
© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License

Kernel – Serial controller device driver
programming

Objective: Develop a serial device driver for the
AT91SAM9263 CPU from scratch.

Warning

In this lab, we are going to re-implement a driver that already
exists in the Linux kernel tree. Since the driver already exists, you
could just copy the code, compile it, and get it to work in a few
minutes. However, the purpose of this lab is to re-create this driver
from scratch, taking the time to understand all the code and all the
steps. So please play the game, and follow our adventure of
creating a serial driver from scratch!

Setup

Go to the /home/<user>/felabs/linux/character directory. It
contains the root filesystem that you will mount over NFS to work on
this lab. Re-use the setup instructions of the lab on Character Device
Drivers to get a kernel without the serial port driver and with
Network Console support.

Basic module

The serial core cannot be compiled inside the kernel without an in-
tree kernel driver. Therefore, for this lab, we will work directly
inside the kernel source tree and not using an external module.

To do so:

• Create a basic module in drivers/serial/fedrv.c with just
the init and cleanup functions ;

• Add a new configuration option in drivers/serial/Kconfig.
Don't forget to select SERIAL_CORE in this option ;

• Update drivers/serial/Makefile to make sure your driver
gets compiled when your new option is selected

Compile your new driver as a module, and after the kernel
compilation, run:

make INSTALL_MOD_PATH=/path/to/nfsroot modules_install

To install the modules (serial_core and your driver) into the root
filesystem. Then try to load/unload your module on the target using
modprobe. If you're successful, we can now start working on the
driver itself.

Register the UART driver

Instantiate an uart_driver structure with the following values:

• owner, THIS_MODULE

• driver_name, “fedrv” or any other string

• dev_name, “ttyS”

• major, TTY_MAJOR (this is the usual major for TTY devices)

https://bootlin.com/
https://bootlin.com/
https://bootlin.com/
https://bootlin.com/

© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License

• minor, 64 (this is the usual minor for TTY serial devices, see
Documentation/devices.txt in the kernel source tree)

• nr, 1 (we will support only one port)

In the init function, register the UART driver with
uart_register_driver() and in the cleanup function, unregister it
with uart_unregister_driver().

Integration in the device model

To get notifications of the UART devices that exist on our board, we
will integrate our driver in the device model.

To do, so, first instantiate a platform_driver structure, with
pointers to the probe() and remove() methods (they can be left
empty at the moment). The driver name must be “atmel_usart” to
match the device definitions in arch/arm/mach-at91/.

You should mark the probe function with __devinit and the
remove function with __devexit. The remove operation should be
declared as follows:

.remove = __devexit_p(fedrv_remove)

So that if the driver is statically compiled, the fedrv_remove()
function is not compiled in and the .remove pointer is NULL.

Then, in the init and cleanup functions of the module, register and
unregister the platform driver using platform_driver_register()
and platform_driver_unregister().

Finally, you need to make a small modification to the kernel.
Currently, the “atmel_usart” platform devices are only added if
the Atmel serial port driver is compiled in. However, since we
disabled this driver (because we are re-implementing it), we must
modify a little the board code. So, in
arch/arm/mach-at91/at91sam9263_devices.c, replace:

#if defined(CONFIG_SERIAL_ATMEL)

by

#if 1

Then, recompile your kernel, re-flash it, and test your new module.
You should see your probe() function being called (after adding a
simple printk() in it). And in /sys/devices/platform/, you
should see the device atmel_usart.0. This directory contains a
symbolic link driver to the atmel_usart driver. If you follow this
symbolic link, you should discover that the atmel_usart driver is
implemented by the fedrv module. Congratulations!

Registering the port

Now, it's time to implement the probe() and remove() functions.
Before that, we need a few definitions:

• Declare a global uart_port structure, that will be used to
contain the informations about the single port we will
manage;

• Declare an empty uart_ops structure.

Then, in the probe() operation:

Linux Training
Lab book

Linux Training
Lab book

https://bootlin.com/
https://bootlin.com/

© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License

• Make sure pdev->id is 0 (we only want to handle the first
serial port). If it's not zero, bail out with -ENODEV

• Initialize the fields of the uart_port structures

◦ ->ops should point to the uart_ops structure

◦ ->dev should point to the struct device embedded in
the platform device structure. So &pdev->dev should work

◦ ->line should be the serial port number, i.e 0 or pdev-
>id

• Register the port with uart_add_one_port()

• Associate the port pointer to the platform device structure
using platform_set_drvdata(). This will make it easy to find
the port structure from the platform device structure in the
remove() operation.

In the remove() method:

• Get the port structure from the platform device structure
using platform_get_drvdata()

• Unregister the port with uart_remove_one_port().

Now, when testing your driver, in
/sys/devices/platform/atmel_usart.0/, you should have a tty
directory, which itself contains a ttyS0 directory. Similarly, if you
go in /sys/class/tty/ttyS0, you should see that the ttyS0 device
is handled by atmel_usart.0. Good!

Polled mode transmission

To keep our driver simple, we will implement a very simple polled-
mode transmission model.

In the probe() operation, let's define a few more things in the port
structure:

• ->fifosize, to 1 (this is hardware-dependent)

• ->iotype should be UPIO_MEM because we are accessing the
hardware through memory-mapped registers

• ->flags should be UPF_BOOT_AUTOCONF so that the
config_port() operation gets called to do the configuration

• ->mapbase should be pdev->resource[0].start, this is the
address of the memory-mapped registers

• ->membase should be set to data->regs, where data is the
device-specific platform data associated to the device. In our
case, it's a atmel_uart_data structure, available through
pdev->dev.platform_data. In the case of the first serial port
data->regs is non-zero and contains the virtual address at
which the registers have been remapped. For the other serial
ports, we would have to ioremap() them.

Then, we need to create stubs for a fairly large number of
operations. Even if we don't implement anything inside these
operations for the moment, the serial_core layer requires these
operations to exist:

• tx_empty()

https://bootlin.com/
https://bootlin.com/

© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License

• start_tx()

• stop_tx()

• stop_rx()

• type()

• startup()

• shutdown()

• set_mctrl()

• set_termios()

• release_port()

• request_port()

• config_port()

First, let's implement what's related to setting and getting the
serial port type:

• In the config_port() operation, if flags &
UART_CONFIG_TYPE is true, then set port->type =
PORT_ATMEL. There is a global list of serial port types, and we
are re-using the existing definition.

• In the type() operation, if port->type is PORT_ATMEL return
a string like “ATMEL_SERIAL”, otherwise return NULL.

Now, for the transmission itself, we will first implement
tx_empty(). In this function, read the register ATMEL_US_CSR from
the hardware (note: the virtual base address of the registers is in
port->membase). If bit ATMEL_US_TXEMPTY is set, it means that the
port is ready to transmit, therefore return TIOCSER_TEMT, otherwise
return 0.

Then, the start_tx() function will do the transmission itself.
Iterate until the transmission buffer is empty (use
uart_circ_empty()) and do:

• call an auxiliary function that prints one character

• update the tail pointer of the transmission buffer

• increment port->icount.tx

The auxiliary function should wait until bit ATMEL_US_TXRDY gets
set in the ATMEL_US_CSR register, and then send the character
through the ATMEL_US_THR register.

Then, compile and load your driver. You should now be able to do
echo “foo” > /dev/ttyS0.

Implementing reception

The last part to make our driver usable is to implement reception.

We first need to modify the probe() method to set port->irq to
pdev->resource[1].start so that we fetch the IRQ number from
the board-specific platform device definition.

Then, in the startup() operation, do the following steps:

• Disable all interrupts in the serial controller by writing ~0UL
to the ATMEL_US_IDR register

Linux Training
Lab book

Linux Training
Lab book

https://bootlin.com/
https://bootlin.com/

© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License

• Register the IRQ channel port->irq to an interrupt handler
fedrv_interrupt(). Pass port as the dev_id so that we get
a pointer to the port in the interrupt handler. Make it a
shared interrupt.

• Reset the serial controller by writing ATMEL_US_RSTSTA |
ATMEL_US_RSTRX to the ATMEL_US_CR register

• Enable transmission and reception by writing ATMEL_US_TXEN
| ATMEL_US_RXEN to the ATMEL_US_CR register

• Enable interrupts on reception by writing ATMEL_US_RXRDY to
the ATMEL_US_IER register

Similarly, in the shutdown() operation, do:

• Disable all interrupts by writing ~0UL to the ATMEL_US_IDR
register

• Free the IRQ channel using free_irq().

Then, in the interrupt handler, do the following:

• Read the ATMEL_US_CSR register to get the controller status
and perform the logical and of this value with the enabled
interrupts by reading the ATMEL_US_IMR register. If the
resulting value is 0, then the interrupt was not for us, return
IRQ_NONE.

• If the result value has bit ATMEL_US_RXRDY set, call an
auxiliary function fedrv_rx_chars() to receive the
characters.

Finally, we have to implement the fedrv_rx_chars() function. This
function should read the ATMEL_US_CSR register, and while
ATMEL_US_RXRDY is set in this register, loop to read characters the
following way:

• Read one character from the ATMEL_US_RHR register

• Increment port->icount.rx

• Call uart_insert_char() with the value of the status
register, overrun to ATMEL_US_OVRE, and the flag set to
TTY_NORMAL (we don't handle break characters, frame or
parity errors, etc. for the moment)

Once all characters have been received, we must tell the upper
layer to push these characters, using tty_flip_buffer_push().

Now, if you do cat /dev/ttyS0, you should be able to receive
characters from the serial port. By default, a ttyS is opened in the
so-called “canonical” mode, so the characters are sent to the
reading process only after entering a newline character.

You can also try to run the program that will display the login
prompt and then a shell:

/sbin/getty -L ttyS0 115200 vt100

Go back to your Minicom, you should be able to login normally, but
using your own serial driver!

Improvements

Of course, our serial driver needs several improvements:

https://bootlin.com/
https://bootlin.com/

© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License© 2004-2010 Bootlin, https://bootlin.com/ Creative Commons License

• Real implementation of set_termios() and set_mctrl()

• Usage of interrupts for transmission

• Console support for early messages

• Support of several serial ports

• Handle parity and frame errors properly

• Support break characters and SysRq

• Use of DMA for transmission and reception

• etc.

Linux Training
Lab book

Linux Training
Lab book

https://bootlin.com/
https://bootlin.com/

