
Audio with embedded Linux training

Audio with embedded Linux
training

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Latest update: July 03, 2025.

Document updates and training details:
https://bootlin.com/training/audio

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@bootlin.com

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/271

https://bootlin.com/training/audio
mailto:feedback@bootlin.com

Audio with embedded Linux training

▶ These slides are the training materials for Bootlin’s Audio with
embedded Linux training course.

▶ If you are interested in following this course with an experienced
Bootlin trainer, we offer:

• Public online sessions, opened to individual registration. Dates
announced on our site, registration directly online.

• Dedicated online sessions, organized for a team of engineers
from the same company at a date/time chosen by our customer.

• Dedicated on-site sessions, organized for a team of engineers
from the same company, we send a Bootlin trainer on-site to
deliver the training.

▶ Details and registrations:
https://bootlin.com/training/audio

▶ Contact: training@bootlin.com

Icon by Eucalyp, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/271

https://bootlin.com/training/audio

About Bootlin

About Bootlin

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/271

Bootlin introduction

▶ Engineering company
• In business since 2004
• Before 2018: Free Electrons

▶ Team based in France and Italy
▶ Serving customers worldwide
▶ Highly focused and recognized expertise

• Embedded Linux
• Linux kernel
• Embedded Linux build systems

▶ Strong open-source contributor
▶ Activities

• Engineering services
• Training courses

▶ https://bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/271

https://bootlin.com

Bootlin engineering services

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/271

Bootlin training courses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/271

Bootlin, an open-source contributor

▶ Strong contributor to the Linux kernel
• In the top 30 of companies contributing to Linux worldwide
• Contributions in most areas related to hardware support
• Several engineers maintainers of subsystems/platforms
• 9000 patches contributed
• https://bootlin.com/community/contributions/kernel-contributions/

▶ Contributor to Yocto Project
• Maintainer of the official documentation
• Core participant to the QA effort

▶ Contributor to Buildroot
• Co-maintainer
• 6000 patches contributed

▶ Significant contributions to U-Boot, OP-TEE, Barebox, etc.
▶ Fully open-source training materials

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/271

https://bootlin.com/community/contributions/kernel-contributions/

Bootlin on-line resources

▶ Website with a technical blog:
https://bootlin.com

▶ Engineering services:
https://bootlin.com/engineering

▶ Training services:
https://bootlin.com/training

▶ LinkedIn:
https://www.linkedin.com/company/bootlin

▶ Elixir - browse Linux kernel sources on-line:
https://elixir.bootlin.com

Icon by Freepik, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/271

https://bootlin.com
https://bootlin.com/engineering
https://bootlin.com/training
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

Training quiz and certificate

▶ You have been given a quiz to test your knowledge on the topics covered by the
course. That’s not too late to take it if you haven’t done it yet!

▶ At the end of the course, we will submit this quiz to you again. That time, you
will see the correct answers.

▶ It allows Bootlin to assess your progress thanks to the course. That’s also a kind
of challenge, to look for clues throughout the lectures and labs / demos, as all the
answers are in the course!

▶ Another reason is that we only give training certificates to people who achieve at
least a 50% score in the final quiz and who attended all the sessions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/271

Participate!

During the lectures...
▶ Don’t hesitate to ask questions. Other people in the audience may have similar

questions too.
▶ Don’t hesitate to share your experience too, for example to compare Linux with

other operating systems you know.
▶ Your point of view is most valuable, because it can be similar to your colleagues’

and different from the trainer’s.
▶ In on-line sessions

• Please always keep your camera on!
• Also make sure your name is properly filled.
• You can also use the ”Raise your hand” button when you wish to ask a question but

don’t want to interrupt.
▶ All this helps the trainer to engage with participants, see when something needs

clarifying and make the session more interactive, enjoyable and useful for everyone.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/271

Collaborate!

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
▶ Use the dedicated Matrix channel for this session to add

questions.
▶ If your session offers practical labs, you can also report issues,

share screenshots and command output there.
▶ Don’t hesitate to share your own answers and to help others

especially when the trainer is unavailable.
▶ The Matrix channel is also a good place to ask questions outside

of training hours, and after the course is over.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/271

Sound and its representation

Sound and its
representation

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/271

What is sound?
▶ Sound is caused by vibrations
▶ Vibrations create waves, travelling through a medium
▶ Humans perceive acoustic waves with their ears, as eardrum are vibrating,

converting the signal for the brain
▶ It is usually represented as a sine wave, however, it is a longitudinal wave

(compression/rarefaction) in air and water and a transversal wave in solids.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/271

Sound characteristics
▶ Sound waves have a frequency, measured in Hertz (Hz), this is the pitch of the

sound.
▶ They also have an amplitude, measured in decibels (dB), this is the loudness of

the sound.
▶ Multiple waves of different frequencies and amplitude combine to create the

actual sound with different qualities and timbre.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/271

Sound digitization - samples
▶ Sound waves are continuous curves composed of a infinite number of points.
▶ For any point on the curve, it is possible to measure the audio level of this point.
▶ This is a sample. We can then take samples at regular interval to have a digital

representation of the curve.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/271

Sound digitization - sample rate
▶ The sample rate, or sampling frequency is the number of samples taken per

seconds.
▶ If the sampling frequency is too slow, we may have aliasing issues were the

sampled signal doesn’t match the analog signal.
▶ The Shannon-Nyquist theorem states that the sampling frequency needs to be

at least twice the maximum signal frequency to accurately digitize a signal.
▶ The Human ear can hear sound frequencies between approximately 20 Hz and

20 kHz.

0

0 1 2 3 4 5 6 7 8 9 10

Aliasing example, the sampled signal is in blue
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/271

Sound digitization - sample size

▶ The sample value varies from 0 to the maximum amplitude value.
▶ If the amplitude is 1.0, then it varies from -1.0 and 1.0
▶ The sample size, in bits, then defines the resolution.
▶ Common sample sizes are 16 and 24 bits.
▶ 8 bits is getting very rare due to the poor audio quality and 32 bits samples can

be used when specific alignment is required.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/271

Sound digitization - sample format

There are multiple ways to store samples in memory or on disk:
▶ as signed integers
▶ as unsigned integers
▶ as floating points

Also, they can be stored in little-endian or big-endian order. For 24bit samples,
packing can also differ: either they are packed on 3 bytes or they can be packed in a
32bit integer with the most significant byte being ignored.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/271

Sound digitization - conclusions

▶ We can then store sound as a sequence of samples and the specific sample rate
that was used.

▶ This method is called Linear Pulse-code modulation or LPCM.
▶ A sampling rate of about 40kHz is needed.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/271

Sound digitization - example WAV

WAV is a format based on RIFF and has the following header:
Position Value Description
1 - 4 “RIFF” RIFF FOURCC code
5 - 8 File size in bytes, minus 8 (32-bit integer).
9 -12 “WAVE” WAVE FOURCC code
13-16 “fmt ” Format chunk marker (includes trailing space)
17-20 16 Length of format data, 16 for PCM
21-22 1 Audio format, 1 for PCM
23-24 2 Number of channels
25-28 48000 Sample rate
29-32 176400 Byte rate = (Sample rate * BitsPerSample * channels) / 8.
33-34 4 BlockAlign = (BitsPerSample * Channels) / 8
35-36 16 Bits per sample
37-40 “data” Data chunk header
41-44 Size of the data section in bytes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/271

Sound digitization - example WAV

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/271

Embedded audio Hardware

Embedded audio
Hardware

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/271

Anatomy

Example of an embedded system sound card

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/271

Embedded audio Hardware

CODECs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/271

CODECs

▶ A CODEC is a device that COdes and DECodes audio samples.
▶ It integrates an analog-to-digital converter (ADC) and a digital-to-analog

converter (DAC) into a single chip.
▶ It converts a voltage signal from an analog input (e.g. microphone) to a sequence

of samples or converts a stream of samples to a voltage for an analog output (e.g.
speaker driver).

▶ It also has one or multiple digital audio interfaces (DAI) to transfer samples to or
from a microcontroller or microprocessor.

▶ Usually an extra digital bus is used for configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/271

Digital audio interface - signals

The CODEC DAI is a synchronous serial bus. A common PCM interface is represented
here:

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/271

Digital audio interface - signals

▶ The PCM DAI uses two clocks: the bit clock and the frame clock.
• The bit clock is usually referred to as BCK or BCLK
• The frame clock is often called FCLK/FSCK/FSCLK, LRCK/LRCLK (Left Right

clock) or WCLK (word clock). Its rate is the sample rate also called Fs.
• The relationship between BCK and FSCK is: bck = fsck ∗ Nchannels ∗ BitDepth

▶ It also has one or multiple data lines.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/271

Digital audio interface - Data
▶ Codecs may have multiple data in or data out lines, one line per channel pair.
▶ Codecs may also have multiple DAI, one full interface for data in and one for data

out.

e.g. AD1937 has:
▶ 8 DACs in 4 pairs, 4 ADCs in 2 pairs
▶ clocks for data-in: DBCLK, DLRCLK
▶ 4 data-in lines (DSDATA[1-4])
▶ clocks for data-out: ABCLK, ALRCLK
▶ 2 data-out lines (ASDATA[1-2])

NC = NO CONNECT

N
C

64

N
C

63

A
V

D
D

62

L
F

61

A
D

C
2

R
N

60

A
D

C
2

R
P

59

A
D

C
2

L
N

58

A
D

C
2

L
P

57

A
D

C
1

R
N

56

A
D

C
1

R
P

55

A
D

C
1

L
N

54

A
D

C
1

L
P

53

C
M

52

A
V

D
D

51

N
C

50

N
C

49

D
V

D
D

17

D
S

D
A

T
A

3

18

D
S

D
A

T
A

2

19

D
S

D
A

T
A

1

20

D
B

C
L

K

21

D
L

R
C

L
K

22

V
S

U
P

P
L

Y

23

V
S

E
N

S
E

24

V
D

R
IV

E

25

A
S

D
A

T
A

2

26

A
S

D
A

T
A

1

27

A
B

C
L

K

28

A
L

R
C

L
K

29

A
D

D
R

0

30

S
D

A

31

AGND 1

D
V

D
D

32

MCLKI/MCLKXI 2

MCLKO/MCLKXO 3

AGND 4

AVDD 5

DAC3LP 6

DAC3LN 7

DAC3RP 8

DAC3RN 9

DAC4LP 10

DAC4LN 11

DAC4RP 12

DAC4RN 13

PD/RST 14

AGND48

FILTR47

AGND46

AVDD45

AGND44

DAC2RN43

DAC2RP42

DAC2LN41

DAC2LP40

DAC1RN39

DAC1RP38

DAC1LP36

ADDR135

DSDATA4 15 SCL34

DGND 16 DGND33

DAC1LN37

AD1937
TOP VIEW

(Not to Scale)
DIFFERENTIAL OUTPUT

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/271

https://www.analog.com/media/en/technical-documentation/data-sheets/AD1937.pdf

MCLK

▶ MCLK is the codec clock. It is sometimes referred as the system clock. The IC
needs it to be working.

▶ Some codecs will also require it to be able to use the control interface.
▶ Can be provided by the SoC when it has suitable clocks or a crystal.
▶ Some codecs are able to use BCLK or LRCLK as their clock, making MCLK

optional.
▶ Usually the codecs will expect MCLK to be a multiple of BCLK. Usually specified

as a multiple of Fs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/271

Embedded audio Hardware

SoC Digital Audio Interface

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/271

SoC

▶ The SoC also has a dedicated synchronous serial interface.
▶ Some are generic serial interfaces others are dedicated to audio formats.
▶ It has a DMA controller or a peripheral DMA controller (PDC) able to copy

samples from memory to the serial interface registers or FIFO.
▶ It quite often also has dedicated multimedia (audio/video) clocks.
▶ Examples: Atmel SSC, NXP SSI, NXP SAI, TI McASP
▶ Some SoCs have a separate SPDIF controller
▶ Some SoCs (Allwinner A33, Atmel SAMA5D2) have the codec and the amplifier

on the SoC itself so the sound card is completely on the SoC.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/271

Embedded audio Hardware

Digital formats

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/271

Digital formats - Left Justified

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/271

Digital formats - Right Justified

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/271

Digital formats - I2S

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/271

Digital formats - DSP A

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/271

Digital formats - DSP B

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/271

Digital formats - TDM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/271

Digital formats - AC-link

AC97 uses TDM slots. Slot 0 is 16bit wide and is the tag. Then twelve 20bit wide
slots are used to transmit data.

SYNC

BIT_CLK

SDATA_OUT slot(1)

Time Slot "Valid"
Bits

20.8 µs
(48 kHz)

Slot 1 Slot 2

0 19 0 19 0 19 0

Slot 3 Slot 12

81.4 ns

12.288 MHz

slot(2) ID1"0"slot(12)

("1" = time slot contains valid PCM data)

19Valid
Frame

End of previous
Audio Frame

Tag Phase Data Phase

ID0

Codec ID

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/271

Digital formats - PDM
There is another, less common interface, using Pulse Density Modulation. It has two
signals per channels, clock and data. Data has only one bit.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/271

Digital formats - S/PDIF or IEC 60958
S/PDIF uses only one wire. Data is encoded using BMC (Biphase Mark Code), also
known as differential Manchester encoding. Its clock is then twice the bitrate.

clock

data

bmc

(2x bitrate)

0 0

00000 1 1 1 1

111

11 1

0

Blocks of 192 frames are transmitted, each frame consisting of two subframes (32bit
words). There are three different preambles, one for start of block and channel 0, one
for channel 0 and one for channel 1.

YChannel 0 Channel 1 Channel 0 Channel 1 Channel 0 Channel 1 Channel 0 Channel 1

Subframe

Block

LSB MSBAudio sample word V U C PAuxiliaryPreamble

Subframe

Frame 0 Frame 191Frame 191

X X YZYX

Subframe format

0 3 4 7 8 27 28 29 30 31

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/271

Embedded audio Hardware

Auxiliary devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/271

Auxiliary devices

▶ Some devices may be on the analog path of the audio signal.
▶ They can be amplifiers, potentiometers or multiplexers.
▶ Some can be controlled and should be exposed as controls of the sound card.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/271

Embedded audio Hardware

Clocks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/271

Clocks: producer/consumer

▶ One of the DAI is responsible to generate the bit clock, it is the bit clock producer
(previously: master).

▶ One of the DAI is responsible to generate the frame clock, it is the frame producer.
▶ Some CODECs have a great set of PLLs and dividers, allowing to get a precise

BCLK from many different MCLK rates.
▶ Quite often, it is better to use the CODEC as producer. However, some SoCs

have specialized audio PLLs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/271

ASoC

ASoC

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/271

ASoC

ASoC, ALSA System on Chip: is a Linux kernel subsystem created to provide better
ALSA support for system-on-chip and portable audio codecs. It allows to reuse codec
drivers across multiple architectures and provides an API to integrate them with the
SoC audio interface.
▶ created for that use case
▶ designed for codec drivers reuse
▶ has an API to write codec drivers
▶ has an API to write SoC interface drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/271

ASoC components

▶ Codec class drivers: define the codec capabilities (audio interface, audio controls,
analog inputs and outputs).

▶ Platform class drivers: defines the SoC audio interface (also referred as CPU
DAI), sets up DMA when applicable.

▶ Codec to platform integration: nowadays, usually done through device tree,
previously required writing a machine driver in C.

Note: The codec can be part of another IC (PMIC, Bluetooth or MODEM chips).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/271

ASoC

simple-audio-card

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/271

simple-card

Most sound cards, can now be described using device tree. This is done using a sound
node with a simple-audio-card compatible string.
▶ The DT bindings are documented in

Documentation/devicetree/bindings/sound/simple-card.yaml

▶ The driver handling it is sound/soc/generic/simple-card.c

Since 2017, OF-graph based bindings are available.
▶ They are documented in

Documentation/devicetree/bindings/sound/audio-graph-card.yaml

▶ The driver handling it is sound/soc/generic/audio-graph-card.c

Both required a few changes in the SoC DAI drivers to be usable for example to select
the audio mode for the SSC on Microchip SoCs or configure properly the i.MX audmux.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/271

https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/sound/simple-card.yaml
https://elixir.bootlin.com/linux/latest/source/sound/soc/generic/simple-card.c
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/sound/audio-graph-card.yaml
https://elixir.bootlin.com/linux/latest/source/sound/soc/generic/audio-graph-card.c

simple-card - example 1

Let’s say we have an ADAU1372 codec connected to an i.Mx6UL SAI. First, enable the
SAI and the codec:
&sai2 {

pinctrl-names = "default";
pinctrl-0 = <&pinctrl_sai2>;
status = "okay";

};

&i2c1 {
adau1372: codec@3c {

#sound-dai-cells = <0>;
compatible = "adi,adau1372";
reg = <0x3c>;
clock-names = "mclk";
clocks = <&adau1372z_xtal>;

};
};

/ {
adau1372z_xtal: adau1372z_xtal {

compatible = "fixed-clock";
#clock-cells = <0>;
clock-frequency = <12288000>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/271

simple-card - example 1

Now, describe the sound card:
sound {

compatible = "simple-audio-card";
simple-audio-card,name = "imx6ul-adau1372";

simple-audio-card,dai-link@0 {
format = "i2s";
bitclock-master = <&adau1372_dai>;
frame-master = <&adau1372_dai>;

sai2_dai: cpu {
sound-dai = <&sai2>;

};

adau1372_dai: codec {
sound-dai = <&adau1372>;

};
};

};

For convenience, the codec is the producer, it generates both BCLK and FSCLK.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/271

simple-card - example 2

The ADAU1372 has actually 4 channels and can do TDM:

sound {
compatible = "simple-audio-card";
simple-audio-card,name = "imx6ul-adau1372";

simple-audio-card,dai-link@0 {
format = "i2s";
bitclock-master = <&adau1372_dai>;
frame-master = <&adau1372_dai>;

sai2_dai: cpu {
sound-dai = <&sai2>;
dai-tdm-slot-num = <4>;
dai-tdm-slot-width = <32>;

};

adau1372_dai: codec {
sound-dai = <&adau1372>;
dai-tdm-slot-num = <4>;
dai-tdm-slot-width = <32>;

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/271

simple-card - example 3

However, the ADAU1372 has an hardware issue and doesn’t generate the proper BCLK
when doing TDM4 with a 32kHz sample rate. The SAI has to be master:

sound {
compatible = "simple-audio-card";
simple-audio-card,name = "imx6ul-adau1372";

simple-audio-card,dai-link@0 {
format = "i2s";
bitclock-master = <&sai2_dai>;
frame-master = <&sai2_dai>;

sai2_dai: cpu {
sound-dai = <&sai2>;
dai-tdm-slot-num = <4>;
dai-tdm-slot-width = <32>;

};

adau1372_dai: codec {
sound-dai = <&adau1372>;
dai-tdm-slot-num = <4>;
dai-tdm-slot-width = <32>;

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/271

simple-card - example 3

The result is not what is expected:

aplay test.wav
Playing WAVE 'test.wav' :
Signed 16 bit Little Endian, Rate 32000 Hz, Stereo
aplay: set_params:1403: Unable to install hw params:
[...]
dmesg
[...]
fsl-sai 202c000.sai: failed to derive required Tx rate: 4096000
fsl-sai 202c000.sai: ASoC: can't set 202c000.sai hw params: -22
cat /sys/kernel/debug/clk/clk_summary
pll3 1 1 0 480000000 0 0 50000

pll3_bypass 1 1 0 480000000 0 0 50000
pll3_usb_otg 2 3 0 480000000 0 0 50000

pll3_pfd2_508m 0 0 0 508235294 0 0 50000
sai2_sel 0 0 0 508235294 0 0 50000

sai2_pred 0 0 0 127058824 0 0 50000
sai2_podf 0 0 0 63529412 0 0 50000

sai2 0 0 0 63529412 0 0 50000

Indeed, there is no way for the SAI to divide 63529412 to get the proper BCLK!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/271

device tree - clocks

It is possible to reparent clocks using assigned-clock-parents and set the clock rate
using assigned-clock-rates.

&sai2 {
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_sai2>;
assigned-clocks = <&clks IMX6UL_CLK_SAI2_SEL>, <&clks IMX6UL_CLK_SAI2>;
assigned-clock-parents = <&clks IMX6UL_CLK_PLL4_AUDIO_DIV>;
assigned-clock-rates = <196608000>, <24576000>;
status = "okay";

};

Notice that 24.576MHz was selected for the sai input clock as it is not able to divide
by 3 to obtain the 4.096MHz BCLK.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/271

simple-card - example 4
There is a possible cost reduction, the SAI is able to output its clock to feed to the
codec MCLK instead of the crystal:

&sai2 {
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_sai2>;
fsl,sai-mclk-direction-output;
status = "okay";

};

&i2c1 {
adau1372: codec@3c {

#sound-dai-cells = <0>;
compatible = "adi,adau1372";
reg = <0x3c>;
clock-names = "mclk";
clocks = <&clks IMX6UL_CLK_SAI2>;
assigned-clocks = <&clks IMX6UL_CLK_SAI2_SEL>, <&clks IMX6UL_CLK_SAI2>;
assigned-clock-parents = <&clks IMX6UL_CLK_PLL4_AUDIO_DIV>;
assigned-clock-rates = <196608000>, <24576000>;

};
};

This replaces the 12.288MHz crystal by the 24.576 MCLK from the SAI. This works
because the codec has a configurable divider for MCLK and can divide by 2. Also the
clock parents and rates assignment has moved to the codec because of probing order.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/271

simple-card - routing

It is possible but not mandatory to list the actual audio connections present on the
board, this is called routing. The first step is to define the board connectors, in this
case two stereo line input jack (Line0 and Line1) and a stereo jack output.

simple-audio-card,widgets =
"Line", "Line0",
"Line", "Line1",
"Headphone", "Headphone Jack",

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/271

simple-card - routing

Routing audio from the codec to the board connector is then done using
simple-audio-card,routing

simple-audio-card,routing =
"AIN0", "Line0",
"AIN1", "Line0",
"AIN2", "Line1",
"AIN3", "Line1",
"Headphone Jack", "HPOUTL",
"Headphone Jack", "HPOUTR",

Look for SND_SOC_DAPM_OUTPUT and SND_SOC_DAPM_INPUT to know what the codec is
providing.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/271

ASoC

Machine driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/271

Machine driver

The machine driver registers a struct snd_soc_card.
include/sound/soc.h

int snd_soc_register_card(struct snd_soc_card *card);
int snd_soc_unregister_card(struct snd_soc_card *card);
int devm_snd_soc_register_card(struct device *dev, struct snd_soc_card *card);
[...]
/* SoC card */
struct snd_soc_card {

const char *name;
const char *long_name;
const char *driver_name;
struct device *dev;
struct snd_card *snd_card;

[...]
/* CPU <--> Codec DAI links */
struct snd_soc_dai_link *dai_link; /* predefined links only */
int num_links; /* predefined links only */
struct list_head dai_link_list; /* all links */
int num_dai_links;

[...]
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_card
https://elixir.bootlin.com/linux/latest/source/include/sound/soc.h

struct snd_soc_dai_link

struct snd_soc_dai_link is used to create the link between the CPU DAI and the
codec DAI.
include/sound/soc.h

struct snd_soc_dai_link {
/* config - must be set by machine driver */
const char *name; /* Codec name */
const char *stream_name; /* Stream name */

/*
* You MAY specify the link's CPU-side device, either by device name,
* or by DT/OF node, but not both. If this information is omitted,
* the CPU-side DAI is matched using .cpu_dai_name only, which hence
* must be globally unique. These fields are currently typically used
* only for codec to codec links, or systems using device tree.
*/
/*
* You MAY specify the DAI name of the CPU DAI. If this information is
* omitted, the CPU-side DAI is matched using .cpu_name/.cpu_of_node
* only, which only works well when that device exposes a single DAI.
*/
struct snd_soc_dai_link_component *cpus;
unsigned int num_cpus;

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dai_link
https://elixir.bootlin.com/linux/latest/ident/snd_soc_dai_link
https://elixir.bootlin.com/linux/latest/source/include/sound/soc.h

struct snd_soc_dai_link

/*
* You MUST specify the link's codec, either by device name, or by
* DT/OF node, but not both.
*/
/* You MUST specify the DAI name within the codec */
struct snd_soc_dai_link_component *codecs;
unsigned int num_codecs;

[...]
unsigned int dai_fmt; /* format to set on init */

[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dai_link

Example 1
sound/soc/atmel/atmel_wm8904.c

SND_SOC_DAILINK_DEFS(pcm,
DAILINK_COMP_ARRAY(COMP_EMPTY()),
DAILINK_COMP_ARRAY(COMP_CODEC(NULL, "wm8904-hifi")),
DAILINK_COMP_ARRAY(COMP_EMPTY()));

static struct snd_soc_dai_link atmel_asoc_wm8904_dailink = {
.name = "WM8904",
.stream_name = "WM8904 PCM",
.dai_fmt = SND_SOC_DAIFMT_I2S

| SND_SOC_DAIFMT_NB_NF
| SND_SOC_DAIFMT_CBP_CFP,

.ops = &atmel_asoc_wm8904_ops,
SND_SOC_DAILINK_REG(pcm),

};

static struct snd_soc_card atmel_asoc_wm8904_card = {
.name = "atmel_asoc_wm8904",
.owner = THIS_MODULE,
.dai_link = &atmel_asoc_wm8904_dailink,
.num_links = 1,
.dapm_widgets = atmel_asoc_wm8904_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(atmel_asoc_wm8904_dapm_widgets),
.fully_routed = true,

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/atmel/atmel_wm8904.c

Example 1
sound/soc/atmel/atmel_wm8904.c

static int atmel_asoc_wm8904_dt_init(struct platform_device *pdev)
{

struct device_node *np = pdev->dev.of_node;
struct device_node *codec_np, *cpu_np;
struct snd_soc_card *card = &atmel_asoc_wm8904_card;
struct snd_soc_dai_link *dailink = &atmel_asoc_wm8904_dailink;

[...]
cpu_np = of_parse_phandle(np, "atmel,ssc-controller", 0);
if (!cpu_np) {

dev_err(&pdev->dev, "failed to get dai and pcm info\n");
ret = -EINVAL;
return ret;

}
dailink->cpus->of_node = cpu_np;
dailink->platforms->of_node = cpu_np;
of_node_put(cpu_np);

codec_np = of_parse_phandle(np, "atmel,audio-codec", 0);
if (!codec_np) {

dev_err(&pdev->dev, "failed to get codec info\n");
ret = -EINVAL;
return ret;

}
dailink->codecs->of_node = codec_np;
of_node_put(codec_np);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/atmel/atmel_wm8904.c

Example 1
sound/soc/atmel/atmel_wm8904.c

static int atmel_asoc_wm8904_probe(struct platform_device *pdev)
{

struct snd_soc_card *card = &atmel_asoc_wm8904_card;
struct snd_soc_dai_link *dailink = &atmel_asoc_wm8904_dailink;
int id, ret;

card->dev = &pdev->dev;
ret = atmel_asoc_wm8904_dt_init(pdev);
if (ret) {

dev_err(&pdev->dev, "failed to init dt info\n");
return ret;

}

id = of_alias_get_id((struct device_node *)dailink->cpus->of_node, "ssc");
ret = atmel_ssc_set_audio(id);
if (ret != 0) {

dev_err(&pdev->dev, "failed to set SSC %d for audio\n", id);
return ret;

}

ret = snd_soc_register_card(card);
if (ret) {

dev_err(&pdev->dev, "snd_soc_register_card failed\n");
goto err_set_audio;

}
[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/atmel/atmel_wm8904.c

Routing

After linking the codec driver with the SoC DAI driver, it is still necessary to define
what are the codec outputs and inputs that are actually used on the board. This is
called routing.
▶ statically: using the .dapm_routes and .num_dapm_routes members of

struct snd_soc_card

▶ from device tree:
int snd_soc_of_parse_audio_routing(struct snd_soc_card *card,

const char *propname);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_card

Routing example: static
sound/soc/rockchip/rockchip_max98090.c

static const struct snd_soc_dapm_route rk_audio_map[] = {
{"IN34", NULL, "Headset Mic"},
{"IN34", NULL, "MICBIAS"},
{"Headset Mic", NULL, "MICBIAS"},
{"DMICL", NULL, "Int Mic"},
{"Headphone", NULL, "HPL"},
{"Headphone", NULL, "HPR"},
{"Speaker", NULL, "SPKL"},
{"Speaker", NULL, "SPKR"},

};
[...]
static struct snd_soc_card snd_soc_card_rk = {

.name = "ROCKCHIP-I2S",

.owner = THIS_MODULE,

.dai_link = &rk_dailink,

.num_links = 1,
[...]

.dapm_widgets = rk_dapm_widgets,

.num_dapm_widgets = ARRAY_SIZE(rk_dapm_widgets),

.dapm_routes = rk_audio_map,

.num_dapm_routes = ARRAY_SIZE(rk_audio_map),

.controls = rk_mc_controls,

.num_controls = ARRAY_SIZE(rk_mc_controls),
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/rockchip/rockchip_max98090.c

Routing example: DT

sound/soc/atmel/atmel_wm8904.c

static int atmel_asoc_wm8904_dt_init(struct platform_device *pdev)
{
[...]

ret = snd_soc_of_parse_card_name(card, "atmel,model");
if (ret) {

dev_err(&pdev->dev, "failed to parse card name\n");
return ret;

}

ret = snd_soc_of_parse_audio_routing(card, "atmel,audio-routing");
if (ret) {

dev_err(&pdev->dev, "failed to parse audio routing\n");
return ret;

}
[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/atmel/atmel_wm8904.c

Routing example: DT
Documentation/devicetree/bindings/sound/atmel-wm8904.txt

- atmel,audio-routing: A list of the connections between audio components.
Each entry is a pair of strings, the first being the connection's sink,
the second being the connection's source. Valid names for sources and
sinks are the WM8904's pins, and the jacks on the board:

WM8904 pins:

* IN1L
* IN1R
* IN2L
* IN2R
* IN3L
* IN3R
* HPOUTL
* HPOUTR
* LINEOUTL
* LINEOUTR
* MICBIAS

Board connectors:

* Headphone Jack
* Line In Jack
* Mic

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/271

https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/sound/atmel-wm8904.txt

Routing example

Documentation/devicetree/bindings/sound/atmel-wm8904.txt

Example:
sound {

compatible = "atmel,asoc-wm8904";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_pck0_as_mck>;

atmel,model = "wm8904 @ AT91SAM9N12EK";

atmel,audio-routing =
"Headphone Jack", "HPOUTL",
"Headphone Jack", "HPOUTR",
"IN2L", "Line In Jack",
"IN2R", "Line In Jack",
"Mic", "MICBIAS",
"IN1L", "Mic";

atmel,ssc-controller = <&ssc0>;
atmel,audio-codec = <&wm8904>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/271

https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/sound/atmel-wm8904.txt

Routing: codec pins

The available codec pins are defined in the codec driver. Look for the
SND_SOC_DAPM_INPUT and SND_SOC_DAPM_OUTPUT definitions.
sound/soc/codecs/wm8904.c

static const struct snd_soc_dapm_widget wm8904_adc_dapm_widgets[] = {
SND_SOC_DAPM_INPUT("IN1L"),
SND_SOC_DAPM_INPUT("IN1R"),
SND_SOC_DAPM_INPUT("IN2L"),
SND_SOC_DAPM_INPUT("IN2R"),
SND_SOC_DAPM_INPUT("IN3L"),
SND_SOC_DAPM_INPUT("IN3R"),
[...]
};

static const struct snd_soc_dapm_widget wm8904_dac_dapm_widgets[] = {
[...]
SND_SOC_DAPM_OUTPUT("HPOUTL"),
SND_SOC_DAPM_OUTPUT("HPOUTR"),
SND_SOC_DAPM_OUTPUT("LINEOUTL"),
SND_SOC_DAPM_OUTPUT("LINEOUTR"),
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/wm8904.c

Routing: board connectors

The board connectors are defined in the machine driver, in the
struct snd_soc_dapm_widget part of the registered struct snd_soc_card.
sound/soc/atmel/atmel_wm8904.c

static const struct snd_soc_dapm_widget atmel_asoc_wm8904_dapm_widgets[] = {
SND_SOC_DAPM_HP("Headphone Jack", NULL),
SND_SOC_DAPM_MIC("Mic", NULL),
SND_SOC_DAPM_LINE("Line In Jack", NULL),

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dapm_widget
https://elixir.bootlin.com/linux/latest/ident/snd_soc_card
https://elixir.bootlin.com/linux/latest/source/sound/soc/atmel/atmel_wm8904.c

Clocking: producer/consumer
The producer/consumer relationship is declared part of the .dai_fmt field of
struct snd_soc_dai_link.
include/sound/soc.h

/*
* DAI hardware clock providers/consumers
*
* This is wrt the codec, the inverse is true for the interface
* i.e. if the codec is clk and FRM provider then the interface is
* clk and frame consumer.
*/

#define SND_SOC_DAIFMT_CBP_CFP (1 << 12) /* codec clk provider & frame provider */
#define SND_SOC_DAIFMT_CBC_CFP (2 << 12) /* codec clk consumer & frame provider */
#define SND_SOC_DAIFMT_CBP_CFC (3 << 12) /* codec clk provider & frame consumer */
#define SND_SOC_DAIFMT_CBC_CFC (4 << 12) /* codec clk consumer & frame consumer */

/* previous definitions kept for backwards-compatibility, do not use in new contributions */
#define SND_SOC_DAIFMT_CBM_CFM SND_SOC_DAIFMT_CBP_CFP
#define SND_SOC_DAIFMT_CBS_CFM SND_SOC_DAIFMT_CBC_CFP
#define SND_SOC_DAIFMT_CBM_CFS SND_SOC_DAIFMT_CBP_CFC
#define SND_SOC_DAIFMT_CBS_CFS SND_SOC_DAIFMT_CBC_CFC

sound/soc/atmel/atmel_wm8904.c

.dai_fmt = SND_SOC_DAIFMT_I2S
| SND_SOC_DAIFMT_NB_NF
| SND_SOC_DAIFMT_CBM_CFM,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dai_link
https://elixir.bootlin.com/linux/latest/source/include/sound/soc.h
https://elixir.bootlin.com/linux/latest/source/sound/soc/atmel/atmel_wm8904.c

Clocking: dynamically changing clocks

The .ops member of struct snd_soc_dai_link contains useful callbacks.
include/sound/soc.h

/* SoC audio ops */
struct snd_soc_ops {

int (*startup)(struct snd_pcm_substream *);
void (*shutdown)(struct snd_pcm_substream *);
int (*hw_params)(struct snd_pcm_substream *, struct snd_pcm_hw_params *);
int (*hw_free)(struct snd_pcm_substream *);
int (*prepare)(struct snd_pcm_substream *);
int (*trigger)(struct snd_pcm_substream *, int);

};

.hw_params is called when setting up the audio stream. The
struct snd_pcm_hw_params contains the audio characteristics. Use params_rate() to
get the sample rate, params_channels for the number of channels and params_format
to get the format (including the bit depth). Finally, snd_soc_params_to_bclk
calculates the bit clock.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dai_link
https://elixir.bootlin.com/linux/latest/source/include/sound/soc.h
https://elixir.bootlin.com/linux/latest/ident/snd_pcm_hw_params

Clocking: hw_params

▶ params_rate gets the sample rate
▶ params_channels gets the number of channels
▶ params_format gets the format (including the bit depth)
▶ snd_soc_params_to_bclk calculates the bit clock.
▶ snd_soc_dai_set_sysclk sets the clock rate and direction for the DAI (SoC or

codec)

int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
unsigned int freq, int dir);

▶ it is also possible to configure the PLLs and clock divisors if necessary

int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
int div_id, int div);

int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
int pll_id, int source, unsigned int freq_in, unsigned int freq_out);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/271

Clocking example

sound/soc/atmel/atmel_wm8904.c

static int atmel_asoc_wm8904_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)

{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *codec_dai = rtd->codec_dai;
int ret;

ret = snd_soc_dai_set_pll(codec_dai, WM8904_FLL_MCLK, WM8904_FLL_MCLK,
32768, params_rate(params) * 256);

if (ret < 0) {
pr_err("%s - failed to set wm8904 codec PLL.", __func__);
return ret;

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/atmel/atmel_wm8904.c

Clocking example

sound/soc/atmel/atmel_wm8904.c

/*
* As here wm8904 use FLL output as its system clock
* so calling set_sysclk won't care freq parameter
* then we pass 0
*/
ret = snd_soc_dai_set_sysclk(codec_dai, WM8904_CLK_FLL,

0, SND_SOC_CLOCK_IN);
if (ret < 0) {

pr_err("%s -failed to set wm8904 SYSCLK\n", __func__);
return ret;

}

return 0;
}

static struct snd_soc_ops atmel_asoc_wm8904_ops = {
.hw_params = atmel_asoc_wm8904_hw_params,

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/atmel/atmel_wm8904.c

ASoC

CODEC driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/271

CODEC driver

The CODEC driver registers a struct snd_soc_component_driver. Before v4.17, it
was struct snd_soc_codec_driver. Also registers a struct snd_soc_dai_driver

include/sound/soc.h

int snd_soc_register_component(struct device *dev,
const struct snd_soc_component_driver *component_driver,
struct snd_soc_dai_driver *dai_drv, int num_dai);

int devm_snd_soc_register_component(struct device *dev,
const struct snd_soc_component_driver *component_driver,
struct snd_soc_dai_driver *dai_drv, int num_dai);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_component_driver
https://elixir.bootlin.com/linux/latest/ident/snd_soc_dai_driver
https://elixir.bootlin.com/linux/latest/source/include/sound/soc.h

snd_soc_component_driver

include/sound/soc-component.h

struct snd_soc_component_driver {
const char *name;

/* Default control and setup, added after probe() is run */
const struct snd_kcontrol_new *controls;
unsigned int num_controls;
const struct snd_soc_dapm_widget *dapm_widgets;
unsigned int num_dapm_widgets;
const struct snd_soc_dapm_route *dapm_routes;
unsigned int num_dapm_routes;

int (*probe)(struct snd_soc_component *component);
void (*remove)(struct snd_soc_component *component);
int (*suspend)(struct snd_soc_component *component);
int (*resume)(struct snd_soc_component *component);

[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/271

https://elixir.bootlin.com/linux/latest/source/include/sound/soc-component.h

snd_soc_component_driver

▶ struct snd_kcontrol_new *controls is an array of controls (volume, mixing,
muxing, switches) available on the CODEC.

▶ struct snd_soc_dapm_widget *dapm_widgets is an array of power management
controls so ASoC can power down the routes that are not currently used.

▶ struct snd_soc_dapm_route *dapm_routes is an array describing those routes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/271

https://elixir.bootlin.com/linux/latest/ident/snd_kcontrol_new
https://elixir.bootlin.com/linux/latest/ident/snd_soc_dapm_widget
https://elixir.bootlin.com/linux/latest/ident/snd_soc_dapm_route

snd_soc_component_driver

include/sound/soc-component.h

/* component wide operations */
int (*set_sysclk)(struct snd_soc_component *component,

int clk_id, int source, unsigned int freq, int dir);
int (*set_pll)(struct snd_soc_component *component, int pll_id,

int source, unsigned int freq_in, unsigned int freq_out);
[...]
int (*hw_params)(struct snd_soc_component *component,

struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params);

[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/271

https://elixir.bootlin.com/linux/latest/source/include/sound/soc-component.h

snd_soc_component_driver

▶ set_sysclk allows setting the input clock of the component.
▶ set_pll allows setting the PLLs, this is mostly useful when the component is the

clock producer.
▶ hw_params is a callback called on PCM stream setup. When called, all the

parameters of the stream are known so it is possible to configure the component
to handle the stream correctly.

▶ Those are mostly not used, the DAI specific callbacks are used instead.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/271

snd_soc_dai_driver

include/sound/soc-dai.h

/*
* Digital Audio Interface Driver.
*
* Describes the Digital Audio Interface in terms of its ALSA, DAI and AC97
* operations and capabilities. Codec and platform drivers will register this
* structure for every DAI they have.
*
* This structure covers the clocking, formating and ALSA operations for each
* interface.
*/

struct snd_soc_dai_driver {
/* DAI description */
const char *name;
[...]

/* ops */
const struct snd_soc_dai_ops *ops;
const struct snd_soc_cdai_ops *cops;

/* DAI capabilities */
struct snd_soc_pcm_stream capture;
struct snd_soc_pcm_stream playback;
[...]

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/271

https://elixir.bootlin.com/linux/latest/source/include/sound/soc-dai.h

snd_soc_pcm_stream

include/sound/soc.h

/* SoC PCM stream information */
struct snd_soc_pcm_stream {

const char *stream_name;
u64 formats; /* SNDRV_PCM_FMTBIT_* */
unsigned int rates; /* SNDRV_PCM_RATE_* */
unsigned int rate_min; /* min rate */
unsigned int rate_max; /* max rate */
unsigned int channels_min; /* min channels */
unsigned int channels_max; /* max channels */
unsigned int sig_bits; /* number of bits of content */

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/271

https://elixir.bootlin.com/linux/latest/source/include/sound/soc.h

PCM5102

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/271

pcm5102a.c

sound/soc/codecs/pcm5102a.c

static struct snd_soc_dai_driver pcm5102a_dai = {
.name = "pcm5102a-hifi",
.playback = {

.channels_min = 2,

.channels_max = 2,

.rates = SNDRV_PCM_RATE_8000_384000,

.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S24_LE |
SNDRV_PCM_FMTBIT_S32_LE

},
};

static struct snd_soc_component_driver soc_component_dev_pcm5102a = {
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,

};

static int pcm5102a_probe(struct platform_device *pdev)
{

return devm_snd_soc_register_component(&pdev->dev, &soc_component_dev_pcm5102a,
&pcm5102a_dai, 1);

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm5102a.c

PCM3008

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/271

pcm3008.c

sound/soc/codecs/pcm3008.c

#define PCM3008_RATES (SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | \
SNDRV_PCM_RATE_48000)

static struct snd_soc_dai_driver pcm3008_dai = {
.name = "pcm3008-hifi",
.playback = {

.stream_name = "PCM3008 Playback",

.channels_min = 1,

.channels_max = 2,

.rates = PCM3008_RATES,

.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
.capture = {

.stream_name = "PCM3008 Capture",

.channels_min = 1,

.channels_max = 2,

.rates = PCM3008_RATES,

.formats = SNDRV_PCM_FMTBIT_S16_LE,
},

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3008.c

pcm3008.c

sound/soc/codecs/pcm3008.c

static const struct snd_soc_component_driver soc_component_dev_pcm3008 = {
.dapm_widgets = pcm3008_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(pcm3008_dapm_widgets),
.dapm_routes = pcm3008_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(pcm3008_dapm_routes),
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,

};

static int pcm3008_codec_probe(struct platform_device *pdev)
{

[...]

return devm_snd_soc_register_component(&pdev->dev,
&soc_component_dev_pcm3008, &pcm3008_dai, 1);

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3008.c

pcm3008.c

sound/soc/codecs/pcm3008.c

static const struct snd_soc_dapm_widget pcm3008_dapm_widgets[] = {
SND_SOC_DAPM_INPUT("VINL"),
SND_SOC_DAPM_INPUT("VINR"),

SND_SOC_DAPM_DAC_E("DAC", NULL, SND_SOC_NOPM, 0, 0, pcm3008_dac_ev,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),

SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0, pcm3008_adc_ev,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),

SND_SOC_DAPM_OUTPUT("VOUTL"),
SND_SOC_DAPM_OUTPUT("VOUTR"),
};

static const struct snd_soc_dapm_route pcm3008_dapm_routes[] = {
{ "PCM3008 Capture", NULL, "ADC" },
{ "ADC", NULL, "VINL" },
{ "ADC", NULL, "VINR" },

{ "DAC", NULL, "PCM3008 Playback" },
{ "VOUTL", NULL, "DAC" },
{ "VOUTR", NULL, "DAC" },

};
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3008.c

ASoC

ASoC component controls

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/271

snd_soc_component_driver

▶ Controls allow to export configuration knobs of the component to userspace.
▶ ASoC provides many helpers to define them instead of filling

struct snd_kcontrol_new

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/271

https://elixir.bootlin.com/linux/latest/ident/snd_kcontrol_new

snd_kcontrol_new

include/sound/control.h

struct snd_kcontrol_new {
snd_ctl_elem_iface_t iface; /* interface identifier */
unsigned int device; /* device/client number */
unsigned int subdevice; /* subdevice (substream) number */
const char *name; /* ASCII name of item */
unsigned int index; /* index of item */
unsigned int access; /* access rights */
unsigned int count; /* count of same elements */
snd_kcontrol_info_t *info;
snd_kcontrol_get_t *get;
snd_kcontrol_put_t *put;
union {

snd_kcontrol_tlv_rw_t *c;
const unsigned int *p;

} tlv;
unsigned long private_value;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/271

https://elixir.bootlin.com/linux/latest/source/include/sound/control.h

kcontrol helpers
include/sound/soc.h

#define SOC_SINGLE(xname, reg, shift, max, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \

.info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\

.put = snd_soc_put_volsw, \

.private_value = SOC_SINGLE_VALUE(reg, shift, max, invert, 0) }
#define SOC_SINGLE_RANGE(xname, xreg, xshift, xmin, xmax, xinvert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\

.info = snd_soc_info_volsw_range, .get = snd_soc_get_volsw_range, \

.put = snd_soc_put_volsw_range, \

.private_value = (unsigned long)&(struct soc_mixer_control) \
{.reg = xreg, .rreg = xreg, .shift = xshift, \
.rshift = xshift, .min = xmin, .max = xmax, \
.invert = xinvert} }

#define SOC_SINGLE_TLV(xname, reg, shift, max, invert, tlv_array) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \

.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\
SNDRV_CTL_ELEM_ACCESS_READWRITE,\

.tlv.p = (tlv_array), \

.info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\

.put = snd_soc_put_volsw, \

.private_value = SOC_SINGLE_VALUE(reg, shift, max, invert, 0) }

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/271

https://elixir.bootlin.com/linux/latest/source/include/sound/soc.h

kcontrol examples

sound/soc/codecs/pcm3168a.h

#define PCM3168A_DAC_PWR_MST_FMT 0x41
#define PCM3168A_DAC_PSMDA_SHIFT 7

sound/soc/codecs/pcm3168a.c

SOC_SINGLE("DAC Power-Save Switch", PCM3168A_DAC_PWR_MST_FMT,
PCM3168A_DAC_PSMDA_SHIFT, 1, 1),

▶ This exposes a simple on/off switch named ”DAC Power-Save Switch” for bit 7 in
register 0x41.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3168a.h
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3168a.c

kcontrol examples

sound/soc/codecs/pcm3168a.h

#define PCM3168A_ADC_MUTE 0x55

sound/soc/codecs/pcm3168a.c

SOC_DOUBLE("ADC1 Mute Switch", PCM3168A_ADC_MUTE, 0, 1, 1, 0),

▶ This exposes a Left/Right switch named ”ADC1 Mute Switch” for bit 0 (left) and
1 (right) in register 0x55.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3168a.h
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3168a.c

kcontrol examples

sound/soc/codecs/sgtl5000.h

#define SGTL5000_DAP_MAIN_CHAN 0x0120

sound/soc/codecs/sgtl5000.c

/* tlv for DAP channels, 0% - 100% - 200% */
static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0);
[...]

SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN,
0, 0xffff, 0, dap_volume),

▶ This a single volume control named ”DAP Main channel”. It is controlled by
register 0x120 and can take values up to 0xffff.

include/uapi/sound/tlv.h

#define SNDRV_CTL_TLVD_DECLARE_DB_SCALE(name, min, step, mute) \

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/sgtl5000.h
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/sgtl5000.c
https://elixir.bootlin.com/linux/latest/source/include/uapi/sound/tlv.h

kcontrol examples

sound/soc/codecs/pcm3168a.h

#define PCM3168A_DAC_VOL_MASTER 0x47

sound/soc/codecs/pcm3168a.c

/* -100db to 0db, register values 0-54 cause mute */
static const DECLARE_TLV_DB_SCALE(pcm3168a_dac_tlv, -10050, 50, 1);
[...]

SOC_SINGLE_RANGE_TLV("Master Playback Volume",
PCM3168A_DAC_VOL_MASTER, 0, 54, 255, 0,
pcm3168a_dac_tlv),

▶ This a single volume control named ”Master Playback Volume”. It is controlled by
register 0x47 and can take values 54 to 255. The datasheet states that 0 to 54 is
mute.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3168a.h
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3168a.c

kcontrol examples

sound/soc/codecs/pcm3168a.h

#define PCM3168A_DAC_VOL_CHAN_START 0x48

sound/soc/codecs/pcm3168a.c

/* -100db to 0db, register values 0-54 cause mute */
static const DECLARE_TLV_DB_SCALE(pcm3168a_dac_tlv, -10050, 50, 1);
[...]

SOC_DOUBLE_R_RANGE_TLV("DAC1 Playback Volume",
PCM3168A_DAC_VOL_CHAN_START,
PCM3168A_DAC_VOL_CHAN_START + 1,
0, 54, 255, 0, pcm3168a_dac_tlv),

▶ This a Left/Right volume control named ”DAC1 Playback Volume”. Left is
controlled by register 0x48, right channel is in register 0x49 and both can take
values 54 to 255. The datasheet states that 0 to 54 is mute.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3168a.h
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3168a.c

kcontrol examples

sound/soc/codecs/pcm3168a.h

#define PCM3168A_DAC_ATT_DEMP_ZF 0x46
#define PCM3168A_DAC_DEMP_SHIFT 4

sound/soc/codecs/pcm3168a.c

static const char *const pcm3168a_demp[] = {
"Disabled", "48khz", "44.1khz", "32khz" };

static SOC_ENUM_SINGLE_DECL(pcm3168a_dac_demp, PCM3168A_DAC_ATT_DEMP_ZF,
PCM3168A_DAC_DEMP_SHIFT, pcm3168a_demp);

[...]
SOC_ENUM("DAC De-Emphasis", pcm3168a_dac_demp),

▶ This creates a control named ”DAC De-Emphasis”. Allowing to choose between
four different values. This is controlled in register 0x46, bits 4 and 5.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3168a.h
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3168a.c

kcontrol examples

sound/soc/codecs/sgtl5000.h

#define SGTL5000_DAP_AVC_THRESHOLD 0x0126

sound/soc/codecs/sgtl5000.c

static int avc_get_threshold(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)

[...]
static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600);
[...]

SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD,
0, 96, 0, avc_get_threshold, avc_put_threshold,
avc_threshold),

▶ This a single volume control named ”AVC Threshold Volume”.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/sgtl5000.h
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/sgtl5000.c

kcontrol names
▶ Naming actually matters, userspace tools use them to populate the user interface

properly!
▶ Controls named similarly will be grouped together:

• ”Playback” and ”Capture” controls may be exposed separately in the UI
• ”Mute Switch” and ”Volume” for a similarly named controls can be shown as a

single control

▶ Master Playback Switch
▶ Master Playback Volume
▶ Headphone Mic Boost

Volume
▶ Capture Volume

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/271

ASoC

regmap

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/271

regmap

▶ has its roots in ASoC (ALSA)
▶ can use I2C, SPI and MMIO (also SPMI)
▶ actually abstracts the underlying bus
▶ can handle locking when necessary
▶ can cache registers
▶ can handle endianness conversion
▶ can handle IRQ chips and IRQs
▶ can check register ranges
▶ handles read only, write only, volatile, precious registers
▶ handles register pages
▶ API is defined in include/linux/regmap.h

▶ implemented in drivers/base/regmap/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/271

https://elixir.bootlin.com/linux/latest/source/include/linux/regmap.h
https://elixir.bootlin.com/linux/latest/source/drivers/base/regmap/

regmap: creation

▶ #define regmap_init(dev, bus, bus_context, config) \
__regmap_lockdep_wrapper(__regmap_init, #config, \

dev, bus, bus_context, config)

▶ #define regmap_init_i2c(i2c, config) \
__regmap_lockdep_wrapper(__regmap_init_i2c, #config, \

i2c, config)

▶ #define regmap_init_spi(dev, config) \
__regmap_lockdep_wrapper(__regmap_init_spi, #config, \

dev, config)

▶ Also devm_ versions
▶ and _clk versions, preparing, enabling and disabling clocks when necessary

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/271

regmap: config

include/linux/regmap.h

struct regmap_config {
[...]

int reg_bits;
int reg_stride;

[...]
bool (*writeable_reg)(struct device *dev, unsigned int reg);
bool (*readable_reg)(struct device *dev, unsigned int reg);
bool (*volatile_reg)(struct device *dev, unsigned int reg);
bool (*precious_reg)(struct device *dev, unsigned int reg);

[...]
int (*reg_read)(void *context, unsigned int reg, unsigned int *val);
int (*reg_write)(void *context, unsigned int reg, unsigned int val);
int (*reg_update_bits)(void *context, unsigned int reg,

unsigned int mask, unsigned int val);

[...]
const struct reg_default *reg_defaults;
unsigned int num_reg_defaults;

[...]
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/271

https://elixir.bootlin.com/linux/latest/source/include/linux/regmap.h

regmap: config
▶ reg_bits Number of bits in a register address, mandatory.
▶ reg_stride The register address stride. Valid register addresses are a multiple of

this value. If set to 0, a value of 1 will be used.
▶ writeable_reg, readable_reg, volatile_reg, precious_reg: Optional

callbacks returning true if the register is writeable, readable, volatile or precious.
volatile registers won’t be cached. precious registers will not be read unless the
driver explicitly calls a read function. There are also tables in the
struct regmap_config for the same purpose.

▶ reg_read, reg_write, reg_update_bits: Optional callbacks that if filled will be
used to perform accesses. reg_update_bits should only be provided if specific
locking is required.

▶ reg_defaults: Power on reset values for registers (for use with register cache
support).

▶ num_reg_defaults: Number of elements in reg_defaults.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/271

https://elixir.bootlin.com/linux/latest/ident/regmap_config

regmap: access

▶ int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val);

▶ int regmap_write(struct regmap *map, unsigned int reg, unsigned int val);

▶ static inline int regmap_update_bits(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val)

▶ #define regmap_read_poll_timeout(map, addr, val, cond, sleep_us, timeout_us)

▶ int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits);

▶ static inline int regmap_update_bits_check(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val,
bool *change)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/271

regmap: cache management

▶ int regcache_sync(struct regmap *map);

▶ int regcache_sync_region(struct regmap *map, unsigned int min,
unsigned int max);

▶ int regcache_drop_region(struct regmap *map, unsigned int min,
unsigned int max);

▶ void regcache_cache_only(struct regmap *map, bool enable);

▶ void regcache_cache_bypass(struct regmap *map, bool enable);

▶ void regcache_mark_dirty(struct regmap *map);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/271

regmap: example
sound/soc/codecs/max9877.c

static const struct regmap_config max9877_regmap = {
.reg_bits = 8,
.val_bits = 8,

.reg_defaults = max9877_regs,

.num_reg_defaults = ARRAY_SIZE(max9877_regs),

.cache_type = REGCACHE_RBTREE,
};

static int max9877_i2c_probe(struct i2c_client *client)
{

struct regmap *regmap;
int i;

regmap = devm_regmap_init_i2c(client, &max9877_regmap);
if (IS_ERR(regmap))

return PTR_ERR(regmap);

/* Ensure the device is in reset state */
for (i = 0; i < ARRAY_SIZE(max9877_regs); i++)

regmap_write(regmap, max9877_regs[i].reg, max9877_regs[i].def);

return devm_snd_soc_register_component(&client->dev,
&max9877_component_driver, NULL, 0);

}
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/max9877.c

regmap: i2c and spi device example

sound/soc/codecs/adau1372.c

const struct regmap_config adau1372_regmap_config = {
.val_bits = 8,
.reg_bits = 16,
.max_register = 0x4d,

.reg_defaults = adau1372_reg_defaults,

.num_reg_defaults = ARRAY_SIZE(adau1372_reg_defaults),

.volatile_reg = adau1372_volatile_register,

.cache_type = REGCACHE_RBTREE,
};
EXPORT_SYMBOL_GPL(adau1372_regmap_config);

sound/soc/codecs/adau1372-i2c.c

static int adau1372_i2c_probe(struct i2c_client *client)
{

return adau1372_probe(&client->dev,
devm_regmap_init_i2c(client, &adau1372_regmap_config), NULL);

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/adau1372.c
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/adau1372-i2c.c

regmap: i2c and spi device example

sound/soc/codecs/adau1372-spi.c

static int adau1372_spi_probe(struct spi_device *spi)
{

struct regmap_config config;

config = adau1372_regmap_config;
config.read_flag_mask = 0x1;

return adau1372_probe(&spi->dev,
devm_regmap_init_spi(spi, &config), adau1372_spi_switch_mode);

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/adau1372-spi.c

regmap: ASoC components

▶ snd_soc_component regmap accessors also exist, they are available either
implicitly as the component core calls dev_get_regmap(component->dev, NULL)
to retrieve or create a regmap for the device or explicitly by calling
snd_soc_component_init_regmap()

include/sound/soc-component.h

/* component IO */
unsigned int snd_soc_component_read(struct snd_soc_component *component,

unsigned int reg);
int snd_soc_component_write(struct snd_soc_component *component,

unsigned int reg, unsigned int val);
int snd_soc_component_update_bits(struct snd_soc_component *component,

unsigned int reg, unsigned int mask,
unsigned int val);

[...]
int snd_soc_component_test_bits(struct snd_soc_component *component,

unsigned int reg, unsigned int mask,
unsigned int value);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/271

https://elixir.bootlin.com/linux/latest/source/include/sound/soc-component.h

ASoC

ASoC component callbacks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/271

snd_soc_dai_ops

include/sound/soc-dai.h

struct snd_soc_dai_ops {
/*
* DAI clocking configuration, all optional.
* Called by soc_card drivers, normally in their hw_params.
*/
int (*set_sysclk)(struct snd_soc_dai *dai,

int clk_id, unsigned int freq, int dir);
int (*set_pll)(struct snd_soc_dai *dai, int pll_id, int source,

unsigned int freq_in, unsigned int freq_out);
int (*set_clkdiv)(struct snd_soc_dai *dai, int div_id, int div);
int (*set_bclk_ratio)(struct snd_soc_dai *dai, unsigned int ratio);

/*
* DAI format configuration
* Called by soc_card drivers, normally in their hw_params.
*/
int (*set_fmt)(struct snd_soc_dai *dai, unsigned int fmt);
int (*xlate_tdm_slot_mask)(unsigned int slots,

unsigned int *tx_mask, unsigned int *rx_mask);
int (*set_tdm_slot)(struct snd_soc_dai *dai,

unsigned int tx_mask, unsigned int rx_mask,
int slots, int slot_width);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/271

https://elixir.bootlin.com/linux/latest/source/include/sound/soc-dai.h

snd_soc_dai_ops

include/sound/soc-dai.h

/*
* DAI digital mute - optional.
* Called by soc-core to minimise any pops.
*/
int (*mute_stream)(struct snd_soc_dai *dai, int mute, int stream);

/*
* ALSA PCM audio operations - all optional.
* Called by soc-core during audio PCM operations.
*/
int (*startup)(struct snd_pcm_substream *,

struct snd_soc_dai *);
void (*shutdown)(struct snd_pcm_substream *,

struct snd_soc_dai *);
int (*hw_params)(struct snd_pcm_substream *,

struct snd_pcm_hw_params *, struct snd_soc_dai *);
int (*hw_free)(struct snd_pcm_substream *,

struct snd_soc_dai *);
int (*prepare)(struct snd_pcm_substream *,

struct snd_soc_dai *);
[...]
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/271

https://elixir.bootlin.com/linux/latest/source/include/sound/soc-dai.h

hw_params

▶ The most useful callback
▶ It is used to configure the component to match the parameters of the audio

stream.
▶ Called when the stream is ready to be played, before any data is transferred.
▶ If the requested parameters cannot be supported by the hardware, the hw_params

callback can return an error code to indicate that the stream cannot be opened.
Otherwise, the callback returns successfully, and the audio stream can be started.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/271

snd_pcm_hw_params

▶ Holds the stream parameters
▶ Usually not accessed directly but through accessors:

• params_channels: the number of channels
• params_rate: the sample rate
• params_width: the number of bits per sample

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/271

hw_params example
sound/soc/codecs/tlv320aic31xx.c

static int aic31xx_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)

{
struct snd_soc_component *component = dai->component;
struct aic31xx_priv *aic31xx = snd_soc_component_get_drvdata(component);
u8 data = 0;

switch (params_width(params)) {
case 16:

break;
case 20:

data = (AIC31XX_WORD_LEN_20BITS <<
AIC31XX_IFACE1_DATALEN_SHIFT);

break;
case 24:

data = (AIC31XX_WORD_LEN_24BITS <<
AIC31XX_IFACE1_DATALEN_SHIFT);

break;
case 32:

data = (AIC31XX_WORD_LEN_32BITS <<
AIC31XX_IFACE1_DATALEN_SHIFT);

break;
default:

dev_err(component->dev, "%s: Unsupported width %d\n",
__func__, params_width(params));

return -EINVAL;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/tlv320aic31xx.c

hw_params example

sound/soc/codecs/tlv320aic31xx.c

snd_soc_component_update_bits(component, AIC31XX_IFACE1,
AIC31XX_IFACE1_DATALEN_MASK,
data);

/*
* If BCLK is used as PLL input, the sysclk is determined by the hw
* params. So it must be updated here to match the input frequency.
*/
if (aic31xx->sysclk_id == AIC31XX_PLL_CLKIN_BCLK) {

aic31xx->sysclk = params_rate(params) * params_width(params) *
params_channels(params);

aic31xx->p_div = 1;
}

return aic31xx_setup_pll(component, params);
}

aic31xx_setup_pll() then uses the parameters to set the CODEC PLLs and clocks
properly. The usual ways to achieve that are to either do the calculations or prepare an
array matching parameters to register values.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/tlv320aic31xx.c
https://elixir.bootlin.com/linux/latest/ident/aic31xx_setup_pll

set_sysclk

▶ This sets the system clock parameters of the component, in particular which one
is selected, its frequency and the direction.

▶ This allows the component to set up PLLs and clocks.
▶ This is called from the machine driver, using snd_soc_dai_set_sysclk()

▶ It can return an error in case the clock is not available or the frequency is not in
the supported range.

▶ A component wide version exists, called using
snd_soc_component_set_sysclk(), very rarely used.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dai_set_sysclk
https://elixir.bootlin.com/linux/latest/ident/snd_soc_component_set_sysclk

set_sysclk example
static int aic31xx_set_dai_sysclk(struct snd_soc_dai *codec_dai,

int clk_id, unsigned int freq, int dir)
{

struct snd_soc_component *component = codec_dai->component;
struct aic31xx_priv *aic31xx = snd_soc_component_get_drvdata(component);
int i;

[...]
for (i = 1; i < 8; i++)

if (freq / i <= 20000000)
break;

if (freq/i > 20000000) {
dev_err(aic31xx->dev, "%s: Too high mclk frequency %u\n",

__func__, freq);
return -EINVAL;

}
aic31xx->p_div = i;

for (i = 0; i < ARRAY_SIZE(aic31xx_divs); i++)
if (aic31xx_divs[i].mclk_p == freq / aic31xx->p_div)

break;
if (i == ARRAY_SIZE(aic31xx_divs)) {

dev_err(aic31xx->dev, "%s: Unsupported frequency %d\n",
__func__, freq);

return -EINVAL;
}

/* set clock on MCLK, BCLK, or GPIO1 as PLL input */
snd_soc_component_update_bits(component, AIC31XX_CLKMUX, AIC31XX_PLL_CLKIN_MASK,

clk_id << AIC31XX_PLL_CLKIN_SHIFT);

aic31xx->sysclk_id = clk_id;
aic31xx->sysclk = freq;

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/271

set_fmt

▶ This sets the format of the PCM bus
▶ This is called from the machine driver, using snd_soc_dai_set_fmt()
▶ Available formats are:

• SND_SOC_DAIFMT_I2S
• SND_SOC_DAIFMT_RIGHT_J
• SND_SOC_DAIFMT_LEFT_J
• SND_SOC_DAIFMT_DSP_A
• SND_SOC_DAIFMT_DSP_B
• SND_SOC_DAIFMT_AC97
• SND_SOC_DAIFMT_PDM

▶ Also the polarity can be changed:
• SND_SOC_DAIFMT_NB_NF: normal bit clock + normal frame
• SND_SOC_DAIFMT_NB_IF: normal bit clock + invert frame
• SND_SOC_DAIFMT_IB_NF: invert bit clock + normal frame
• SND_SOC_DAIFMT_IB_IF: invert bit clock + invert frame

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dai_set_fmt
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_I2S
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_RIGHT_J
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_LEFT_J
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_DSP_A
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_DSP_B
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_AC97
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_PDM
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_NB_NF
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_NB_IF
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_IB_NF
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_IB_IF

set_fmt

▶ The clock directions can also be set:
• SND_SOC_DAIFMT_CBP_CFP: codec clk provider and frame provider
• SND_SOC_DAIFMT_CBC_CFP: codec clk consumer and frame provider
• SND_SOC_DAIFMT_CBP_CFC: codec clk provider and frame consumer
• SND_SOC_DAIFMT_CBC_CFC: codec clk consumer and frame consumer

▶ These used to have another name:
include/sound/soc-dai.h

/* previous definitions kept for backwards-compatibility, do not use in new contributions */
#define SND_SOC_DAIFMT_CBM_CFM SND_SOC_DAIFMT_CBP_CFP
#define SND_SOC_DAIFMT_CBS_CFM SND_SOC_DAIFMT_CBC_CFP
#define SND_SOC_DAIFMT_CBM_CFS SND_SOC_DAIFMT_CBP_CFC
#define SND_SOC_DAIFMT_CBS_CFS SND_SOC_DAIFMT_CBC_CFC

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/271

https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_CBP_CFP
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_CBC_CFP
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_CBP_CFC
https://elixir.bootlin.com/linux/latest/ident/SND_SOC_DAIFMT_CBC_CFC
https://elixir.bootlin.com/linux/latest/source/include/sound/soc-dai.h

set_fmt example
static int aic31xx_set_dai_fmt(struct snd_soc_dai *codec_dai,

unsigned int fmt)
{

struct snd_soc_component *component = codec_dai->component;
u8 iface_reg1 = 0;
u8 iface_reg2 = 0;
u8 dsp_a_val = 0;

[...]
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_CBP_CFP:

iface_reg1 |= AIC31XX_BCLK_MASTER | AIC31XX_WCLK_MASTER;
break;

[...]
}

/* signal polarity */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:

[...]
}

/* interface format */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {

[...]
}

snd_soc_component_update_bits(component, AIC31XX_IFACE1,
AIC31XX_IFACE1_DATATYPE_MASK |
AIC31XX_IFACE1_MASTER_MASK,
iface_reg1);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/271

set_tdm_slot

▶ This callback configures the DAI for TDM operation.
▶ slots is the total number of slots of the TDM stream and slot_width the width

of each slot in bit clock cycles.
▶ tx_mask and rx_mask are bitmasks specifying the active slots of the TDM stream

for the specified DAI, i.e. which slots the DAI should write to or read from. A set
bit means the channel is active.

▶ This is called from the machine driver, using snd_soc_dai_set_tdm_slot()

▶ This allows to explicitly configure mismatching stream and bus sample width.
▶ TDM mode must be disabled when slots is 0.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dai_set_tdm_slot

trigger

▶ This callback is called when the stream status is updated.
▶ It allows to listen for events.
▶ This is called from the Alsa core, in soc_pcm_trigger() using

snd_soc_pcm_dai_trigger()

▶ A component version exists.
▶ Available states are:

• SNDRV_PCM_TRIGGER_STOP
• SNDRV_PCM_TRIGGER_START
• SNDRV_PCM_TRIGGER_PAUSE_PUSH
• SNDRV_PCM_TRIGGER_PAUSE_RELEASE
• SNDRV_PCM_TRIGGER_SUSPEND
• SNDRV_PCM_TRIGGER_RESUME
• SNDRV_PCM_TRIGGER_DRAIN

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/271

https://elixir.bootlin.com/linux/latest/ident/soc_pcm_trigger
https://elixir.bootlin.com/linux/latest/ident/ snd_soc_pcm_dai_trigger
https://elixir.bootlin.com/linux/latest/ident/SNDRV_PCM_TRIGGER_STOP
https://elixir.bootlin.com/linux/latest/ident/SNDRV_PCM_TRIGGER_START
https://elixir.bootlin.com/linux/latest/ident/SNDRV_PCM_TRIGGER_PAUSE_PUSH
https://elixir.bootlin.com/linux/latest/ident/SNDRV_PCM_TRIGGER_PAUSE_RELEASE
https://elixir.bootlin.com/linux/latest/ident/SNDRV_PCM_TRIGGER_SUSPEND
https://elixir.bootlin.com/linux/latest/ident/SNDRV_PCM_TRIGGER_RESUME
https://elixir.bootlin.com/linux/latest/ident/SNDRV_PCM_TRIGGER_DRAIN

trigger example

▶ The PCM1789 needs the system clock, bit clock and frame clock to be
synchronized as soon as it gets out of reset.

▶ With DAPM, those clocks are disabled until a stream is ready to be played.
▶ A solution is to reset the device when a stream is played.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/271

https://www.ti.com/lit/gpn/pcm1789

trigger example

sound/soc/codecs/pcm1789.c

static int pcm1789_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)

{
struct snd_soc_component *component = dai->component;
struct pcm1789_private *priv = snd_soc_component_get_drvdata(component);
int ret = 0;

switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:

schedule_work(&priv->work);
break;

case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:

break;
default:

ret = -EINVAL;
}

return ret;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm1789.c

trigger example

sound/soc/codecs/pcm1789.c

static void pcm1789_work_queue(struct work_struct *work)
{

struct pcm1789_private *priv = container_of(work,
struct pcm1789_private,
work);

/* Perform a software reset to remove codec from desynchronized state */
if (regmap_update_bits(priv->regmap, PCM1789_MUTE_CONTROL,

0x3 << PCM1789_MUTE_SRET, 0) < 0)
dev_err(priv->dev, "Error while setting SRET");

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm1789.c

set_bias_level

▶ This callback is called by DAPM through snd_soc_dapm_set_bias_level() and
snd_soc_component_set_bias_level() once the component gets activated.

▶ It allows to listen for power events.
▶ Available events are:

• SND_SOC_BIAS_ON: Bias is fully on for audio playback and capture operations.
• SND_SOC_BIAS_PREPARE: Prepare for audio operations. Called before DAPM

switching for stream start and stop operations.
• SND_SOC_BIAS_STANDBY: Low power standby state when no playback/capture

operations are in progress. NOTE: The transition time between STANDBY and ON
should be as fast as possible and no longer than 10ms.

• SND_SOC_BIAS_OFF: Power Off. No restrictions on transition times.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dapm_set_bias_level
https://elixir.bootlin.com/linux/latest/ident/snd_soc_component_set_bias_level

set_bias_level example

▶ There are CODECs that won’t even listen on the control bus until there are clocks
on the PCM bus or that will stay powered off as much as possible.

▶ A solution is to use regcache.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/271

set_bias_level example

sound/soc/codecs/ssm2518.c

static int ssm2518_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)

{
struct ssm2518 *ssm2518 = snd_soc_component_get_drvdata(component);
int ret = 0;

switch (level) {
case SND_SOC_BIAS_ON:

break;
case SND_SOC_BIAS_PREPARE:

break;
case SND_SOC_BIAS_STANDBY:

if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF)
ret = ssm2518_set_power(ssm2518, true);

break;
case SND_SOC_BIAS_OFF:

ret = ssm2518_set_power(ssm2518, false);
break;

}

return ret;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/ssm2518.c

set_bias_level example

sound/soc/codecs/ssm2518.c

static int ssm2518_set_power(struct ssm2518 *ssm2518, bool enable)
{

int ret = 0;

if (!enable) {
ret = regmap_update_bits(ssm2518->regmap, SSM2518_REG_POWER1,

SSM2518_POWER1_SPWDN, SSM2518_POWER1_SPWDN);
regcache_mark_dirty(ssm2518->regmap);

}

if (ssm2518->enable_gpio)
gpiod_set_value_cansleep(ssm2518->enable_gpio, enable);

regcache_cache_only(ssm2518->regmap, !enable);

if (enable) {
ret = regmap_update_bits(ssm2518->regmap, SSM2518_REG_POWER1,

SSM2518_POWER1_SPWDN | SSM2518_POWER1_RESET, 0x00);
regcache_sync(ssm2518->regmap);

}

return ret;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/ssm2518.c

ASoC

Auxiliary devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/271

Amplifier

What about the amplifier?
▶ Supported using auxiliary devices
▶ Register a struct snd_soc_aux_dev array using the .aux_dev and

.num_aux_devs fields of the registered struct snd_soc_card

▶ This will expose the auxiliary devices control widgets as part of the sound card
▶ There is a driver for simple amplifiers driven by a single GPIO, simple-amplifier

• Documentation/devicetree/bindings/sound/simple-audio-amplifier.yaml
• sound/soc/codecs/simple-amplifier.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_aux_dev
https://elixir.bootlin.com/linux/latest/ident/snd_soc_card
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/sound/simple-audio-amplifier.yaml
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/simple-amplifier.c

Auxiliary devices

sound/soc/samsung/neo1973_wm8753.c

static struct snd_soc_aux_dev neo1973_aux_devs[] = {
{

.name = "dfbmcs320",

.codec_name = "dfbmcs320.0",
},

};

static struct snd_soc_card neo1973 = {
.name = "neo1973",
.owner = THIS_MODULE,
.dai_link = neo1973_dai,
.num_links = ARRAY_SIZE(neo1973_dai),
.aux_dev = neo1973_aux_devs,
.num_aux_devs = ARRAY_SIZE(neo1973_aux_devs),

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/samsung/neo1973_wm8753.c

simple-amplifier - example 1

arch/arm64/boot/dts/allwinner/sun50i-a64-pinebook.dts

speaker_amp: audio-amplifier {
compatible = "simple-audio-amplifier";
VCC-supply = <®_ldo_io0>;
enable-gpios = <&pio 7 7 GPIO_ACTIVE_HIGH>; /* PH7 */
sound-name-prefix = "Speaker Amp";

};

&sound {
status = "okay";
simple-audio-card,aux-devs = <&codec_analog>, <&speaker_amp>;
simple-audio-card,widgets = "Microphone", "Internal Microphone Left",

"Microphone", "Internal Microphone Right",
"Headphone", "Headphone Jack",
"Speaker", "Internal Speaker";

simple-audio-card,routing =
"Left DAC", "AIF1 Slot 0 Left",
"Right DAC", "AIF1 Slot 0 Right",
"Speaker Amp INL", "LINEOUT",
"Speaker Amp INR", "LINEOUT",
"Internal Speaker", "Speaker Amp OUTL",
"Internal Speaker", "Speaker Amp OUTR",
"Headphone Jack", "HP",

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/271

https://elixir.bootlin.com/linux/latest/source/arch/arm64/boot/dts/allwinner/sun50i-a64-pinebook.dts

simple-amplifier - example 2

dio2133: analog-amplifier {
compatible = "simple-audio-amplifier";
sound-name-prefix = "AU2";
VCC-supply = <&hdmi_5v>;
enable-gpios = <&gpio GPIOH_5 GPIO_ACTIVE_HIGH>;

};

sound {
compatible = "amlogic,gx-sound-card";
model = "GXL-LIBRETECH-S905X-CC";
audio-aux-devs = <&dio2133>;
audio-widgets = "Line", "Lineout";
audio-routing = "AU2 INL", "ACODEC LOLN",

"AU2 INR", "ACODEC LORN",
"Lineout", "AU2 OUTL",
"Lineout", "AU2 OUTR";

Audio is routed through AU2, the amplifier.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/271

Input Muxing

▶ There may be a muxer on the analog input lines.
▶ If controlled using a gpio, the simple-mux driver is available.
▶ It exposes two inputs: ”IN1” and ”IN2” and one output, ”OUT”.
▶ The device tree binding allows to provide a prefix to make the routes specific.

• Documentation/devicetree/bindings/sound/simple-audio-mux.yaml
• sound/soc/codecs/simple-mux.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/271

https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/sound/simple-audio-mux.yaml
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/simple-mux.c

simple-mux example

mic_mux: mic-mux {
compatible = "simple-audio-mux";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_micsel>;
mux-gpios = <&gpio5 5 GPIO_ACTIVE_LOW>;
sound-name-prefix = "Mic Mux";

};

▶ This exposes routes between Mic Mux IN1 and Mic Mux IN2 to Mic Mux OUT.
▶ This route is controlled by gpio5 5.
▶ A control named Mic Mux Muxer will be exposed to userspace.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/271

simple-mux example
arch/arm64/boot/dts/freescale/imx8mq-librem5-devkit.dts

sound {
compatible = "simple-audio-card";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_hpdet>;
simple-audio-card,aux-devs = <&speaker_amp>, <&mic_mux>;
simple-audio-card,name = "Librem 5 Devkit";
simple-audio-card,format = "i2s";
simple-audio-card,widgets =

"Microphone", "Builtin Microphone",
"Microphone", "Headset Microphone",
"Headphone", "Headphones",
"Speaker", "Builtin Speaker";

simple-audio-card,routing =
"MIC_IN", "Mic Mux OUT",
"Mic Mux IN1", "Headset Microphone",
"Mic Mux IN2", "Builtin Microphone",
"Mic Mux OUT", "Mic Bias",
"Headphones", "HP_OUT",
"Builtin Speaker", "Speaker Amp OUTR",
"Speaker Amp INR", "LINE_OUT";

simple-audio-card,hp-det-gpio = <&gpio3 20 GPIO_ACTIVE_HIGH>;

simple-audio-card,cpu {
sound-dai = <&sai2>;

};

simple-audio-card,codec {
sound-dai = <&sgtl5000>;
clocks = <&clk IMX8MQ_CLK_SAI2_ROOT>;
frame-master;
bitclock-master;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/271

https://elixir.bootlin.com/linux/latest/source/arch/arm64/boot/dts/freescale/imx8mq-librem5-devkit.dts

ASoC

ASoC DAPM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/271

DAPM

▶ DAPM stands for Dynamic Audio Power Management.
▶ The goal is to save as much power as possible by shutting down audio routes that

are not in use.
▶ This may affect the whole card or just part of it.
▶ To achieve this, the topology needs to be described. For this we have two objects:

DAPM widgets and DAPM routes.
▶ The DAPM widgets represent various components of an audio system, such as

audio inputs, outputs, mixers, and amplifiers.
▶ The routes are connecting widgets together.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/271

snd_soc_dapm_widget

▶ An array of struct snd_soc_dapm_widget is registered by the component.
▶ Many helpers exist to avoid filling the struct manually:

include/sound/soc-dapm.h

#define SND_SOC_DAPM_INPUT(wname) \
{ .id = snd_soc_dapm_input, .name = wname, .kcontrol_news = NULL, \

.num_kcontrols = 0, .reg = SND_SOC_NOPM }
#define SND_SOC_DAPM_OUTPUT(wname) \
{ .id = snd_soc_dapm_output, .name = wname, .kcontrol_news = NULL, \

.num_kcontrols = 0, .reg = SND_SOC_NOPM }
#define SND_SOC_DAPM_MIC(wname, wevent) \
{ .id = snd_soc_dapm_mic, .name = wname, .kcontrol_news = NULL, \

.num_kcontrols = 0, .reg = SND_SOC_NOPM, .event = wevent, \

.event_flags = SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD}
[...]
#define SND_SOC_DAPM_PGA(wname, wreg, wshift, winvert,\

wcontrols, wncontrols) \
{ .id = snd_soc_dapm_pga, .name = wname, \

SND_SOC_DAPM_INIT_REG_VAL(wreg, wshift, winvert), \
.kcontrol_news = wcontrols, .num_kcontrols = wncontrols}

[...]
#define SND_SOC_DAPM_MUX(wname, wreg, wshift, winvert, wcontrols) \
{ .id = snd_soc_dapm_mux, .name = wname, \

SND_SOC_DAPM_INIT_REG_VAL(wreg, wshift, winvert), \
.kcontrol_news = wcontrols, .num_kcontrols = 1}

#define SND_SOC_DAPM_DEMUX(wname, wreg, wshift, winvert, wcontrols) \
{ .id = snd_soc_dapm_demux, .name = wname, \

SND_SOC_DAPM_INIT_REG_VAL(wreg, wshift, winvert), \
.kcontrol_news = wcontrols, .num_kcontrols = 1}- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dapm_widget
https://elixir.bootlin.com/linux/latest/source/include/sound/soc-dapm.h

snd_soc_dapm_widget

include/sound/soc-dapm.h

#define SND_SOC_DAPM_DAC(wname, stname, wreg, wshift, winvert) \
{ .id = snd_soc_dapm_dac, .name = wname, .sname = stname, \

SND_SOC_DAPM_INIT_REG_VAL(wreg, wshift, winvert) }
#define SND_SOC_DAPM_DAC_E(wname, stname, wreg, wshift, winvert, \

wevent, wflags) \
{ .id = snd_soc_dapm_dac, .name = wname, .sname = stname, \

SND_SOC_DAPM_INIT_REG_VAL(wreg, wshift, winvert), \
.event = wevent, .event_flags = wflags}

#define SND_SOC_DAPM_ADC(wname, stname, wreg, wshift, winvert) \
{ .id = snd_soc_dapm_adc, .name = wname, .sname = stname, \

SND_SOC_DAPM_INIT_REG_VAL(wreg, wshift, winvert), }
#define SND_SOC_DAPM_ADC_E(wname, stname, wreg, wshift, winvert, \

wevent, wflags) \
{ .id = snd_soc_dapm_adc, .name = wname, .sname = stname, \

SND_SOC_DAPM_INIT_REG_VAL(wreg, wshift, winvert), \
.event = wevent, .event_flags = wflags}

/* generic widgets */
#define SND_SOC_DAPM_REG(wid, wname, wreg, wshift, wmask, won_val, woff_val) \
{ .id = wid, .name = wname, .kcontrol_news = NULL, .num_kcontrols = 0, \

.reg = wreg, .shift = wshift, .mask = wmask, \

.on_val = won_val, .off_val = woff_val, }
#define SND_SOC_DAPM_SUPPLY(wname, wreg, wshift, winvert, wevent, wflags) \
{ .id = snd_soc_dapm_supply, .name = wname, \

SND_SOC_DAPM_INIT_REG_VAL(wreg, wshift, winvert), \
.event = wevent, .event_flags = wflags}

#define SND_SOC_DAPM_REGULATOR_SUPPLY(wname, wdelay, wflags) \
{ .id = snd_soc_dapm_regulator_supply, .name = wname, \

.reg = SND_SOC_NOPM, .shift = wdelay, .event = dapm_regulator_event, \

.event_flags = SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD, \

.on_val = wflags}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/271

https://elixir.bootlin.com/linux/latest/source/include/sound/soc-dapm.h

DAPM example

sound/soc/codecs/pcm3168a.c

static const struct snd_soc_dapm_widget pcm3168a_dapm_widgets[] = {
SND_SOC_DAPM_DAC("DAC1", "Playback", PCM3168A_DAC_OP_FLT,

PCM3168A_DAC_OPEDA_SHIFT, 1),
SND_SOC_DAPM_DAC("DAC2", "Playback", PCM3168A_DAC_OP_FLT,

PCM3168A_DAC_OPEDA_SHIFT + 1, 1),
SND_SOC_DAPM_DAC("DAC3", "Playback", PCM3168A_DAC_OP_FLT,

PCM3168A_DAC_OPEDA_SHIFT + 2, 1),
SND_SOC_DAPM_DAC("DAC4", "Playback", PCM3168A_DAC_OP_FLT,

PCM3168A_DAC_OPEDA_SHIFT + 3, 1),

SND_SOC_DAPM_OUTPUT("AOUT1L"),
SND_SOC_DAPM_OUTPUT("AOUT1R"),
SND_SOC_DAPM_OUTPUT("AOUT2L"),
SND_SOC_DAPM_OUTPUT("AOUT2R"),
SND_SOC_DAPM_OUTPUT("AOUT3L"),
SND_SOC_DAPM_OUTPUT("AOUT3R"),
SND_SOC_DAPM_OUTPUT("AOUT4L"),
SND_SOC_DAPM_OUTPUT("AOUT4R"),

Note: on the PCM3168A DACs and ADCs can only be powered down in pairs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3168a.c
https://www.ti.com/lit/gpn/pcm3168a

DAPM example

sound/soc/codecs/pcm3168a.c

SND_SOC_DAPM_ADC("ADC1", "Capture", PCM3168A_ADC_PWR_HPFB,
PCM3168A_ADC_PSVAD_SHIFT, 1),

SND_SOC_DAPM_ADC("ADC2", "Capture", PCM3168A_ADC_PWR_HPFB,
PCM3168A_ADC_PSVAD_SHIFT + 1, 1),

SND_SOC_DAPM_ADC("ADC3", "Capture", PCM3168A_ADC_PWR_HPFB,
PCM3168A_ADC_PSVAD_SHIFT + 2, 1),

SND_SOC_DAPM_INPUT("AIN1L"),
SND_SOC_DAPM_INPUT("AIN1R"),
SND_SOC_DAPM_INPUT("AIN2L"),
SND_SOC_DAPM_INPUT("AIN2R"),
SND_SOC_DAPM_INPUT("AIN3L"),
SND_SOC_DAPM_INPUT("AIN3R")

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3168a.c

snd_soc_dapm_route

▶ An array of struct snd_soc_dapm_route is registered by the component to
define the routes.

include/sound/soc-dapm.h

struct snd_soc_dapm_route {
const char *sink;
const char *control;
const char *source;

/* Note: currently only supported for links where source is a supply */
int (*connected)(struct snd_soc_dapm_widget *source,

struct snd_soc_dapm_widget *sink);

struct snd_soc_dobj dobj;
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/271

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dapm_route
https://elixir.bootlin.com/linux/latest/source/include/sound/soc-dapm.h

DAPM routes example

sound/soc/codecs/pcm3168a.c

static const struct snd_soc_dapm_route pcm3168a_dapm_routes[] = {
/* Playback */
{ "AOUT1L", NULL, "DAC1" },
{ "AOUT1R", NULL, "DAC1" },

{ "AOUT2L", NULL, "DAC2" },
{ "AOUT2R", NULL, "DAC2" },

{ "AOUT3L", NULL, "DAC3" },
{ "AOUT3R", NULL, "DAC3" },

{ "AOUT4L", NULL, "DAC4" },
{ "AOUT4R", NULL, "DAC4" },

/* Capture */
{ "ADC1", NULL, "AIN1L" },
{ "ADC1", NULL, "AIN1R" },

{ "ADC2", NULL, "AIN2L" },
{ "ADC2", NULL, "AIN2R" },

{ "ADC3", NULL, "AIN3L" },
{ "ADC3", NULL, "AIN3R" }

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/pcm3168a.c

ASoC

CPU DAI driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/271

CPU DAI driver

▶ The CPU DAI driver is now a component driver, like the codec ones.
▶ However, it is usually more complex as it need to handle IRQs and take care of

pinmuxing, clocks and DMA.
▶ Also, the list of supported format and rates is usually very large.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/271

DMA handling

▶ When a DMA controller is available, handling DMA in ALSA is done almost
completely in the core, through dmaengine_pcm.

▶ The DMA is simply registered using devm_snd_dmaengine_pcm_register(). This
handles parsing the device tree if necessary.

▶ In the DAI driver probe callback, the DMA engine is simply configured using
snd_soc_dai_init_dma_data() which takes the DMA configuration for playback
and capture.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/271

https://elixir.bootlin.com/linux/latest/ident/devm_snd_dmaengine_pcm_register
https://elixir.bootlin.com/linux/latest/ident/snd_soc_dai_init_dma_data

DMA handling example

sound/soc/atmel/atmel-i2s.c

struct atmel_i2s_dev {
struct device *dev;
struct regmap *regmap;
struct clk *pclk;
struct clk *gclk;
struct snd_dmaengine_dai_dma_data playback;
struct snd_dmaengine_dai_dma_data capture;
unsigned int fmt;
const struct atmel_i2s_gck_param *gck_param;
const struct atmel_i2s_caps *caps;
int clk_use_no;

};
[...]
static int atmel_i2s_dai_probe(struct snd_soc_dai *dai)
{

struct atmel_i2s_dev *dev = snd_soc_dai_get_drvdata(dai);

snd_soc_dai_init_dma_data(dai, &dev->playback, &dev->capture);
return 0;

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/atmel/atmel-i2s.c

DMA handling example

sound/soc/atmel/atmel-i2s.c

static int atmel_i2s_probe(struct platform_device *pdev)
{
[...]

/* Prepare DMA config. */
dev->playback.addr = (dma_addr_t)mem->start + ATMEL_I2SC_THR;
dev->playback.maxburst = 1;
dev->capture.addr = (dma_addr_t)mem->start + ATMEL_I2SC_RHR;
dev->capture.maxburst = 1;

if (of_property_match_string(np, "dma-names", "rx-tx") == 0)
pcm_flags |= SND_DMAENGINE_PCM_FLAG_HALF_DUPLEX;

err = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, pcm_flags);
if (err) {

dev_err(&pdev->dev, "failed to register PCM: %d\n", err);
clk_disable_unprepare(dev->pclk);
return err;

}
[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/atmel/atmel-i2s.c

DMA handling

▶ When a peripheral DMA controller is used, this is more complex.
▶ The driver will have to handle all the aspects of the PCM stream life cycle.
▶ Understandable example in sound/soc/atmel/atmel-pcm-pdc.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/271

https://elixir.bootlin.com/linux/latest/source/sound/soc/atmel/atmel-pcm-pdc.c

Userspace ALSA

Userspace ALSA

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/271

Userspace ALSA

alsa-lib

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/271

alsa-lib

▶ The main way to interact with ALSA devices is to use alsa-lib.
▶ https://github.com/alsa-project/alsa-lib.git

▶ It provides mainly access to the devices but also goes further and allows handling
audio in userspace.

▶ The library itself is actually named libasound

▶ The include file is alsa/asoundlib.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/271

https://github.com/alsa-project/alsa-lib.git

alsa-lib API

▶ int snd_pcm_open(snd_pcm_t ** pcmp, const char * name, snd_pcm_stream_t stream, int mode)

▶ name is the name of the PCM to be opened.
▶ stream can be either SND_PCM_STREAM_PLAYBACK or SND_PCM_STREAM_CAPTURE
▶ mode can be a combination of SND_PCM_NONBLOCK and SND_PCM_ASYNC

▶ int snd_pcm_close(snd_pcm_t *pcm)

▶ Closes the PCM.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/271

PCM name

▶ This can be specified as a hardware device. The three arguments (in order:
CARD,DEV,SUBDEV) specify card number or identifier, device number and
subdevice number (-1 means any). For example: hw:0 or hw:1,0. Instead of the
index, the card name can be used: hw:STM32MP15DK,0

▶ Or through the plug plugin: plug:mypcmdef, plug:hw:0,0.
▶ The list of available names can be generated using snd_card_next to iterate over

all the physical cards. See device_list in aplay.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/271

alsa-lib API - PCM
▶ The next step is to handle the PCM stream parameters

▶ snd_pcm_hw_params_t *hw_params;
int snd_pcm_hw_params_malloc(snd_pcm_hw_params_t ** ptr)
int snd_pcm_hw_params_any(snd_pcm_t * pcm, snd_pcm_hw_params_t * params)

▶ This will allocate a snd_pcm_hw_params_t and fill it with the range of parameters
supported by pcm.

▶ int snd_pcm_hw_params_set_access(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
snd_pcm_access_t _access)

▶ This set the proper access type: interleaved or non-interleaved, mmap or not.

▶ int snd_pcm_hw_params_set_format(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
snd_pcm_format_t val)

▶ This set the format, using a SND_PCM_FORMAT_ macro.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/271

alsa-lib API - PCM

▶ int snd_pcm_hw_params_set_channels(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
unsigned int val)

▶ Sets the number of channels.

▶ int snd_pcm_hw_params_set_rate_near(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
unsigned int *val, int *dir)

▶ Sets the sample rate, setting dir to 0 will require the exact rate.

▶ int snd_pcm_hw_params_set_periods(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
unsigned int val, int dir)

int snd_pcm_hw_params_set_period_size(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
snd_pcm_uframes_t val, int dir)

int snd_pcm_hw_params_set_buffer_size(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
snd_pcm_uframes_t val)

▶ Sets the number of periods and the period size in the buffer or the buffer size.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/271

alsa-lib API - PCM

▶ int snd_pcm_hw_params(snd_pcm_t * pcm, snd_pcm_hw_params_t * params)

▶ Installs the parameters and calls snd_pcm_prepare on the stream.

▶ void snd_pcm_hw_params_free(snd_pcm_hw_params_t * obj)

▶ Frees the allocated snd_pcm_hw_params_t.

▶ int snd_pcm_prepare(snd_pcm_t * pcm)

▶ Prepares the stream.

▶ int snd_pcm_wait(snd_pcm_t * pcm, int timeout)

▶ Waits for the PCM to be ready.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/271

alsa-lib API - PCM

▶ snd_pcm_sframes_t snd_pcm_writei(snd_pcm_t *pcm, const void *buffer, snd_pcm_uframes_t size)
snd_pcm_sframes_t snd_pcm_readi(snd_pcm_t *pcm, void *buffer, snd_pcm_uframes_t size)
snd_pcm_sframes_t snd_pcm_writen(snd_pcm_t *pcm, void **bufs, snd_pcm_uframes_t size)
snd_pcm_sframes_t snd_pcm_readn(snd_pcm_t *pcm, void **bufs, snd_pcm_uframes_t size)

▶ Write or read from an interleaved or non-interleaved buffer.

▶ int snd_pcm_mmap_begin(snd_pcm_t *pcm, const snd_pcm_channel_area_t **areas,
snd_pcm_uframes_t *offset, snd_pcm_uframes_t *frames)

snd_pcm_sframes_t snd_pcm_mmap_commit(snd_pcm_t *pcm, snd_pcm_uframes_t offset,
snd_pcm_uframes_t frames)

snd_pcm_sframes_t snd_pcm_mmap_writei(snd_pcm_t *pcm, const void *buffer,
snd_pcm_uframes_t size)

snd_pcm_sframes_t snd_pcm_mmap_readi(snd_pcm_t *pcm, void *buffer, snd_pcm_uframes_t size)
snd_pcm_sframes_t snd_pcm_mmap_writen(snd_pcm_t *pcm, void **bufs, snd_pcm_uframes_t size)
snd_pcm_sframes_t snd_pcm_mmap_readn(snd_pcm_t *pcm, void **bufs, snd_pcm_uframes_t size)

▶ Write or read from an interleaved or non-interleaved mmap buffer.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/271

alsa-lib API - controls
▶ It is possible to set controls programatically.

▶ snd_ctl_t *handle;
int snd_ctl_open (snd_ctl_t **ctl, const char *name, int mode)

▶ Opens the sound card to be controlled.

▶ snd_ctl_elem_id_t *id;
#define snd_ctl_elem_id_alloca(ptr)
snd_ctl_elem_value_t *value;
#define snd_ctl_elem_value_alloca(ptr)

▶ Allocate a snd_ctl_elem_id_t, referring to a particular control and a
snd_ctl_elem_value_t to be set for this control.

▶ void snd_ctl_elem_id_set_interface(snd_ctl_elem_id_t *obj, snd_ctl_elem_iface_t val)
void snd_ctl_elem_id_set_name(snd_ctl_elem_id_t *obj, const char *val)

▶ Set the interface and name of the control to be set.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/271

alsa-lib API - controls

▶ A lookup is needed to fill the snd_ctl_elem_id_t completely

int lookup_id(snd_ctl_elem_id_t *id, snd_ctl_t *handle)
{

int err;
snd_ctl_elem_info_t *info;
snd_ctl_elem_info_alloca(&info);

snd_ctl_elem_info_set_id(info, id);
if ((err = snd_ctl_elem_info(handle, info)) < 0) {

return err;
}
snd_ctl_elem_info_get_id(info, id);

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/271

alsa-lib API - controls

▶ void snd_ctl_elem_value_set_id(snd_ctl_elem_value_t *obj, const snd_ctl_elem_id_t *ptr)

▶ Links the value with the control id.

▶ void snd_ctl_elem_value_set_boolean(snd_ctl_elem_value_t *obj, unsigned int idx, long val)
void snd_ctl_elem_value_set_integer(snd_ctl_elem_value_t *obj, unsigned int idx, long val)
void snd_ctl_elem_value_set_integer64(snd_ctl_elem_value_t *obj, unsigned int idx,

long long val)
void snd_ctl_elem_value_set_enumerated(snd_ctl_elem_value_t *obj, unsigned int idx,

unsigned int val)
void snd_ctl_elem_value_set_byte(snd_ctl_elem_value_t *obj, unsigned int idx,

unsigned char val)
void snd_ctl_elem_set_bytes(snd_ctl_elem_value_t *obj, void *data, size_t size)

▶ Set the value in snd_ctl_elem_value_t.

▶ int snd_ctl_elem_write(snd_ctl_t *ctl, snd_ctl_elem_value_t *data)

▶ Actually set the control.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/271

Going further

▶ UCM: The ALSA Use Case Configuration:
https://www.alsa-project.org/alsa-doc/alsa-lib/group__ucm__conf.html

▶ ALSA topology: https://www.alsa-project.org/wiki/ALSA_topology

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 171/271

https://www.alsa-project.org/alsa-doc/alsa-lib/group__ucm__conf.html
https://www.alsa-project.org/wiki/ALSA_topology

Demo - Card configuration examples

Using alsa-lib tools to:
▶ Reorder channels
▶ Split channels
▶ Resample
▶ Mix samples
▶ Apply effects

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 172/271

Userspace ALSA

alsa-utils

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/271

alsa-utils

▶ alsa-utils is a repository of tools to interact with ALSA devices
▶ https://github.com/alsa-project/alsa-utils

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/271

https://github.com/alsa-project/alsa-utils

Controls

▶ alsamixer provides a ncurse based graphical interface to modify sound cards
controls.

▶ amixer is a command line tool to set controls.
• The scontrols and controls commands list the available controls.
• The contents commands list the available controls and shows their content.
• The cset and sset commands allows modifying the controls.
• The cget and sget commands show the content of a specific control.

▶ alsactl is a tool that can save the control values to a file and restore them from
a file.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/271

Playback and capture

▶ speaker-test can generate tones or noises to play on specific channels with a
specified rate.

▶ aplay plays an audio file. It is able to set many stream parameters.
▶ arecord can record an audio stream to a file.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 176/271

Demo - Userspace tools

Using userspace tools to:
▶ configure sound card controls
▶ load and store default values for controls
▶ play sound
▶ record

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/271

Troubleshooting

Troubleshooting

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 178/271

Troubleshooting: no sound

Audio seems to play for the correct duration but there is no sound:
▶ Unmute Master and the relevant controls
▶ Turn up the volume
▶ Check the codec analog muxing and mixing (use alsamixer)
▶ Check the amplifier configuration
▶ Check the routing

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/271

Troubleshooting: no sound

When trying to play sound but it seems stuck:
▶ Check pinmuxing
▶ Check the configured clock directions
▶ Check the producer/consumer configuration
▶ Check the clocks using an oscilloscope
▶ Check pinmuxing
▶ Some SoCs also have more muxing (NXP i.Mx AUDMUX, TI McASP)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/271

Troubleshooting: write error

aplay test.wav
Playing WAVE 'test.wav' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo
aplay: pcm_write:1737: write error: Input/output error

▶ Usually caused by an issue in the routing
▶ Check that the codec driver exposes a stream named ”Playback”
▶ Use vizdapm: https://github.com/mihais/asoc-tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 181/271

https://github.com/mihais/asoc-tools

Troubleshooting: over/underruns

aplay test.wav
Playing WAVE 'test.wav' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo
underrun!!! (at least 1.899 ms long)
underrun!!! (at least 0.818 ms long)
underrun!!! (at least 2.912 ms long)
underrun!!! (at least 8.558 ms long)

▶ Usually caused by an imprecise BCLK
▶ Try to find a better PLL and dividers combination

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/271

Troubleshooting: going further

▶ Use speaker-test to generate audio and play tones.
▶ Be careful with the 440Hz tone, it may not expose all the errors. Rather play

something that is not commonly divisible (e.g. 441Hz)
▶ Generate tone with fade in and fade out as this allows to catch DMA transfer

issues more easily.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/271

Troubleshooting: going further

▶ Have a look at the CPU DAI driver and its callback. In particular: .set_clkdiv
and .set_sysclk to understand how the various clock dividers are setup.
.hw_params or .set_dai_fmt may do some muxing

▶ Have a look at the codec driver callbacks, .set_sysclk as the clk_id parameter
is codec specific.

▶ Remember using a codec as a clock consumer is an uncommon configuration and
is probably untested.

▶ When in doubt, use devmem or i2cget

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/271

Demo - Troubleshooting

▶ Using debugfs to find issues
▶ Using vizdapm
▶ Using ftrace to trace register writes and DAPM

states

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/271

PipeWire

PipeWire

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/271

PipeWire

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/271

Introduction

▶ A realtime multimedia data graph
▶ Works across processes
▶ Why?

• Sharing of devices across processes
• Dynamic routing at runtime
• Implements format negociation & conversion
• Modular audio processing, spread across Linux processes
• Low overhead: shared memory for data and no roundtrip to daemon

▶ Same abstraction layer (alternatives)
• PulseAudio
• JACK Audio Connection Kit

▶ Technical stack: C (gnu11), Meson & Ninja

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/271

https://www.freedesktop.org/wiki/Software/PulseAudio/
https://jackaudio.org/

Concepts — objects
▶ The graph state representation is a list of objects.
▶ That object list is handled by the Core object, hosted by the PipeWire daemon.
▶ Each connected process is represented by a Client object.

Example with pw-play audio.wav and
pw-record --target pw-play rec.wav:

$ pw-cli ls Core
id 0, type PipeWire:Interface:Core/4

object.serial = "0"
core.name = "pipewire-0"

$ pw-cli ls Client
id 35, type PipeWire:Interface:Client/3

object.serial = "35"
pipewire.sec.pid = "2718"
application.name = "pipewire"

id 129, type PipeWire:Interface:Client/3
object.serial = "11608"
pipewire.sec.pid = "466490"
application.name = "pw-cli"

id 145, type PipeWire:Interface:Client/3
object.serial = "11572"
pipewire.sec.pid = "465686"
application.name = "pw-cat"

id 168, type PipeWire:Interface:Client/3
object.serial = "11593"
pipewire.sec.pid = "466186"
application.name = "pw-cat"

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/271

Concepts — nodes, ports & links (1)

▶ The graph itself is represented by the following object types:
• A Node processes samples
• A Port represents a node input or output
• A Link connects an output port with an input port

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/271

Concepts — nodes, ports & links (2)

$ pw-cli ls Node
id 137, type PipeWire:Interface:Node/3

client.id = "145"
node.name = "pw-play"
media.class = "Stream/Output/Audio"

id 111, type PipeWire:Interface:Node/3
client.id = "168"
node.name = "pw-record"
media.class = "Stream/Input/Audio"

...

$ pw-cli ls Link
id 119, type PipeWire:Interface:Link/3

client.id = "33"
link.output.port = "116"
link.input.port = "139"
link.output.node = "137"
link.input.node = "111"

id 97, type PipeWire:Interface:Link/3
client.id = "33"
link.output.port = "115"
link.input.port = "117"
link.output.node = "137"
link.input.node = "111"

...

$ pw-cli ls Port
id 116, type PipeWire:Interface:Port/3

format.dsp = "32 bit float mono audio"
node.id = "137"
audio.channel = "FL"
port.alias = "pw-play:output_FL"

id 115, type PipeWire:Interface:Port/3
format.dsp = "32 bit float mono audio"
node.id = "137"
audio.channel = "FR"
port.alias = "pw-play:output_FR"

id 139, type PipeWire:Interface:Port/3
format.dsp = "32 bit float mono audio"
node.id = "111"
audio.channel = "FL"
port.alias = "pw-record:input_FL"

id 117, type PipeWire:Interface:Port/3
format.dsp = "32 bit float mono audio"
node.id = "111"
audio.channel = "FR"
port.alias = "pw-record:input_FR"

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 191/271

Concepts — object properties and params

▶ Objects are defined by their ID
and type.

▶ Objects also contain properties:
a list of string key-value pairs.
Those can only be modified by
the client hosting the node.

▶ Some object types also contain
params. Those might be
configurable by other clients.

• They get used for format
negociation & conversion,
volume control, etc.

$ pw-cli info 94
type: PipeWire:Interface:Node/3

* properties:
* application.name = "pw-play"
* node.name = "pw-play"
* media.type = "Audio"
* media.category = "Playback"
* media.role = "Music"
* node.rate = "1/44100"
* node.latency = "4410/44100"
* node.autoconnect = "true"
* node.want-driver = "true"
* media.class = "Stream/Output/Audio"
* factory.id = "8"
* clock.quantum-limit = "8192"
* library.name = "audioconvert/libspa-audioconvert"
* client.id = "151"
* object.id = "94"
* object.serial = "2005"
* ...
* params: (8)
* 3 (Spa:Enum:ParamId:EnumFormat) r-
* 2 (Spa:Enum:ParamId:Props) rw
* 4 (Spa:Enum:ParamId:Format) rw
* ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/271

Concepts — devices

▶ Another object type is Device. Those map to physical devices, to which are
assigned one or more nodes. Device configuration is done via those objects.

▶ Providers can be alsa-lib, BlueZ, libcamera, V4L, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 193/271

http://www.bluez.org/
https://libcamera.org/
https://en.wikipedia.org/wiki/Video4Linux

Concepts — graph execution logic (1)

▶ PipeWire structures itself as multiple subgraphs. In each one of those, there is
exactly one driver node, and zero or more follower nodes.

▶ The driver node is responsible for triggering the start of execution cycles, based on
a timer or hardware interrupt for example.

▶ Each node keeps two counters:
1. required: the number of dependencies on other nodes;
2. pending: how many remaining nodes need to be executed before it can run in this

cycle. A value of zero means the node can be executed. Its reset value is required.
▶ Nodes also keep a list of nodes that depend on them (called targets); a node is

responsible for decrementing its targets’ pending counters and signal them using
IPC.

▶ See the documentation for more details. The graph evaluation is implemented by
pw_context_recalc_graph().

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 194/271

https://docs.pipewire.org/page_scheduling.html

Concepts — graph execution logic (2)

▶ The driver node is picked based on the priority.driver property.
▶ A good default is to set higher priority to capture driver nodes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/271

Concepts — graph execution logic (3)

▶ PipeWire clients and modules can create independent nodes rather than a single
one with input and output ports. That allows having multiple subgraphs, each
driven by a different driver node.

▶ Virtual loopbacks are such an example: they allow sending samples from a
subgraph to another while still decoupling driver clocks.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 196/271

Concepts — graph execution logic (4)

▶ The number of samples to be generated during a cycle is called the quantum.
▶ There are global settings for minimum and maximum, and nodes can request

specific values for the subgraph they take part in.
▶ Nodes can also request for a locked quantum: that it does not get changed across

recalculations of the graph. This gets used for applications that require fixed
quantum (such as the JACK compatibility layer).

▶ The rate is similar: it can be different for each subgraph. The PipeWire config
has a list of allowed rates.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/271

Concepts — modules

▶ Modules are libraries loaded by PipeWire clients to implement various features.
▶ Example modules:

• module-rt: requests realtime scheduling priority using setpriority(2) and
pthread_setschedparam(3).

• module-loopback: create two virtual loopback nodes.
• module-protocol-native: implements the communication between the daemon

and clients.
• module-profiler: implements the profiling logic, attached to the daemon.
• etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/271

PipeWire communication protocols — IPC

▶ socket(AF_UNIX, SOCK_STREAM, 0) for communication with the daemon
process. The socket is named pipewire-0 by default or $PIPEWIRE_REMOTE.
Directory look-up order:

1. $PIPEWIRE_RUNTIME_DIR
2. $XDG_RUNTIME_DIR
3. $USERPROFILE

▶ eventfd(2) is the wakeup method.
▶ memfd_create(2) is used for sharing multimedia data across related clients

(without data going through the daemon).
▶ PipeWire provides an event-loop implementation that relies upon epoll(7). All

clients use it. They also use signalfd(2) to handle signals.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/271

PipeWire communication protocols — D-Bus optional dependency

▶ Happens on the session bus
▶ Flatpak permission support through XDG Desktop Portal, see

libpipewire-module-portal

▶ Audio device reservation through the org.freedesktop.ReserveDevice1, see
libwireplumber-module-reserve-device

▶ For Bluetooth support through BlueZ, see PipeWire’s libspa-bluez5

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/271

https://docs.flatpak.org/en/latest/desktop-integration.html#portals
https://git.0pointer.net/reserve.git/tree/reserve.txt
http://www.bluez.org/

PipeWire

Configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/271

Configuration — location (1)

▶ Each client locates and reads its configuration at startup.
▶ Those configuration files follow a PipeWire-specific format.
▶ Look-up order:

1. $XDG_CONFIG_HOME/pipewire/
environment variable, often ~/.config/pipewire/ in distributions

2. $sysconfdir/pipewire/
compile-time variable, often /etc/pipewire/

3. $datadir/pipewire/
compile-time variable, often /usr/share/pipewire/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/271

Configuration — location (2)

▶ A client that loads a config file named client-rt.conf will load the first file
named as such in the above folders, but will also load all config sections from:

1. $datadir/pipewire/client-rt.conf.d/
2. $sysconfdir/pipewire/client-rt.conf.d/
3. $XDG_CONFIG_HOME/pipewire/client-rt.conf.d/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/271

Configuration — sections (1)

▶ context.properties configures the PipeWire instance.
▶ Most properties target the daemon (default.clock.allowed-rates,

default.clock.max-quantum, etc.) but some also apply to other clients
(log.level, mem.mlock-all, etc.).

context.properties = {
link.max-buffers = 16
log.level = 2

core.daemon = true # listening for socket connections
core.name = pipewire-0 # core name and socket name

Properties for the DSP configuration.
default.clock.rate = 48000
default.clock.allowed-rates = [48000]
default.clock.quantum = 1024
default.clock.min-quantum = 32
default.clock.max-quantum = 2048
default.clock.quantum-limit = 8192
...

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/271

Configuration — sections (2)

▶ context.spa-libs maps plugin features with globs to a SPA library.
▶ That defines the shared object to be used to implement the given factories. A way

to look at this is that keys are interfaces used by PipeWire for various features,
and values are the shared objects that implement those.

context.spa-libs = {
<factory-name regex> = <library-name>
Maps a SPA factory to its parent library.

audio.convert.* = audioconvert/libspa-audioconvert
avb.* = avb/libspa-avb
api.alsa.* = alsa/libspa-alsa
api.v4l2.* = v4l2/libspa-v4l2
api.libcamera.* = libcamera/libspa-libcamera
api.bluez5.* = bluez5/libspa-bluez5
api.vulkan.* = vulkan/libspa-vulkan
api.jack.* = jack/libspa-jack
support.* = support/libspa-support
...

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/271

Configuration — sections (3)

▶ context.modules is an array of dictionaries. It lists modules to instantiate, with
optional arguments (args), flags and a conditional expression (condition).

▶ A module can be loaded more than once: it will be instantiated multiple times.
▶ Two flags exist to turn panics into warnings:

1. ifexists on unknown modules;
2. nofail on module init failures.

context.modules = [
{ name = <module-name>
(args = { <key> = <value> ... })
(flags = [(ifexists) (nofail)])
(condition = [{ <key> = <value> ... } ...])
}

...
]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/271

Configuration — sections (4)

▶ context.modules example:

context.modules = [
The profiler module. Allows application to access profiler
and performance data. It provides an interface that is used
by pw-top and pw-profiler.
{ name = libpipewire-module-profiler }

Uses realtime scheduling to boost the audio thread
priorities. This uses RTKit if the user doesn't have
permission to use regular realtime scheduling.
{ name = libpipewire-module-rt

args = {
nice.level = -11
#rt.prio = 88
#rt.time.soft = -1
#rt.time.hard = -1

}
flags = [ifexists nofail]

}

...
]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 207/271

Configuration — sections (5)

▶ context.objects is an array of dictionaries. It lists objects that should be
statically created by this client. This requires a factory to be used and
arguments (args) to be passed to it.

▶ As previously, the flags property can configure the reaction to errors. For
context.objects, only nofail exists.

▶ condition also exists for this section.

context.objects = [
{ factory = <factory-name>
(args = { <key> = <value> ... })
(flags = [(nofail)])
(condition = [{ <key> = <value> ... } ...])
}

...
]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/271

Configuration — sections (6)

▶ context.objects example:

context.objects = [
Create a fake source node. It will be stereo
because of its audio.position property.
{ factory = adapter

args = {
factory.name = support.null-audio-sink
node.name = "my-mic"
node.description = "Microphone"
media.class = "Audio/Source/Virtual"
audio.position = "FL,FR"

}
}

...
]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/271

Configuration — sections (7)

▶ context.exec is an array of dictionaries. Each entry is an executable that will be
run on startup of the client as a child process.

▶ This used to be the recommended way to run the session & policy manager. This
changed and the recommended way is to rely on your init system, be it systemd or
any other.

▶ Using this section is therefore deprecated, except for simple development
environments.

context.exec = [
{ path = "/usr/bin/pipewire-media-session"

args = ""
condition = [

{ exec.session-manager = null }
{ exec.session-manager = true }

] }
]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/271

https://systemd.io/

PipeWire

Tools rundown

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/271

Tools rundown — the PIPEWIRE_DEBUG variable

▶ Every client listens to the PIPEWIRE_DEBUG environment variable which allows
overwriting the log.level from the configuration file.

▶ It takes as value the log level:
• 0 or X: No logging is enabled.
• 1 or E: Error logging is enabled.
• 2 or W: Warnings are enabled.
• 3 or I: Informational messages are enabled.
• 4 or D: Debug messages are enabled.
• 5 or T: Trace messages are enabled.

▶ This should be the first debugging step to increase verbosity and therefore
better understand why a PipeWire client is facing issues. Careful with
PIPEWIRE_DEBUG=5 which most likely will cause underruns issues. Level 3 is often
good enough for debugging.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/271

Tools rundown — pw-config

▶ pw-config is a small utility that allows dumping a given config file, taking into
account its overrides. It is best used to ensure config changes are effective and
overrides are applied as we expect.

▶ pw-config paths lists config paths, including overrides.
▶ pw-config list details all config sections.

$ pw-config --name custom.conf paths
{

"config.path": "/usr/share/pipewire/custom.conf",
"override.1.0.config.path": "/home/tleb/.config/pipewire/custom.conf.d/alsa-udev.conf",
"override.1.1.config.path": "/home/tleb/.config/pipewire/custom.conf.d/source-rnnoise.conf"

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 213/271

Tools rundown — pw-dump

▶ pw-dump prints the graph as a JSON array of all exported objects known to Core.
▶ Its main goal is to allow sharing the graph’s overall state when reporting a bug or

describing a situation.
▶ Filtering: pw-dump takes a parameter which can be an object type (careful, it

must be capitalised), ID or name (object.path, object.serial or *.name).
▶ Its output is rather verbose and for more interactive debugging sessions, pw-cli is

more adapted.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 214/271

Tools rundown — pw-cli (1)

▶ pw-cli is the main command-line interface tool to interact with PipeWire. It
connects to PipeWire as a new client.

▶ It has two modes: (1) it can either answer to commands given as argument such
as pw-cli help and stop afterwards or (2) run in interactive mode when given no
argument. In that second mode, it also logs new objects that join the core object
list.

▶ pw-cli help lists all existing commands. It includes arguments (inbetween square
brackets when optional) and command aliases.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/271

Tools rundown — pw-cli (2)

▶ It can expose many information about the graph:
• pw-cli ls [<filter>] lists objects with their ID, type and a few of their core

properties. <filter> is the same as pw-dump’s argument.
• pw-cli info <filter> gives all possible information about a given object. That

includes all of its properties and params.
• pw-cli enum-params <filter> <param-id> gives the content of a param

associated with an object.
▶ But, it also allows modifying objects:

• pw-cli set-param <filter> <param-id> <param-json> to edit a param value;
• pw-cli permissions <client-id> <object> <permission> to modify

permissions on a given object.
▶ As well as creating objects dynamically, that will be hosted by the pw-cli client:

load-module, create-device, create-node, create-link.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/271

Tools rundown — pw-top

▶ top for PipeWire.
▶ Appropriate tool to get a quick overview of the current graph nodes and structure.
▶ Status: S for stopped and R for running.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/271

Tools rundown — pw-profiler

▶ Allows profiling of all running nodes: it records many time durations while running
then generates graphs once the command is stopped.

▶ Here is an example with a single pw-play node, first started with
PIPEWIRE_CONFIG_NAME equal to client.conf then with client-rt.conf on a
loaded system.

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900

us
ec

audio cycles

pw-play/95

Clients scheduling latency

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900

us
ec

audio cycles

pw-play/95

Clients duration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/271

Tools rundown — pw-dot

▶ pw-dot creates a file named pw.dot which is a Graphviz textual graph description
file (DOT).

▶ By default, it connects to the PipeWire daemon and creates a graph
representation of the global objects. It can also work from the output of pw-dump
using the --json flag.

▶ That file can be turned into a graphical representation and viewed on a host using:
dot -Tsvg pw.dot > pw.svg && xdg-open pw.svg

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/271

https://graphviz.org/
 https://en.wikipedia.org/wiki/DOT_(graph_description_language)

Tools rundown — pw-cat

▶ Aliased to pw-play, pw-record and others, it is a simple tool to play or record
media files.

▶ It uses libsndfile for a large audio format support.
▶ It has many options available to control the exposed props and params:

• --target allows asking to be routed to a given node;
• --latency asks for a given latency (therefore buffer size);
• --quality controls the adaptive resampling;
• --rate, --channels, --channel-map, --format, --volume are self-describing.
• etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 220/271

https://libsndfile.github.io/libsndfile/

Tools rundown — and a few others

▶ pw-link: it allows listing, creating and deleting links.
▶ pw-mon: it monitors and dumps various events: it prints when a global object is

added or removed, displays information relative to the Core, etc.
▶ pw-loopback: it creates two nodes that act as a virtual loopback.
▶ pw-metadata: it allows editing metadata, which are runtime-writable settings

stored by the daemon. The allowed rates and quantum can be controlled at
runtime using that method.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 221/271

Tools rundown — helvum (1)

▶ Helvum is a real-time 2D patchbay.
▶ It gives an overview of the graph with the existing nodes and their ports. It also

can create and delete links, allowing manual editing of the graph.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/271

https://gitlab.freedesktop.org/pipewire/helvum

Tools rundown — helvum (2)

▶ Helvum is a GUI software. We can however run it on our host and monitor our
target if we have networking on the target.

▶ We use socat on the target to bridge the Unix socket from our target daemon
over TCP/IP. We then use socat on the host to bridge the TCP/IP to a Unix
socket that we will use as our PipeWire Unix socket for Helvum.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 223/271

http://www.dest-unreach.org/socat/

Tools rundown — helvum (3)

We run socat on the target, creating a redirection from the Unix
socket /run/pipewire-0 to a TCP/IP server on port 8000.
ssh $login@$ip "socat TCP4-LISTEN:8000 UNIX-CONNECT:/run/pipewire-0" &

We run socat on the host, creating the redirection from the TCP/IP
port 8000 on the target to the Unix socket /tmp/pipewire-0 on the
host.
socat UNIX-LISTEN:/tmp/pipewire-0 TCP4:$ip:8000 &

And we connect on the redirected Unix socket.
PIPEWIRE_RUNTIME_DIR=/tmp helvum

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 224/271

PipeWire

Demo 1 — running PipeWire

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 225/271

Demo 1 — introduction

▶ Demo time!
▶ We will play audio to an alsa-lib device from an audio file.
▶ We will let our session manager discover ALSA devices and connect an output

node to the ALSA sink node.
▶ The steps will be:

1. Start a PipeWire daemon;
2. Start a WirePlumber daemon;
3. Start a pw-play client;
4. Study the graph status using various tools (pw-dot, pw-top, pw-cli, etc).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/271

Demo 1 — pointers

1. Start a PipeWire daemon.
• Running pipewire without arguments will start a client using pipewire.conf, which

by default runs in daemon mode.
• At this state, the graph is rather empty. Objects are mostly modules and factories

attached to the core client, and the client objects.
2. Start a WirePlumber daemon.

• It also picks its config automatically, no arguments required.
• Once started, we can notice that ALSA devices and attached nodes are created in

the graph.
• Its log level is controlled using WIREPLUMBER_DEBUG.

3. Start a pw-play client;
• pw-play <file>

4. Study the graph status using various tools (pw-dot, pw-top, pw-cli, etc).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/271

PipeWire

Demo 2 — PipeWire filter-chains

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 228/271

Demo 2 — introduction

▶ We will keep our previous setup, but add a client that does equalization on the
samples.

▶ The steps will be:
1. To create a new configuration file, for the client hosting the effect;
2. Start a client using this config;
3. Update links manually to make pw-play be routed to the effect, then to the ALSA

sink node.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 229/271

Demo 2 — pointers

1. To create a new configuration file, for the client hosting the effect.
• Recent PipeWire versions have a filter-chain.conf example with snippets for

various needs (LADSPA with RNNoise, builtin effects, etc.).
• When modules spawn objects, they often give their own properties to children, and

take arguments to set specific properties for each node. See capture.props and
playback.props.

2. Start a client using this config.
• pipewire -c filter-chain.conf

3. Update links manually to make pw-play be routed to the effect, then to the
ALSA sink node.

• This can be done using Helvum with its GUI.
• Otherwise, pw-dot or pw-link --links to get an overview then

pw-link <output-port> <input-port> to create a new link.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 230/271

PipeWire

WirePlumber

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 231/271

WirePlumber — session manager concept

▶ PipeWire handles the processing of the media graph.
▶ An additional layer is required to implement the desired configuration of devices

and the connections between nodes. That is implemented by the session &
policy manager.

▶ Two known open-source implementations exist:
• pipewire-media-session: the initial implementation, deprecated;
• WirePlumber: recommended implementation.

▶ WirePlumber implements a modular approach: it provides a high-level API and
exposes it to Lua scripts. Those implement the management logic.

▶ Technical stack: C, GLib (GObject), Lua engine, Meson & Ninja.
▶ Documentation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/271

https://gitlab.freedesktop.org/pipewire/media-session
https://pipewire.pages.freedesktop.org/wireplumber/
https://www.lua.org/
https://pipewire.pages.freedesktop.org/wireplumber/

WirePlumber — default behavior

▶ WirePlumber has a default behavior that tries to replicate the PulseAudio
behavior, i.e. a desktop setup.

▶ It enumerates and adds Device objects for ALSA, BlueZ and others. It also puts
those devices into a best-guess profile.

▶ Those devices get their associated nodes created automatically.
▶ Audio routing is based on two default nodes:

• An Audio/Sink node is for applications that want to emit audio. All Output/Audio
nodes get routed to it.

• An Audio/Source node is for applications that require a microphone input. All
Input/Audio nodes get routed to it.

▶ Nodes can also request to be routed to:
1. a target node using target.object (for example pw-cat --target);
2. nothing automatically using node.autoconnect. WirePlumber will not create any

automatic link, letting any PipeWire client create the desired links.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/271

WirePlumber — configuration (1)

▶ The config lookup logic is the same as PipeWire’s.
▶ Configuration files define components to load when starting. Components include

PipeWire modules, WirePlumber modules and Lua scripts.
▶ Lua scripts will monitor the PipeWire graph, and react to events. Configuration

files also defines options passed to scripts, including arrays matching object
descriptions to behavior for such objects.

▶ The default configuration is called wireplumber.conf, see
/usr/share/wireplumber/wireplumber.conf. Default scripts are located
alongside, in scripts/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 234/271

WirePlumber — configuration (2)

▶ Let’s look at the configuration of the ALSA monitor in
scripts/monitors/alsa.lua:

-- /usr/share/wireplumber/scripts/monitors/alsa.lua
config = {}
config.reserve_device = Core.test_feature ("monitor.alsa.reserve-device")
config.properties = Conf.get_section_as_properties ("monitor.alsa.properties")
config.rules = Conf.get_section_as_json ("monitor.alsa.rules", Json.Array {})

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 235/271

WirePlumber — configuration (3)
▶ To configure ALSA monitor, using a custom configuration fragments:

-- /etc/wireplumber/wireplumber.conf.d/20-alsa-config.conf
monitor.alsa.properties = {

-- See documentation: man pipewire-devices(7)
alsa.udev.expose-busy = true

}

monitor.alsa.rules = [
{

matches = [{ device.name = "~alsa_card.*" }]
actions = {
update-props = {

api.alsa.use-acp = true
api.acp.auto-port = false
device.disabled = false

}
}

}
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 236/271

WirePlumber — configuration (4)

▶ Example of disabling D-Bus support:

-- /etc/wireplumber/wireplumber.conf.d/10-disable-dbus.conf
wireplumber.profiles = {

main = {
support.dbus = disabled

Avoid warnings
support.reserve-device = disabled
support.portal-permissionstore = disabled
script.client.access-portal = disabled
monitor.alsa.reserve-device = disabled

}
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 237/271

WirePlumber — permission handling

▶ Another task of the session & policy manager is permission management.
▶ That is handled, in PipeWire >= 0.3.83, using two PipeWire daemon sockets:

• Clients joining pipewire-0-manager have full permissions, seen using property
pipewire.access = "unrestricted".

• Client joining pipewire-0 must be given permissions by the session manager, i.e.
WirePlumber. Propery pipewire.access is "default".

▶ Permissions can be granted on a per-object-basis for each client. Else each client
has a default permission assigned to it.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/271

WirePlumber — DSP filtering on sinks and sources (1)

▶ WirePlumber now features a way to attach a filter-chain to a sink or source. This
allows pre-processing before outputs for example.

▶ This is called ”Automatic Software DSP”, see documentation about the topic.
▶ Script implementing this behavior is scripts/node/software-dsp.lua.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 239/271

https://pipewire.pages.freedesktop.org/wireplumber/policies/software_dsp.html

WirePlumber — DSP filtering on sinks and sources (2)

▶ Example configuration:

node.software-dsp.rules = [
{

matches = [
{ "node.name" = "alsa_output.platform-sound.HiFi__Speaker__sink" }
{ "alsa.id" = "~WeirdHardware*" }

]

actions = {
create-filter = {

Arguments passed to libpipewire-module-filter-chain
For inspiration, look into /usr/share/pipewire/filter-chain/*.conf
filter-path = "/etc/wireplumber/filter-config.json"
hide-parent = true

}
}

}
]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 240/271

PipeWire

Demo 3 — interacting with WirePlumber

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 241/271

WirePlumber — demo time! (1)

▶ We’ll use our previous setup, focusing on WirePlumber abilities.
▶ The steps will be:

1. Start PipeWire and WirePlumber;
2. Target a specific node;
3. Modify the default playback node;
4. Have a look at device profiles.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 242/271

WirePlumber — demo time! (2)

1. Start PipeWire and WirePlumber.
• See demo 1 for explainations.

2. Target a specific node.
• This is done by nodes using target.object (previously node.target).
• It can be a node ID, node name or object path (see WirePlumber scripts for the

logic).
• A node’s properties are controlled when spawning it, so by its config or by its client

(WirePlumber for example).
3. Modify the default playback node.

• wpctl set-default <id> controls this.
• Nodes must have media.class equal to Audio/Sink (or similar) to appear in this

list. That does not include filter-chains, which are handled specifically.
4. Have a look at device profiles.

• Those are params on the device objects. See EnumProfile and Profile.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 243/271

PipeWire

C API

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/271

C API — introduction

▶ libpipewire: reference implementation, and currently the only one.
▶ Allows connecting to the daemon as a client.
▶ Rust bindings: pipewire-rs.
▶ See pkg-config for CFLAGS and LDFLAGS:

$ pkg-config --cflags --libs libpipewire-0.3

▶ To initialise the library (logging, randomness, etc.), call:
void pw_init(int *argc, char **argv[]);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/271

 https://gitlab.freedesktop.org/pipewire/pipewire-rs

C API — SPA

▶ A building block is worth mentioning, Simple Plugin API (SPA). It contains the
following:

• A plugin format encapsulating shared objects, allowing runtime introspection of the
plugin content.

• A Type-Length-Value data container called POD. It is header-only, with support for
basic types (int, float, string, etc.) and nested types (array, struct, objects).

• Utility functions as header-only: string handling utilities, relaxed JSON parsing (used
for config files), a ringbuffer implementation, etc.

• Support interfaces provided by the system, with multiple possible implementations:
logging, file-descriptor polling, etc.

▶ Platform resources (ALSA, bluez5, vulkan, etc.) are exposed as SPA plugins and
used internally by PipeWire or WirePlumber.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 246/271

https://docs.pipewire.org/page_spa.html#autotoc_md225
 https://docs.pipewire.org/page_spa_pod.html
https://docs.pipewire.org/group__spa__utils.html
https://docs.pipewire.org/group__spa__support.html

C API — event-loop

▶ At the core of each client: an epoll(2)-based event-loop is running.
▶ pw_main_loop is a wrapper around pw_loop providing a simple-to-use API.

/** Create a new main loop. */
struct pw_main_loop *
pw_main_loop_new(const struct spa_dict *props);

/** Get the loop implementation */
struct pw_loop * pw_main_loop_get_loop(struct pw_main_loop *loop);

/** Destroy a loop */
void pw_main_loop_destroy(struct pw_main_loop *loop);

/** Run a main loop. This blocks until \ref pw_main_loop_quit is called */
int pw_main_loop_run(struct pw_main_loop *loop);

/** Quit a main loop */
int pw_main_loop_quit(struct pw_main_loop *loop);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 247/271

C API — context

▶ A pw_context instance is at the heart of the C API. It allows connection to the
daemon and it manages locally available resources.

▶ It does the following:
• Parsing of the appropriate configuration.
• Start of the processing thread & associated data loop.
• Handling of local resources: memory pool, work queue, proxies, local modules

/** Make a new context object for a given main_loop */
struct pw_context * pw_context_new(struct pw_loop *main_loop,

struct pw_properties *props, size_t user_data_size);

/** Connect to a PipeWire instance */
struct pw_core * pw_context_connect(struct pw_context *context,

struct pw_properties *properties, size_t user_data_size);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 248/271

C API — proxies

▶ Think as proxies as file descriptors for PipeWire objects. They are local references
to global PipeWire objects.

▶ The equivalent on the daemon side are called resources.
▶ A client starts with two proxies:

1. One pointing to the Core object.
2. Another one to the global Client object that represents itself.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 249/271

C API — registry
▶ The PipeWire daemon handles a list of objects. Those are known as global

objects and are represented by pw_global structures.
▶ pw_registry is a singleton structure that allows clients to track existing globals.

It works by registering a callback to be called on new global object events.

struct pw_registry_events {
#define PW_VERSION_REGISTRY_EVENTS 0

uint32_t version;
void (*global) (void *data, uint32_t id, uint32_t permissions,

const char *type, uint32_t version,
const struct spa_dict *props);

void (*global_remove) (void *data, uint32_t id);
};

struct pw_registry * pw_core_get_registry(struct pw_core *core,
uint32_t version, size_t user_data_size);

void pw_registry_add_listener(struct pw_registry *registry,
struct spa_hook *hook, struct pw_registry_events *events,
void *data);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 250/271

C API — example 1, monitoring global objects

/* We will run indefinitely, getting events for each added and removed global
* object.
*
* An influx of Registry::Global events will come in at the start to list all
* already-existing globals. Use the Core::Sync method and Core::Done event to
* know when that initial sync is done. See pw_core_sync(). */

#include <pipewire/pipewire.h>

static void registry_event_global(void *data, uint32_t id, uint32_t permissions,
const char *type, uint32_t version, const struct spa_dict *props) {

printf("object added: id:%u\ttype:%s/%d\n", id, type, version);
}

static void registry_event_global_remove(void *data, uint32_t id) {
printf("object removed: id:%u\n", id);

}

static const struct pw_registry_events registry_events = {
PW_VERSION_REGISTRY_EVENTS,
.global = registry_event_global,
.global_remove = registry_event_global_remove,

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 251/271

C API — example 1, monitoring global objects

int main(int argc, char **argv) {
pw_init(&argc, &argv);

struct pw_main_loop *loop = pw_main_loop_new(NULL);
struct pw_context *context = pw_context_new(pw_main_loop_get_loop(loop), NULL, 0);
struct pw_core *core = pw_context_connect(context, NULL, 0);
struct pw_registry *registry = pw_core_get_registry(core, PW_VERSION_REGISTRY, 0);

struct spa_hook registry_listener;
spa_zero(registry_listener);
pw_registry_add_listener(registry, ®istry_listener, ®istry_events, NULL);

pw_main_loop_run(loop);

pw_proxy_destroy((struct pw_proxy*)registry);
pw_core_disconnect(core);
pw_context_destroy(context);
pw_main_loop_destroy(loop);

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 252/271

C API — node implementations

▶ Implementing a raw node is not straight-forward, requiring to implement many
book-keeping methods (see struct spa_node_methods).

▶ PipeWire provides two abstractions for implementing nodes:
• pw_filter: DSP-type work, works on raw f32 samples, without additional buffering.
• pw_stream: more high level, it provides the following features:

Buffering: a stream can emit more samples than the current cycle quantum and
those will be buffered.
Format negociation: the client can expose multiple supported formats and
negociation will occur when changing from idle to running.
Format conversion: sample type, planar/interleaved, channel mapping, rate
resampling.

▶ See example implementations of source nodes:
• Filter: src/examples/audio-dsp-src.c
• Stream: src/examples/audio-src.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 253/271

C API — pw_filter process event

static void on_process(void *userdata, struct spa_io_position *position) {
struct data *data = userdata;
double *acc = data->out_port->accumulator;
uint64_t n_samples = position->clock.duration;

/* Fetch the sample buffer. The first argument is the port user data
* (as returned by pw_filter_add_port), it is used to identify our
* port (think container_of). */
float *out = pw_filter_get_dsp_buffer(data->out_port, n_samples);
if (out == NULL)

return;

for (uint64_t i = 0; i < n_samples; i++) {
*acc += 2 * M_PI * 440 / 44100; /* Grow our accumulator */
*acc = remainder(*acc, 2 * M_PI); /* Avoid overflows */
*out++ = sin(*acc) * 0.7; /* Compute a sample */

}
}

static const struct pw_filter_events filter_events = {
PW_VERSION_FILTER_EVENTS,
.process = on_process,

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 254/271

C API — pw_stream process event

static void on_process(void *userdata) {
struct data *data = userdata;

struct pw_buffer *b = pw_stream_dequeue_buffer(
data->stream);

assert(b != NULL);

struct spa_buffer *buf = b->buffer;
uint8_t *p = buf->datas[0].data;
assert(p != NULL);

int stride = sizeof(float) * CHANNELS;
int n_frames = SPA_MIN(b->requested,

buf->datas[0].maxsize / stride);

fill_f32(&data->accumulator, p, n_frames);

buf->datas[0].chunk->offset = 0;
buf->datas[0].chunk->stride = stride;
buf->datas[0].chunk->size = n_frames * stride;

pw_stream_queue_buffer(data->stream, b);
}

#define CHANNELS 2
#define FREQ 440
#define RATE 44100

static void fill_f32(float *acc, float *dest,
int n_frames) {

for (int i = 0; i < n_frames; i++) {
*acc += M_PI_M2 * FREQ / RATE;
*acc = remainder(*acc, 2 * M_PI);

float val = sin(*acc) * 0.7;
for (int c = 0; c < CHANNELS; c++)

*dst++ = val;
}

}

static const
struct pw_stream_events stream_events = {

PW_VERSION_STREAM_EVENTS,
.process = on_process,

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/271

PipeWire

Going further

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 256/271

Going further

▶ For MIDI support, see pw-cat --midi, pw-mididump and the documentation.
▶ For the PulseAudio compatibility layer, see module-protocol-pulse and this

documentation page.
▶ For the JACK compatibility layer, look at pw-jack.
▶ For video support, see many examples in src/examples/.
▶ For audio over IP, see modules roc-*, pulse-tunnel, netjack2-*, rtp-*,

protocol-simple, avb.
▶ To understand why timer-based audio scheduling (tsched) is useful, see this blog

post.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 257/271

https://docs.pipewire.org/page_midi.html
https://docs.pipewire.org/page_module_protocol_pulse.html
 https://docs.pipewire.org/page_pulseaudio.html
 https://docs.pipewire.org/page_pulseaudio.html
https://0pointer.net/blog/projects/pulse-glitch-free.html
https://0pointer.net/blog/projects/pulse-glitch-free.html

GStreamer

GStreamer

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/271

Introduction

▶ Gstreamer is an open-source multimedia framework that provides a pipeline-based
architecture for handling multimedia data such as audio and video.

▶ https://gstreamer.freedesktop.org/

▶ GStreamer provides a unified framework for handling various multimedia formats
and tasks.

▶ It supports a wide range of codecs, formats, and protocols.
▶ Its modular architecture supports plugins and allows the addition of new elements,

codecs, and functionality.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 259/271

https://gstreamer.freedesktop.org/

Architecture

▶ GStreamer is object oriented, it adheres to the GObject model of GLib 2.0.
▶ The main object is an Element. Each element has a specific function e.g. reading,

writing, encoding or decoding data. By chaining elements, its is possible to create
a pipeline to achieve a task.

▶ Elements communicate with each other through pads. A pad is a connection
point that can be an input (sink) or output (source). Elements are linked by
connecting pads. A pad can restrict the type of data that flows through it. Links
are only allowed between two pads when the allowed data types (capabilities) of
the two pads are compatible.

▶ A bin is a container for a collection of elements. It can be controlled just like an
element

▶ A pipeline is a top level bin. Allowing to control and synchronize all its children.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/271

Example

Example of a GStreamer pipeline

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 261/271

Plugins

▶ Plugins are selfcontained libraries loaded at runtime.
▶ All relevant aspects of plugins can be queried at run-time.
▶ All the properties can be set using the GObject properties, there is no need for

header files.
▶ Core plugins:

• audiotestsrc, videotestsrc: Generates test audio or video patterns.
• autoaudiosink, autovideosink: Automatically selects an output and plays audio or

displays video.
• filesrc, filesink: Read from and write to files.
• decodebin: Automatically selects and configures decoders based on media content.
• playbin: Automatically plays audio and video from a location

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 262/271

Useful Plugins

alsasink Sink Audio Output to a sound card via ALSA
alsasrc Source Audio Read from a sound card via ALSA
audioconvert Filter Converter Audio Convert audio to different formats
audiodynamic Filter Effect Audio Compressor and Expander
audiolatency Audio Util Measures the audio latency between the source and the

sink
audioloudnorm Filter Effect Audio Normalizes perceived loudness of an audio stream
audiomixmatrix Filter Audio Mixes a number of input channels into a number of out-

put channels according to a transformation matrix
audioresample Filter Converter Audio Resamples audio
clocksync Generic Synchronise buffers to the clock
dtmfdetect Filter Analyzer Audio This element detects DTMF tones
dtmfsrc Source Audio Generates DTMF tones
jackaudiosink Sink Audio Output audio to a JACK server
jackaudiosrc Source Audio Captures audio from a JACK server

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 263/271

Command line tools

▶ gst-inspect-1.0 is a tool that prints out information on GStreamer plugins and
elements.

▶ Without any arguments, it prints a list of all plugins and elements it knows about.
▶ gst-launch-1.0 builds and runs a GStreamer pipeline on GStreamer plugins and

elements.
▶ It takes a pipeline description as an argument, this is a list of elements separated

by exclamation marks (!). Properties may be appended to elements in the form
property=value.

▶ gst-launch-1.0 is a tool useful for debugging but shouldn’t be used as a
standalone application.

▶ For example, to play an ogg file using ALSA:
gst-launch-1.0 filesrc location=music.ogg ! oggdemux ! vorbisdec !
audioconvert ! audioresample ! alsasink

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 264/271

Debugging

▶ gst-launch-1.0 has a -v option to make it verbose
▶ GStreamer also uses the GST_DEBUG environment variable. It takes a debug level

from 0 (none) to 9 (memdump). This can also be filtered by element and
categories. For example, GST_DEBUG=2,audiotestsrc:6, will use level 6 for the
audiotestsrc element, and 2 for all the others.

▶ When GST_DEBUG_DUMP_DOT_DIR environment variable is set and point to a folder,
gst-launch-1.0 will create a .dot file at each state change. graphviz can then
be used to generate a graph.

• gst-launch-
1.0 filesrc location=Media/test_32_16.wav ! decodebin ! alsasink

• dot -Kfdp -Tpng -o pipeline.png 0.00.00.021721659-gst-
launch.PAUSED_PLAYING.dot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/271

Debugging - graph

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 266/271

Resources

▶ Documentation: https://gstreamer.freedesktop.org/documentation/. This
includes documentation of the API to write application and plugins.

▶ Plugin list:
https://gstreamer.freedesktop.org/documentation/plugins_doc.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 267/271

https://gstreamer.freedesktop.org/documentation/
https://gstreamer.freedesktop.org/documentation/plugins_doc.html

Demo - Gstreamer

▶ Inspect plugins and elements using
gst-inspect

▶ Prepare multiple pipelines with gst-launch

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 268/271

Last slides

Last slides

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 269/271

Last slide

Thank you!
And may the Source be with you

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/271

Rights to copy

© Copyright 2004-2025, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of this work.
▶ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 271/271

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

	About Bootlin
	Sound and its representation
	Embedded audio Hardware
	CODECs
	SoC Digital Audio Interface
	Digital formats
	Auxiliary devices
	Clocks

	ASoC
	simple-audio-card
	Machine driver
	CODEC driver
	ASoC component controls
	regmap
	ASoC component callbacks
	Auxiliary devices
	ASoC DAPM
	CPU DAI driver

	Userspace ALSA
	alsa-lib
	alsa-utils

	Troubleshooting
	PipeWire
	Introduction
	Configuration
	Tools rundown
	Demo 1 — running PipeWire
	Demo 2 — PipeWire filter-chains
	WirePlumber
	Demo 3 — interacting with WirePlumber
	C API
	Going further

	GStreamer
	Last slides

