
1

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Hotplugging with udev

Hotplugging
with udev

Michael Opdenacker
Free Electrons

© Copyright 2004-2009, Free Electrons.
Creative Commons BY-SA 3.0 license
Latest update: Aug 15, 2017,
Document sources, updates and translations:
http://free-electrons.com/docs/udev
Corrections, suggestions, contributions and translations are welcome!

http://free-electrons.com/docs/udev

2

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

/dev issues and limitations

On Red Hat 9, 18000 entries in /dev!
All entries for all possible devices
had to be created at system installation.

Needed an authority to assign major numbers
http://lanana.org/: Linux Assigned Names and Numbers
Authority

Not enough numbers in 2.4, limits extended in 2.6.

Userspace neither knew what devices were present in the
system, nor which real device corresponded to each /dev
entry.

http://lanana.org/

3

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

The udev solution

Takes advantage of sysfs introduced by Linux 2.6.

Created by Greg Kroah Hartman, a huge contributor.
Other key contributors: Kay Sievers, Dan Stekloff.

Entirely in user space.

Automatically creates / removes device entries
in /dev/ according to inserted / removed devices.

Major and minor device transmitted by the kernel.

Requires no change to driver code.

Fast: written in C
Small size: udevd version 108: 61 KB in Ubuntu 7.04

4

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Starting udev (1)

At the very beginning of user-space startup,
mount the /dev/ directory as a tmpfs filesystem:
sudo mount -t tmpfs udev /dev

/dev/ is populated with static devices available in
/lib/udev/devices/ :

Ubuntu 6.10 example:
crw------- 1 root root 5, 1 2007-01-31 04:18 console
lrwxrwxrwx 1 root root 11 2007-01-31 04:18 core -> /proc/kcore
lrwxrwxrwx 1 root root 13 2007-01-31 04:18 fd -> /proc/self/fd
crw-r----- 1 root kmem 1, 2 2007-01-31 04:18 kmem
brw------- 1 root root 7, 0 2007-01-31 04:18 loop0
lrwxrwxrwx 1 root root 13 2007-01-31 04:18 MAKEDEV -> /sbin/MAKEDEV
drwxr-xr-x 2 root root 4096 2007-01-31 04:18 net
crw------- 1 root root 1, 3 2007-01-31 04:18 null
crw------- 1 root root 108, 0 2007-01-31 04:18 ppp
drwxr-xr-x 2 root root 4096 2006-10-16 14:39 pts
drwxr-xr-x 2 root root 4096 2006-10-16 14:39 shm
lrwxrwxrwx 1 root root 24 2007-01-31 04:18 sndstat -> /proc/asound/oss/sndstat
lrwxrwxrwx 1 root root 15 2007-01-31 04:18 stderr -> /proc/self/fd/2
lrwxrwxrwx 1 root root 15 2007-01-31 04:18 stdin -> /proc/self/fd/0
lrwxrwxrwx 1 root root 15 2007-01-31 04:18 stdout -> /proc/self/fd/1

5

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Starting udev (2)

The udevd daemon is started.
It listens to uevents from the driver core,
which are sent whenever devices are inserted or removed.

The udevd daemon reads and parses all the rules found in
/etc/udev/rules.d/
and keeps them in memory.

Whenever rules are added, removed or modified,
udevd receives an inotify event and updates its
ruleset in memory.

When an event is received, udevd starts a process to:

try to match the event against udev rules,

create / remove device files,

and run programs (to load / remove a driver, to notify user space...)

The inotify mechanism lets
userspace programs subscribe
to notifications of filesystem
changes. Possibility to watch
individual files or directories.

6

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

uevent message example

Example inserting a USB mouse

recv(4, // socket id
 "add@/class/input/input9/mouse2\0 // message
 ACTION=add\0 // action type
 DEVPATH=/class/input/input9/mouse2\0 // path in /sys
 SUBSYSTEM=input\0 // subsystem (class)
 SEQNUM=1064\0 // sequence number
 PHYSDEVPATH=/devices/pci0000:00/0000:00:1d.1/usb2/2-2/2-2:1.0\0
 // device path in /sys
 PHYSDEVBUS=usb\0 // bus
 PHYSDEVDRIVER=usbhid\0 // driver
 MAJOR=13\0 // major number
 MINOR=34\0", // minor number
 2048, // message buffer size
 0) // flags
= 221 // actual message size

7

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

udev rules

When a udev rule matching event information is found,
it can be used:

To define the name and path of a device file.

To define the owner, group and permissions of a device file.

To execute a specified program.

Rule files are processed in lexical order.

8

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

udev naming capabilities

Device names can be defined

from a label or serial number,

from a bus device number,

from a location on the bus topology,

from a kernel name,

from the output of a program.

See http://www.reactivated.net/writing_udev_rules.html
for a very complete description. See also man udev.

http://www.reactivated.net/writing_udev_rules.html

9

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

udev naming rule examples

Naming testing the output of a program
BUS=="scsi", PROGRAM="/sbin/scsi_id", RESULT=="OEM 0815", NAME="disk1"

USB printer to be called lp_color
BUS=="usb", SYSFS{serial}=="W09090207101241330", NAME="lp_color"

SCSI disk with a specific vendor and model number will be called boot
BUS=="scsi", SYSFS{vendor}=="IBM", SYSFS{model}=="ST336", NAME="boot%n"

sound card with PCI bus id 00:0b.0 to be called dsp
BUS=="pci", ID=="00:0b.0", NAME="dsp"

USB mouse at third port of the second hub to be called mouse1
BUS=="usb", PLACE=="2.3", NAME="mouse1"

ttyUSB1 should always be called pda with two additional symlinks
KERNEL=="ttyUSB1", NAME="pda", SYMLINK="palmtop handheld"

multiple USB webcams with symlinks to be called webcam0, webcam1, ...
BUS=="usb", SYSFS{model}=="XV3", NAME="video%n", SYMLINK="webcam%n"

10

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

udev permission rule examples

Excerpts from /etc/udev/rules.d/40-permissions.rules

Block devices
SUBSYSTEM!="block", GOTO="block_end"
SYSFS{removable}!="1", GROUP="disk"
SYSFS{removable}=="1", GROUP="floppy"
BUS=="usb", GROUP="plugdev"
BUS=="ieee1394", GROUP="plugdev"
LABEL="block_end"

Other devices, by name

KERNEL=="null", MODE="0666"
KERNEL=="zero", MODE="0666"
KERNEL=="full", MODE="0666"

11

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Identifying device driver modules

Each driver announces which device and vendor
ids it supports. Information stored in module files.

The depmod -a command processes
module files and generates

/lib/modules/<version>/modules.alias

The driver core (usb, pci...) reads the device id,
vendor id and other device attributes.

The kernel sends an event to udevd, setting the
MODALIAS environment variable, encoding these data.

A udev event process runs
modprobe $MODALIAS

modprobe finds the module to load
in the modules.alias file.

Kernel / module compiling System everyday life

12

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Module aliases

MODALIAS environment variable example (USB mouse):
MODALIAS=usb:v046DpC03Ed2000dc00dsc00dp00ic03isc01ip02

Matching line in /lib/modules/<version>/modules.alias:
alias usb:v*p*d*dc*dsc*dp*ic03isc01ip02* usbmouse

13

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

udev modprobe rule examples

Even module loading is done with udev!
Excerpts from /etc/udev/rules.d/90-modprobe.rules

ACTION!="add", GOTO="modprobe_end"

SUBSYSTEM!="ide", GOTO="ide_end"
IMPORT{program}="ide_media --export $devpath"
ENV{IDE_MEDIA}=="cdrom", RUN+="/sbin/modprobe -Qba ide-cd"
ENV{IDE_MEDIA}=="disk", RUN+="/sbin/modprobe -Qba ide-disk"
ENV{IDE_MEDIA}=="floppy", RUN+="/sbin/modprobe -Qba ide-floppy"
ENV{IDE_MEDIA}=="tape", RUN+="/sbin/modprobe -Qba ide-tape"
LABEL="ide_end"

SUBSYSTEM=="input", PROGRAM="/sbin/grepmap --udev", \
RUN+="/sbin/modprobe -Qba $result"

Load drivers that match kernel-supplied alias

ENV{MODALIAS}=="?*", RUN+="/sbin/modprobe -Q $env{MODALIAS}"

14

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Coldplugging

Issue: loosing all device events happening during kernel
initialization, because udev is not ready yet.

Solution: after starting udevd, have the kernel emit uevents for
all devices present in /sys.

This can be done by the udevtrigger utility.

Strong benefit: completely transparent for userspace.
Legacy and removable devices handled and named in exactly the
same way.

15

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Debugging events - udevmonitor (1)

udevadm monitor visualizes the driver core events
and the udev event processes.
Example event sequence connecting a USB mouse:

UEVENT[1170452995.094476] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2
UEVENT[1170452995.094569] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
UEVENT[1170452995.098337] add@/class/input/input28
UEVENT[1170452995.098618] add@/class/input/input28/mouse2
UEVENT[1170452995.098868] add@/class/input/input28/event4
UEVENT[1170452995.099110] add@/class/input/input28/ts2
UEVENT[1170452995.099353] add@/class/usb_device/usbdev4.30
UDEV [1170452995.165185] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2
UDEV [1170452995.274128] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
UDEV [1170452995.375726] add@/class/usb_device/usbdev4.30
UDEV [1170452995.415638] add@/class/input/input28
UDEV [1170452995.504164] add@/class/input/input28/mouse2
UDEV [1170452995.525087] add@/class/input/input28/event4
UDEV [1170452995.568758] add@/class/input/input28/ts2

It gives time information measured in microseconds.
You can measure time elapsed between the uevent (UEVENT line), and the
completion of the corresponding udev process (matching UDEV line).

16

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Debugging events - udevmonitor (2)

udevadm monitor --env
shows the complete event environment for each line.
UDEV [1170453642.595297] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
UDEV_LOG=3
ACTION=add
DEVPATH=/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
SUBSYSTEM=usb
SEQNUM=3417
PHYSDEVBUS=usb
DEVICE=/proc/bus/usb/004/031
PRODUCT=46d/c03d/2000
TYPE=0/0/0
INTERFACE=3/1/2
MODALIAS=usb:v046DpC03Dd2000dc00dsc00dp00ic03isc01ip02
UDEVD_EVENT=1

17

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Misc udev utilities

udevinfo
Lets users query the udev database.

udevtest <sysfs_device_path>
Simulates a udev run to test the configured rules.

18

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Firmware hotplugging

Also implemented with udev!

Firmware data are kept outside device drivers

May not be legal or free enough to distribute

Firmware in kernel code would occupy memory
permanently, even if just used once.

Kernel configuration: needs to be set in
CONFIG_FW_LOADER
(Device Drivers -> Generic Driver Options -> hotplug
firmware loading support)

19

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Firmware hotplugging implementation

See Documentation/firmware_class/ for a nice overview

Driver
calls request_firmware()

Sleeps

firmware subsystem event sent to udev
Calling /lib/udev/firmware_helper

/sys/class/firmware/xxx/{loading,data}
appear

/lib/udev/firmware_helper
echo 1 > /sys/class/firmware/xxx/loading

cat fw_image > /sys/class/firmware/xxx/data
echo 0 > /sys/class/firmware/xxx/loading

Kernel
Get ready to load firmware data

Grows a buffer to accommodate incoming data

Driver
 wakes up after request_firmware()

Copies the buffer to the hardware
Calls release_firmware()

Kernel space Userspace

http://free-electrons.com/kerneldoc/latest/firmware_class/
http://lxr.free-electrons.com/ident?i=request_firmware
http://lxr.free-electrons.com/ident?i=request_firmware
http://lxr.free-electrons.com/ident?i=release_firmware

20

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

udev files

/etc/udev/udev.conf
udev configuration file.
Mainly used to configure syslog reporting priorities.
Example setting: udev_log="err"

/lib/udev/rules.d/
Standard udev event matching rules, installed by the distribution.

/etc/udev/rules.d/*.rules
Local (custom) udev event matching rules. Best to modify these.

/lib/udev/devices/*
static /dev content (such as /dev/console, /dev/null...).

/lib/udev/*
helper programs called from udev rules.

/dev/*
Created device files.

21

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Kernel configuration for udev

Created for 2.6.19
Caution: no documentation found, and not tested yet on a minimalistic system.
Some settings may still be missing.
Subsystems and device drivers (USB, PCI, PCMCIA...) should be added too!

General setup
CONFIG_HOTPLUG=y
Networking, networking options
CONFIG_NET=y
CONFIG_UNIX=y Unix domain sockets
CONFIG_NETFILTER_NETLINK=y
CONFIG_NETFILTER_NETLINK_QUEUE=y
Pseudo filesystems
CONFIG_PROC_FS=y
CONFIG_SYSFS=y
CONFIG_TMPFS=y Needed to manage /dev
CONFIG_RAMFS=y

22

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

udev summary - typical operation

Kernel driver core
(usb, pci...)

udevd

Matches event to rules

Creates / removes
device files

udev event process

Load the right module

Notify userspace
programs (GUI...)

/lib/udev/ programs or others

uevent

23

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

udev resources

Home page
https://www.kernel.org/pub/linux/utils/kernel/hotplug/udev/udev.html

Sources
http://kernel.org/pub/linux/utils/kernel/hotplug/

The udev manual page:
man udev

http://kernel.org/pub/linux/utils/kernel/hotplug/

24

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

mdev, the udev for embedded systems

udev might be too heavy-weight for some embedded systems,
the udevd daemon staying in the background waiting for events.

BusyBox provides a simpler alternative called mdev, available by
enabling the MDEV configuration option.

mdev's usage is documented in doc/mdev.txt in the BusyBox
source code.

mdev is also able to load firmware to the kernel like udev

25

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

mdev usage

To use mdev, the proc and sysfs filesystems must be mounted

mdev must be enabled as the hotplug event manager
echo /sbin/mdev > /proc/sys/kernel/hotplug

Need to mount /dev as a tmpfs:
mount -t tmpfs mdev /dev

Tell mdev to create the /dev entries corresponding to the
devices detected during boot when mdev was not running:
mdev -s

The behavior is specified by the /etc/mdev.conf
configuration file, with the following format
<device regex> <uid>:<gid> <octal permissions>
[=path] [@|$|*<command>]

Example
hd[a-z][0-9]* 0:3 660

