bin_PROGRAMS = hello

▶ And product source variables:

hello_SOURCES = main.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/124

Product list variables

[modifier-list]prefix_PRIMARY = product1 product2 ...

▶ prefix is the installation prefix, i.e. where it should be installed
• All *dir variables from autoconf can be used, without their dir suffix: use bin for

bindir
• E.g.: bindir, libdir, includedir, datadir, etc.

▶ PRIMARY describes what type of thing should be built:
• PROGRAMS, for executables
• LIBRARIES, LTLIBRARIES, for libraries
• HEADERS, for publicly installed header files
• DATA, arbitrary data files
• PYTHON, JAVA, SCRIPTS
• MANS, TEXINFOS, for documentation

▶ After the = sign, list of products to be generated

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/124

Product source variables

[modifier-list]product_SOURCES = file1 file2 ...

▶ The product is the normalized name of the product, as listed in a product list
variable

• The normalization consists in replacing special characters such as . or + by _. For
example, libfoo+.a in a product list variable gives the libfoo__a_SOURCES product
source variable.

▶ _SOURCES is always used, it’s not like a configurable primary.
• Contains the list of files containing the source code for the product to be built.
• Both source files and header files should be listed.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/124

Example: building multiple programs

Makefile.am
bin_PROGRAMS = hello test
hello_SOURCES = main.c common.c common.h
test_SOURCES = test.c common.c common.h

▶ Building two programs: hello and test

▶ Shared source files: common.c and common.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/124

Practical lab - Your first autotools project

▶ Your first configure.ac
▶ Adding and building a program
▶ Going further: autoscan and make dist

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/124

Autoconf advanced

Autoconf advanced

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/124

Autoconf advanced

Configuration header

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/124

Configuration header

▶ Very often, C/C++ code needs to know the result of certain tests done by the
configure script.

▶ A template C header file can be automatically generated by autoheader, generally
named config.h.in

▶ The final header file is generated by configure, generally named config.h

▶ Declared using AC_CONFIG_HEADERS

configure.ac extract
AC_CONFIG_HEADERS([config.h])

Example config.h
/* Define if the complete vga libraries (vga, vgagl) are installed */
/* #undef HAVE_LIBVGA */

/* Define to 1 if you have the <limits.h> header file. */
#define HAVE_LIMITS_H 1

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/124

AC_DEFINE

▶ AC_DEFINE allows to create C definitions in the configuration header
▶ AC_DEFINE (variable, value, description)

configure.ac

AC_DEFINE([FOOBAR], [42], [This is the foobar value])

Generated config.h

/* This is the foobar value */
#define FOOBAR 42

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/124

Autoconf advanced

Checking for functions, headers, libraries, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/124

Checking for functions

▶ You may need to check if certain functions are available and/or meet certain
characteristics

▶ Family of AC_FUNC_* macros
• AC_FUNC_FORK, AC_FUNC_GETLOADAVG, AC_FUNC_MALLOC, etc.
• See autoconf manual for details

▶ AC_CHECK_FUNC[S] to check for generic functions
• AC_CHECK_FUNC (function, [action-if-found], [action-if-not-found])
• AC_CHECK_FUNCS (function..., [action-if-found], [action-if-not-found])
• Results available

ac_cv_func_<function> variable in configure.ac
HAVE_<FUNCTION> defines in configuration headers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/124

AC_CHECK_FUNCS() example
configure.ac
AC_CHECK_FUNCS([printf foobar])
echo "ac_cv_func_printf: ${ac_cv_func_printf}"
echo "ac_cv_func_foobar: ${ac_cv_func_foobar}"
AC_CONFIG_HEADER([config.h])

Execution of ./configure
$./configure
[...]
checking for printf... yes
checking for foobar... no
ac_cv_func_printf: yes
ac_cv_func_foobar: no
[...]
config.status: creating config.h

Generated config.h

[...]
/* Define to 1 if you have the `foobar' function. */
/* #undef HAVE_FOOBAR */

/* Define to 1 if you have the `printf' function. */
#define HAVE_PRINTF 1
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/124

Checking for headers

▶ Much like AC_FUNC_* and AC_CHECK_FUNC[S], but for headers
▶ Variety of AC_HEADER_* macros

• Check the autoconf manual for details
▶ AC_CHECK_HEADER[S] for generic headers checking

• AC_CHECK_HEADER (header-file, [action-if-found], [action-if-not-
found], [includes])

• AC_CHECK_HEADERS (header-file..., [action-if-found], [action-if-not-
found], [includes])

• Results available in:
ac_cv_header_<header-file> variable in configure.ac
HAVE_<HEADER>_H define in config.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/124

AC_CHECK_HEADERS example

configure.ac

[...]
AC_CHECK_HEADERS([spawn.h],

[echo "Header spawn.h was found"; has_spawn=yes],
[echo "Header spawn.h was not found"])

echo ${has_spawn}
[...]

Execution of ./configure
$./configure
[...]
checking for spawn.h... yes
Header spawn.h was found
yes
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/124

Checking for libraries

AC_SEARCH_LIBS (function, search-libs,
[action-if-found], [action-if-not-found],
[other-libraries])

▶ Search for a library defining function, by linking a simple program calling
function

▶ Tries first with no library, and then with the different libraries in search-libs,
one after the other.

▶ If a library is found, -llibrary is prepended to the LIBS variable, so programs
will be linked against it. action-if-found is executed.

▶ If not, action-if-not-found is executed
▶ other-libraries allows to pass additional -l<foo> arguments that may be

needed for the link test to succeed.
▶ Result in ac_cv_search_<function>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/124

AC_SEARCH_LIBS example
configure.ac

AC_SEARCH_LIBS(mvwaddstr, [ncurses cursesX curses])

Execution of ./configure

$./configure
[...]
checking for library containing mvwaddstr... -lncurses
[...]
$ grep ac_cv_search_mvwaddstr config.log
ac_cv_search_mvwaddstr=-lncurses

Compilation

$ make
[...]
gcc -g -O2 -o hello main.o common.o -lncurses
[...]
gcc -g -O2 -o test test.o common.o -lncurses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/124

Other checks

▶ Programs with AC_CHECK_PROGS
• AC_CHECK_PROGS(PERL, [perl5 perl])

▶ Declarations with AC_CHECK_DECLS

▶ Structure members with AC_CHECK_MEMBERS
▶ Types with AC_CHECK_TYPES

• AC_CHECK_TYPES(int8_t)

▶ See the autoconf manual for details

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/124

Autoconf advanced

Custom tests

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/124

Writing new tests

▶ You can create your own tests by pre-processing, compiling or linking small test
programs:

• Pre-processing test
AC_PREPROC_IFELSE (input, [action-if-true], [action-if-false])

• Compiling test
AC_COMPILE_IFELSE (input, [action-if-true], [action-if-false])

• Link test
AC_LINK_IFELSE (input, [action-if-true], [action-if-false])

▶ Input should be formatted with AC_LANG_SOURCE or AC_LANG_PROGRAM
▶ Runtime tests can also be created

• Beware, by nature, they cannot work for cross-compilation!
• AC_RUN_IFELSE

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/124

Writing new tests: AC_LINK_IFELSE

configure.ac

AC_LINK_IFELSE([AC_LANG_PROGRAM([#include <langinfo.h>],
[char *codeset = nl_langinfo (CODESET);])],

[glib_cv_langinfo_codeset=yes],
[glib_cv_langinfo_codeset=no])

Variable in config.log

$ grep glib_cv_langinfo_codeset config.log
glib_cv_langinfo_codeset=yes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/124

Printing messages

▶ When creating new tests, you may want to show messages, warnings, errors, etc.
▶ AC_MSG_CHECKING (feature-description)

• Notify the user that configure is checking for a particular feature.
▶ AC_MSG_RESULT (result-description)

• Notify the user of the results of a check
▶ AC_MSG_NOTICE (message)

• Deliver the message to the user.
▶ AC_MSG_ERROR (error-description, [exit-status = ‘$?/1’])

• Notify the user of an error that prevents configure from completing.
▶ AC_MSG_WARN (problem-description)

• Notify the configure user of a possible problem.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/124

Printing messages: example

configure.ac

AC_MSG_CHECKING([for nl_langinfo])
AC_LINK_IFELSE([AC_LANG_PROGRAM([#include <langinfo.h>],

[char *codeset = nl_langinfo (CODESET);])],
[glib_cv_langinfo_codeset=yes],
[glib_cv_langinfo_codeset=no])

AC_MSG_RESULT([$glib_cv_langinfo_codeset])

Execution of ./configure

$./configure
[...]
checking for nl_langinfo... yes
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/124

Autoconf advanced

External software and optional features

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/124

Using external software

▶ When a package uses external software, --with-<package>=<arg> and
--without-<package> options are generally offered to control usage of the
external software.

▶ Implemented using the AC_ARG_WITH macro.

AC_ARG_WITH (package, help-string,
[action-if-given], [action-if-not-given])

• package gives the name of the option
• help-string is the help text, visible in ./configure --help
• action-if-given is executed when the option is used, either positively (--with) or

negatively (--without)
• action-if-not-given is executed when the option is not used
• <arg> available as $withval inside action-if-given, $with_<package> outside.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/124

Package options

▶ When a package offers optional features, --enable-<feature> and
--disable-<feature> options are generally offered to control the optional
feature.

▶ Implemented using the AC_ARG_ENABLE macro.

AC_ARG_ENABLE (feature, help-string,
[action-if-given], [action-if-not-given])

▶ Usage very similar to the one of AC_ARG_WITH
▶ Value available as $enableval inside action-if-given, $enable_<feature> outside.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/124

Formatting the help string

▶ To help formatting the help string, autoconf provides the AS_HELP_STRING macro
▶ Allows to properly align the different options in the ./configure --help output

AS_HELP_STRING (left-hand-side, right-hand-side,
[indent-column = '26'], [wrap-column = '79'])

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/124

AC_ARG_ENABLE example
configure.ac
AC_ARG_ENABLE([test], AS_HELP_STRING([--enable-test], [Enable tests]),

[echo "Action if given, val = ${enableval}"],
[echo "Action if not given"])

echo "enable_test = ${enable_test}"

./configure tests
$./configure --help
[...]
Optional Features:
[...]

--enable-test Enable tests
$./configure
[...]
Action if not given
enable_test =
[...]
$./configure --enable-test
[...]
Action if given, val = yes
enable_test = yes
[...]
$./configure --disable-test
[...]
Action if given, val = no
enable_test = no
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/124

Autoconf advanced

pkg-config

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/124

Using pkg-config with autoconf

▶ To find libraries, a much better solution than AC_SEARCH_LIBS is to use
pkg-config

▶ pkg-config is a database of small text files, using the .pc extension, describing
how to use a given library

• installed in usr/lib/pkgconfig on most systems
• installed by most modern libraries

▶ The pkg-config command line tool allows to query this database for the compiler
and linker flags needed to use a given library.

▶ The PKG_CHECK_MODULES autoconf macro allows to query the pkg-config database.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/124

The PKG_CHECK_MODULES macro

▶ Syntax:

PKG_CHECK_MODULES(prefix, list-of-modules,
action-if-found, action-if-not-found)

▶ prefix will be used to create the <prefix>_CFLAGS and <prefix>_LIBS variables

• Contain the pre-processor and linker flags to use the libraries listed in
list-of-modules

• Are already AC_SUBSTed, so can be used directly in Makefile.am

▶ list-of-modules is one or several pkg-config libraries
• Can contain version specifiers, such as foo >= 3 bar baz <= 4

▶ Will exit with a failure if one of the dependencies is missing.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/124

PKG_CHECK_MODULES example

configure.ac
PKG_CHECK_MODULES(DBUS1,

dbus-1 >= 1.2.14,
[AC_DEFINE(HAVE_DBUS1, 1, [Define if dbus-1 is available]) have_dbus1=yes],
have_dbus1=no)

Makefile.am
gdbus_serialization_CFLAGS = $(AM_CFLAGS) $(DBUS1_CFLAGS)
gdbus_serialization_LDADD = $(LDADD) $(DBUS1_LIBS)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/124

Autoconf advanced

Misc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/124

autoscan

▶ autoscan is a program provided together with autoconf

▶ Scans the source tree in the current directory (or the one passed as argument)
▶ From that, autoscan:

• Searches the source files for common portability problems
• Checks for incompleteness of the configure.ac file, if any
• Generates configure.scan, which can be used as a preliminary configure.ac

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/124

Additional m4 macros

▶ The core autoconf macros are installed in /usr/share/autoconf/autoconf/
▶ Additional macros can be installed by other packages in /usr/share/aclocal

• Examples: pkg.m4 (for pkg-config), gpg-error.m4, iconv.m4, etc.
▶ The GNU Autoconf Archive is a collection of more than 500 macros for

autoconf
• https://www.gnu.org/software/autoconf-archive/
• Example: AX_C_LONG_LONG, Provides a test for the existence of the long long int

type and defines HAVE_LONG_LONG if it is found.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/124

https://www.gnu.org/software/autoconf-archive/

Automake advanced

Automake advanced

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/124

Automake advanced

Subdirectories

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/124

Subdirectories

▶ A project is often organized with multiple directories
▶ automake offers two options to support this:

• recursive make, where a sub-call to make is made for sub-directories, and each
directory has its own Makefile.am

• non-recursive make, where there is a single Makefile.am, building everything
▶ recursive make used to be the norm, but has significant drawbacks

• Recursive make considered harmful,
https://www.cse.iitb.ac.in/~soumen/teach/1999.2A.CS699/make.html

▶ non-recursive make is more and more commonly used in modern projects

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/124

https://www.cse.iitb.ac.in/~soumen/teach/1999.2A.CS699/make.html

Recursive make

▶ The SUBDIRS variable in a Makefile.am indicates the sub-directories that contain
other Makefile.am

configure.ac

AC_CONFIG_FILES([Makefile src/Makefile])

Makefile.am

SUBDIRS = src

src/Makefile.am

bin_PROGRAMS = hello
hello_SOURCES = main.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/124

Non-recursive make

▶ The AM_INIT_AUTOMAKE macro accepts a subdir-objects argument
▶ If specified, allows a Makefile.am to reference code in another directory

configure.ac

AM_INIT_AUTOMAKE([subdir-objects])
AC_CONFIG_FILES([Makefile])

Makefile.am

bin_PROGRAMS = hello
hello_SOURCES = src/main.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/124

Automake advanced

Conditionals

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/124

automake conditionals

▶ In order to use a conditional in a Makefile.am, it must be defined in the
configure.ac script.

▶ Done using the AM_CONDITIONAL(conditional, condition) macro

configure.ac

AM_CONDITIONAL([DEBUG], [test x$debug = xtrue])

Makefile.am

if DEBUG
...
else
...
endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/124

Usage of automake conditionals

You cannot use
conditionals inside a
variable definition
Non-working example
bin_PROGRAMS = \

bar \
if DEBUG

baz \
endif

foobar

You should instead use an
intermediate variable
Working example
if DEBUG
DEBUG_PROGS = baz
endif

bin_PROGRAMS = \
bar \
$(DEBUG_PROGS) \
foobar

Or the += assigment sign
Working example
bin_PROGRAMS = \

bar \
foobar

if DEBUG
bin_PROGRAMS += baz
endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/124

Conditional example

configure.ac
AM_CONDITIONAL(THREADS_POSIX, [test "$g_threads_impl" = "POSIX"])
AM_CONDITIONAL(THREADS_WIN32, [test "$g_threads_impl" = "WIN32"])
AM_CONDITIONAL(THREADS_NONE, [test "$g_threads_impl" = "NONE"])

Makefile.am
libglib_2_0_la_SOURCES = \

$(deprecated_sources) \
glib_probes.d \
garray.c \

[...]

if THREADS_WIN32
libglib_2_0_la_SOURCES += gthread-win32.c
else
if THREADS_POSIX
libglib_2_0_la_SOURCES += gthread-posix.c
endif
endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/124

Automake advanced

Shared libraries

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/124

Building shared libraries

▶ Building shared libraries is very different between UNIX variants
▶ A specific tool, called libtool, was created to abstract away the differences

between platforms.
▶ Concept called libtool libraries, using the .la suffix
▶ A libtool library can designate a static library, a shared library, or both.

• --{enable,disable}-{static,shared} to select
▶ Libtool libraries declared using the LTLIBRARIES primary in a Makefile.am

▶ Typically used in conjunction with the HEADERS primary to install public headers.
▶ configure.ac must call the LT_PREREQ and LT_INIT macros

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/124

Libtool library example

configure.ac

[...]
LT_PREREQ([2.4])
LT_INIT
[...]

Makefile.am
bin_PROGRAMS = hello
hello_SOURCES = src/main.c

lib_LTLIBRARIES = libmyhello.la
libmyhello_la_SOURCES = lib/core.c
include_HEADERS = lib/myhello.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/124

Libtool library example (2/2)

$./configure
[...]
checking whether stripping libraries is possible... yes
checking if libtool supports shared libraries... yes
checking whether to build shared libraries... yes
checking whether to build static libraries... yes
[...]
$ make
[...]
$ make DESTDIR=/tmp/test install
[...]
$ find /tmp/test
/tmp/test/
/tmp/test/usr
/tmp/test/usr/local
/tmp/test/usr/local/include
/tmp/test/usr/local/include/myhello.h
/tmp/test/usr/local/bin
/tmp/test/usr/local/bin/hello
/tmp/test/usr/local/lib
/tmp/test/usr/local/lib/libmyhello.a
/tmp/test/usr/local/lib/libmyhello.la
/tmp/test/usr/local/lib/libmyhello.so
/tmp/test/usr/local/lib/libmyhello.so.0
/tmp/test/usr/local/lib/libmyhello.so.0.0.0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/124

Libtool versioning

▶ Needed to support changes in the library interface
▶ Each system handles library versioning differently
▶ libtool does not use the traditional <major>.<minor>.<revision>
▶ It uses a more abstract representation, converted differently depending on the

system on which you’re building.
▶ libtool representation is <current>:<revision>:<age>

• current is the interface number, incremented whenever the public interface changes
• revision is incremented whenever the library source code is changed
• age is incremented when new functions are added, reset to 0 when functions are

removed
▶ Defined using -version-info <current>:<revision>:<age> in

<product>_LDFLAGS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/124

Libtool versioning: example

Makefile.am

lib_LTLIBRARIES = libmyhello.la
libmyhello_la_SOURCES = lib/core.c
libmyhello_la_LDFLAGS = -version-info 3:4:2

Installation
$ make DESTDIR=/tmp/p install
[...]
$ ls -l /tmp/p/usr/local/lib
-rw-r--r-- 1 thomas thomas 6224 mai 20 15:28 libmyhello.a
-rwxr-xr-x 1 thomas thomas 963 mai 20 15:28 libmyhello.la
lrwxrwxrwx 1 thomas thomas 19 mai 20 15:28 libmyhello.so -> libmyhello.so.1.2.4
lrwxrwxrwx 1 thomas thomas 19 mai 20 15:28 libmyhello.so.1 -> libmyhello.so.1.2.4
-rwxr-xr-x 1 thomas thomas 10608 mai 20 15:28 libmyhello.so.1.2.4

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/124

Automake advanced

Misc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/124

Global automake variables

▶ Variables that you can define in Makefile.am
• Apply to the current Makefile.am
• Affect all products described in the current Makefile.am

▶ AM_CPPFLAGS, default pre-processor flags
▶ AM_CFLAGS, default compiler flags
▶ AM_LDFLAGS, default linker flags
▶ LDADD, libraries not detected by configure that we should link with
▶ Do not set CPPFLAGS, CFLAGS and LDFLAGS, so that they can be passed in the

environment by users

Example
LDADD = $(top_builddir)/glib/libglib-2.0.la
AM_CPPFLAGS = $(gmodule_INCLUDES) $(GLIB_DEBUG_FLAGS)
AM_CFLAGS = -g

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/124

Per product variables

▶ <product>_SOURCES, list of source files
▶ <product>_LDADD, libraries to link with
▶ <product>_CPPFLAGS, pre-processor flags, overrides AM_CPPFLAGS

▶ <product>_CFLAGS, compiler flags, overrides AM_CFLAGS

▶ <product>_LDFLAGS, linker flags, overrides AM_LDFLAGS

Example
LDADD = $(top_builddir)/glib/libglib-2.0.la

module_test_LDADD = $(top_builddir)/gmodule/libgmodule-2.0.la $(LDADD)
module_test_LDFLAGS = $(G_MODULE_LDFLAGS)
slice_threadinit_LDADD = $(top_builddir)/gthread/libgthread-2.0.la $(LDADD)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/124

Useful variables

▶ Autoconf provides several variables that can be useful in your Makefile.am:
• top_srcdir, the relative path to the top of the source tree
• srcdir, the relative path to the directory that contains the current Makefile
• top_builddir, the relative path to the top of the build tree
• builddir, the current directory
• abs_top_srcdir, abs_srcdir, abs_top_builddir, abs_builddir, absolute variants

of the previous variables
▶ Example usage: library code in lib/, header files in include/:

lib/Makefile.am
lib_LTLIBRARIES = libhello.la
libhello_la_SOURCES = ...
libhello_la_CPPFLAGS = -I$(top_srcdir)/include

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/124

Silent rules
▶ By default, automake generate Makefiles that displays the full compilation

commands
▶ Using the AM_SILENT_RULES, you can get a slimmer build output
▶ By default, the output remains verbose, but can be silenced by passing the V=0

variable.
▶ If AM_SILENT_RULES([yes]) is used, the output is quiet by default, and verbose if

V=1 is passed.

$ make
CC lib/core.lo
CCLD libmyhello.la
CC src/main.o
CCLD hello

$ make V=1
[...]
libtool: link: (cd ".libs" && rm -f "libmyhello.so.0" && ln -s "libmyhello.so.0.0.0" ...
libtool: link: (cd ".libs" && rm -f "libmyhello.so" && ln -s "libmyhello.so.0.0.0" ...
libtool: link: ar cru .libs/libmyhello.a lib/core.o
libtool: link: ranlib .libs/libmyhello.a
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/124

make dist
▶ make dist generates a tarball to release the software
▶ All files listed in _SOURCES variables are automatically included, as well as the

necessary autotools files
▶ Additional files can be added to the distribution using the EXTRA_DIST variable in

Makefile.am:
Makefile.am
These files are used in the preparation of a release
EXTRA_DIST += \

PrepareRelease \
CheckMan \
CleanTxt \
[...]

▶ Distribution can also be controlled using the dist and nodist automake product
modifiers:

Makefile.am
nodist_include_HEADERS += pcrecpparg.h
dist_doc_DATA = doc/pcre.txt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/124

Macro directory

▶ By default, all the third-party autoconf macros get copied into the (very large)
aclocal.m4 file.

▶ It is possible to get some of the third-party macros copied to individiual files in a
separate directory, which is nicer.

▶ Directory declared using AC_CONFIG_MACRO_DIR, generally named m4 by
convention:

configure.ac

AC_CONFIG_MACRO_DIR([m4])

▶ The ACLOCAL_AMFLAGS in Makefile.am should also be adjusted:
Makefile.am

ACLOCAL_AMFLAGS = -I m4

▶ For now, mainly used by libtool for its own m4 macros.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/124

Auxiliary directory

▶ The auxiliary files generated by autotools such as compile, config.guess,
config.sub, depcomp, etc. are by default in the main directory of the source tree.

▶ This clutters the main directory with lots of files, which may not be very pleasant.
▶ AC_CONFIG_AUX_DIR allows to customize where these files are generated:

configure.ac

AC_CONFIG_AUX_DIR([build-aux])

▶ One condition: it must be placed before the calls to AM_INIT_AUTOMAKE and
LT_INIT

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/124

Practical lab - More advanced autotools usage

▶ Use AC_ARG_ENABLE and config.h

▶ Implement a shared library
▶ Switch to multiple directories
▶ Make the compilation of programs conditional
▶ Use pkg-config

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/124

Autotools references

Autotools references

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/124

Existing code

▶ Lots of open-source projects are using the autotools
▶ They provide a lot of examples on how to configure and build things using the

autotools
▶ However, make sure to have a critical eye when reading existing autotools code

• For a lot of developers, the build system part is not their primary knowledge and
interest

• Lots of projects use deprecated constructs or truely horrible solutions
• Don’t copy/paste without thinking!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/124

Book: Autotools, a practitioner’s guide

▶ Autotools, A Practitioner’s Guide to GNU
Autoconf, Automake, and Libtool

▶ John Calcote
▶ No Starch Press
▶ https://www.nostarch.com/autotools.htm

▶ Excellent book.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/124

https://www.nostarch.com/autotools.htm

Official documentation

▶ The official reference documentation from
GNU is also very good, once you have a good
understanding of the basics.

▶ Autoconf
https:

//www.gnu.org/software/autoconf/manual/

▶ Automake
https:

//www.gnu.org/software/automake/manual/

▶ Libtool
https:

//www.gnu.org/software/libtool/manual/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/124

https://www.gnu.org/software/autoconf/manual/
https://www.gnu.org/software/autoconf/manual/
https://www.gnu.org/software/automake/manual/
https://www.gnu.org/software/automake/manual/
https://www.gnu.org/software/libtool/manual/
https://www.gnu.org/software/libtool/manual/

Tutorials

▶ Autotools tutorial, Alexandre Duret-Lutz,
https:
//www.lrde.epita.fr/~adl/autotools.html

▶ Autotools Mythbuster, Diego Elio
“Flameeyes” Pettenò, https://autotools.io/

▶ Introduction to the Autotools, David
Wheeler, including a video,
https://www.dwheeler.com/autotools/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/124

https://www.lrde.epita.fr/~adl/autotools.html
https://www.lrde.epita.fr/~adl/autotools.html
https://autotools.io/
https://www.dwheeler.com/autotools/

Use up to date materials

▶ Be careful to use up-to-date material
• For example, the well-known book GNU Autoconf, Automake and Libtool” by Gary

Vaughan et al., published originally in 2000 is completely out of date
• Even though autotools are old, they have evolved quite significantly in recent times!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/124

Last slides

Last slides

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/124

Last slide

Thank you!
And may the Source be with you

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/124

Rights to copy

© Copyright 2004-2025, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of this work.
▶ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/124

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

	About Bootlin
	Generic course information
	Autotools usage
	Autotools basics
	Autoconf advanced
	Configuration header
	Checking for functions, headers, libraries, etc.
	Custom tests
	External software and optional features
	pkg-config
	Misc

	Automake advanced
	Subdirectories
	Conditionals
	Shared libraries
	Misc

	Autotools references
	Last slides

